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ON AN AACDMZ QUESTION

Ryuki MATSUDA and AKira OKABE

Let D be a (commutative) integral domain with quotient field K. Let
F(D) denote the set of nonzero fractional ideals of D and let f(D) be the
subset of finitely generated members of F(D). For each A € F(D), we
set D:yA = A"! and (A7!)"! = A,. The function on F(D) defined by
A A, is called the v-operation on D. If for each A € f(D), there exists
a B € F(D) with (AB), = D, then D is called a v-domain. If there is
a set of prime ideals {P;| 7 € I} of D such that D = (\;c; Dp, and each
Dp, is a valuation domain, then D is called an essential domain. [1] in-
vestigated characterizations of v-domains and related properties. Among
other Theorems it proved the following,

Theorem 1 ([1, Theorem 7)).
(1) If D is an essential domain, then

(A1N-NAn)y = (A1) NN (An)

for all Ay,---, A, € f(D).
(2) If D is integrally closed and

(A1 NN Ay = (A1)y N -+ 0 (An)e
forall Ay,---, A, € f(D), then D is a v-domain.

Relating with Theorem 1 it posed the following,

Question ([1, p.7]).  Does any v-domain D satisfy
(Al n---N An)u = (A])u NN (An)v
for all A; € f(D)?

The aim of this paper is to give an affirmative answer to the question.
We will prove the following,

Theorem 2. Let D be a v-domain. Then we have

(AN Ay)y =(A1)s NN (A4),
41
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for all A; € f(D).

First we recall the definition and some properties of the Kronecker
function ring of D with respect to the v-operation. Let D[X] be the
polynomial ring of an indeterminate X over D. For each f € K[X], we
denote the fractional ideal of D generated by the coefficients of f by ¢(f).

Lemma 3 (cf. [2,(32.7)]). Let D be a v-domain. Set

D*={0}u{s/g| f.g € DIX]-{0} and c(f)y Cc(g)u}.
Then,
(1) DY is a domain with quotient field K (X).
(2) If A is a nonzero finitely generated ideal of D, then AD*NK = A,.

D¥ is called the Kronecker function ring of D with respect to the
v-operation.

Lemma 4. Let D be a v-domain. Let a € K — {0} and C € F(D).
If aA, C B, and BA™! C C are satisfied for some A € f(D) and some
B € F(D), thena € C,.

Proof.  We note that (AA~!), = D, since D is a v-domain. Then
we have

a € a(AA™Y), = (@A, A1), C (BoA™Y), = (BA™Y), C Cy.

Proof of Theorem 2.  Let D be a v-domain with quotient field K. Let
D? be the Kronecker function ring of D with respect to the v-operation.
Let Aj,---, A, € f(D). Choose elements a;j,---,a;z(;) of K — {0} such
that 4; = (a;,--- s Bik (i) )D for 1 < i< n. We set

fi = aaX + apX? 4+ + ayp X0
for 1 < i < n. Since, for each j, a;;/fi € D?, we have A;D¥ = f;D" for
1<i<n Seth;=f1 - fi—1fit1--- fa, and let d(i) denote the degree of
h; for 1 <1 < n. We set
hl + hqx"d[l) + hSXd(1)+d[2) 4t hnxd(1]+---+d(n-—1) =g.

Since, for each j,h;/g € DY, it immediately follows that (hq,-+-,h,)D" =
gD?, and so

(1/f1se5 1/ f)D" = (g/(fr -+ fa)) D"
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By taking the inverses, we see that
ADYO N fuDY = ((fr--- f2)/9)D".
Now let 0 £ a € (A1), N++-N(Ap),. Tten we have
a€ iD" NN foDY = ((fr--- f2)/9)D".

It follows ag/(fi--- fa) € D”. Hence we have ac(g), C e(fi--- fa)u. On
the other hand, we have

c(fisees fa)e(@)™t C AL NN Ap,

since for each 1,

C(f],‘ ) fn)c(g)_l

e(fihi)(e(h1) + -+ + c(ha))™"
e( fihi) e(Ri)™! C e(fi)
= A,

N

Then Lemma 4 can be applied to obtain a € (A; N-+-N Ay),. Thus
(A))e NN (Ap)y C(A1 NN Ap)y.

Since the reverse containment is obvious, the proof is now complete.
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