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ON DERIVATIONS IN NEAR-RINGS AND RINGS

Howarp E. BELL* and GorboN MASON

The major purpose of this paper is to study two kinds of derivations in
near-rings. The first kind, called strong commutativity-preserving derivations,
are motivated by recent studies of mappings f in rings having the property that
[£(x), /(3»)] = 0 whenever [x, y] = 0. (For references, see [3].) The second
kind, called Daif derivations, are near-ring analogues of some derivations in rings
which were intruduced recently by Daif and studied in [4]. Most of our results
are in the context of near-rings ; however, one of the principal theorems (Theo-
rem 5) belongs entirely to ring theory.

All our near-rings N will be zero-symmetric left near-rings. The multi-
plicative center of N will be denoted by Z, and the commutator xy — yx by [x, v].
By a derivation on N we mean a mapping D: N — N such that D(x+y) =
D(x)+ D(y) and D(xy) = xD(y)+ D(x)y for all x, y € N. As usual, an ele-
ment ¢ € N for which D(c¢) = 0 is called a constant ; and as in [2], a derivation
D is said to be commuting if [x, D(x)) = 0 for all x € N.

1. Strong commutativity-preserving derivations: N without zero divi-
sors. We define a strong commutativity-preserving derivation (scp-derivation)
to be a derivation D such that [x, y] = [D(x), D(y)] for all x, vy € N. Clearly
such derivations preserve commutativity in the sense that [D(x), D(»)] = 0
whenever [x, y] = 0. If N is a commutative near-ring, then every derivation is
an scp-derivation ; and it can be expected that the existence of an scp-derivation
on N will imply some measure of commutativity. We show that for certain
well-behaved classes of near-rings, this is indeed the case.

Lemma 1. If D is an scp-derivation on N, then constants ave in Z. If N also
has 1, then (N, +) is abelian.

Proof. For c constant, we have [¢, y] = [D(c), D(»)] = [0, D(v)] = 0 for
all y € N. Inparticular, if N has1,then14+1 € Z; hence [1+1, x+y] = 0 for
all x, y € N, from which it follows that (N, +) is abelian.

It will be useful to recall a result from [2] :
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Lemma 2. If D is any derivation on N, the following partial distributive law
is satisfied :

(aD(d)+D(a)b)c = aD{b)c+D(a)bc for all a, b, c € N.

Theorem 1. If N has right cancellation and D is a nonzero scp-devivation
on N, then D is commuting and (N, +) is abelian.

Proof. For all x € N, [x, xD(x)] = [D(x), D(xD(x))] ; hence,
x[x, D(x)] = x[D(x), DXx)] = [D(x), xD*(x)+ D(x)].
Now by Lemma 2, the right-hand side of this equality equals
D(x)xD*(x)+ D(x)*— (xD*(x) D(x)+ D(x)*) = D(x)xD*(x)—xD*(x)D(x) ;
hence

xD(x)D¥(x) — xD¥(x)D(x) = D(x)xD*(x)— xD*(x)D(x),
or
xD{(x)D*(x) = D(x)xD*x).

If D¥(x) =0, then D(x) is constant, hence central ; otherwise, D%*(x) can be
cancelled on the right. In either event, [x, D(x)] = 0. Finally, (¥, +) is abelian
by [2, Theorem 1].

Note that if N admits a commuting scp-derivation, all idempotents e are
central, for D(e) = eD(e)+D(e)e = 2eD(e) gives eD(e) = 2eD(e), hence
eD(e) = 0 = D(e). Centrality follows by Lemma 1.

Theorem 2. If N has no zero divisors and adwmils a nonzero commuting
scp-derivation, then N is a commutative ring with no idempotents except 0 or 1.

Proof. For all x, y € N we have [x, xy] = [D(x), D(xy)] = [D(x), xD(y)
+D(x)y], so by using Lemma 2 we get x[x, y] = D(x)xD(y)+D(x)*y
— D(x)yD(x)—xD(y)D(x). Since D is commuting, and therefore (N, +) is
abelian by (2, Theorem 1], we now have x[x, y] = x[D(x), D(y)] = x[D(x),
D(y)]+D(x)[D(x), y]. Hence D(x)[D(x), y] = 0; and since N has no zero
divisors, we conclude that [D(x), y] = 0 for all x, y € N. In particular, [D(x),
D(y)] =0: and therefore [x,y] =0 for all x,y € N. Thus, N is a com-
mutative ring.

Finally, if ¢ = e = 0, then e is central as noted above. Since e(ex—x) =
0 for all x € N, e is a left identity element ; and since e € Z, it follows that e
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Corollary 1. A near-field with an scp-derivation is a field.

Recall that Graves and Malone [5] define a near-ring to be a near-domain
if it has right cancellation and satisfies the left Ore condition. (Pilz [8, p. 310] uses
near-integral domain for this concept and reserves near-domain for another idea
[8, §8. 41]). Invoking Theorems 1 and 2, we obtain

Corollary 2. A near-domain admitting a nonzero scp-derivation is a com-
mutative ring (and hence an orvdinary integral domain).

Corollary 3. If N has no nonzero nilpotent elements and admits a commut-
ing scp-derivation, then N is a commulative ring.

Proof. By Lemma 4 of [2], there exists a family of completely prime ideals
{P:| @ € A} such that N is a subdirect product of the near-rings N/P., and such
that for each @ € A, the definition D.(x + P.) = D(x)+ P, yields a derivation
D. on N/P.. Let N denote a typical N/P.; and note that N has no nonzero
divisors of zero. If D. is nonzero, then N is a commutative ring by Theorem 2.
On the other hand, if D, is trivial, then the definition of scp-derivation shows that
N is commutative, hence distributive. But then (N?, +) is abelian, so that %2
+i7—%2—%y =0 for all %, € N ; and cancelling # shows that (N, +) is
abelian.

Hongan [6] has shown how some of the results in [2] can be generalized
by assuming that the hypotheses apply to a nonzero ideal of N rather than to N
itself. In the same spirit, we offer

Theorem 3. Let A be a nonzero ideal of N which contains no zero divisors
of N. If N admits a nonzero derivation D such that (x, D(x)] = 0 for all x €
A and [x, v] = [D(x), D(y)] for all x,y € A, then N is a commutative ring.

Proof By Lemma 2 of [2], the additive-group commutator (x, a) = x+a
—x—aisconstant for all ¢ € A and x € N. Since A is an ideal, y(x, a) = (yx,
ya) is also constant for arbitrary ¥y € N, hence D(N)(x, a) = {0}. Now (x, a)
€ A, hence cannot be a nonzero divisor of zero ; therefore (x, @) = 0, and (A4,
+) is abelian. It follows that for arbitrary ¢ € A\{0} and x, y € N, (ax, ay) =
a(x, y) = 0; hence (N, +) is abelian. We can now adapt the proof of Theorem
2 to show that D(x)[D(x), y] = 0 for all x, y € A and since [D(x). y] € A,
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we conclude that [D(x), y] = 0 or D(x) = 0. Thus [D(x), y] =0forallx,y €
A ; in particular, for all x, y € A we have [D(x), yD(y)] = 0 = y[D(x), D(y)].
We conclude that 0 = [D(x), D()] = [x, y] forall x, y € A. If 2 € A\{0} and
u, v € N, this gives auav—avau = 0 = a*uv—a*vu = a*{u, v], so [u, v] =
0. Therefore, N is a commutative ring.

For N with 1, the existence of an scp-derivation implies a distributivity
principle :

Lemma 3. If N has 1 and admits an scp-derivation, then
(zx+2)y = zxy+2y for all x, v,z € N.

Proof. Since D(1) =0 and [x+1, y] = [D(x+1), D(»)] = [D(x), D(»)]
=[x, y], it follows that (x+1)y = xy+y for all x, y € N ; and left-multiplying
by z gives the result.

If N has 1 and zN = N for all z & N\{0}, this lemma shows that N is
distributive; thus, we have an alternative approch to Corollary 1. The lemma
also enables us to prove a theorem related to Ligh’s work in [7].

Theorem 4. Let N be a nonzero near-ving such that aN = N for all a €
N\0}. If N admits an scp-derivation, then N is a division ring.

Proof. 1t is easily shown that N has no zero divisors. Moreover if y € N\
{0}, there exists ¢ € N such that ye = v, ye? = ye, and y(e?—¢) = 0. Thus, e
is a nonzero idempotent, which must be a left identity. For the scp-derivation D,
we have eD(e)+ D(e)e = D(e); hence D(e)+ D(e)e = D(e) and D(e)e = 0.
Thus D(e)N = D(e)eN = {0}, so D(e) = 0. Therefore ¢ € Z by Lemma 1,
hence N has 1. It follows by Lemmas 1 and 3 that N is a ring, which must of
course be a division ring.

2. Scp-derivations: N distributively-generated and prime. Our
definition of prime near-ring is as in [2] : N is prime if aNb = {0} implies that
a = 0 or b = 0. Since our N are zero-symmetric, AN S A and NA € A for all
ideals A ; and it follows that if NV is prime and A is a nonzero ideal, then either
of xA = {0} or Ax = {0} implies that x = 0.

Our first theorem of this section is a commutativity theorem for rings,
reminiscent of those in [1].
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Theorem 5. Let R be a prime ring, and U a nonzero right ideal of R. If
R adwmits a derivation D such that [x, y] = [D(x), D(¥)] for all x,y € U, then
R is commutative.

Proof. We may assume that D is nonzero ; otherwise U is commutative,
and so is R. For all x, y € U, we have [x, xv] = [D(x), D(xy)], from which
follow x[x, y] = [D(x), xD(y)+ D(x)y] = [D(x), xD(»)]+[D(x), D(x)y] and
x[x, y] = x[D(x), D(y)]+[D(x), x]D(y)+ D(x)[D(x). ¥] ; hence

(1) [D(x), x1D(y)+ D(x)[D(x), y] =0 forall x,y € U.
Replacing y by y» yields

[D(x), x)(yD(7)+ D(y)7r)+ D(xXy[D(x), »]+[D(x), y]r) = 0,
which when compared with (1) yields
2 [D(x), x]yD(»)+D(x)y[D(x), ] =0 forall x,yE U and »r € R.
Taking » = D(x) now vyields

[D(x), x]UD*(x) = {0} = [D(x), x]URD*(x) for each x € U :

hence for each x € U, either D*(x) = 0 or [D(x), x]U = {0}.

Suppose that D*(x) = 0. Then for each y € U, [x, yD(x)] = [D(x),
D(yD(x))] = [D(x), D(y)D(x)] ; and it follows that y[x, D(x)] = 0. Therefore
Ulx, D(x)] = {0}, hence [x, D(x)] = 0. On the other hand, if [D(x), x]U = {0},
it follows from (2) that D(x)U[D(x), r] = {0} = D(x) UR[D(x), ]; hence
either D(x) € Z, in which case [x, D(x)] = 0, or D(x)U = {0}.

Assume for the moment that there exists y € U such that D(y) € Z\{0}.
Then for each x € U for which D(x)U = {0}, (1) yields [D(x), x]D(y) = 0;
and since D(¥) is not a zero divisor, [D(x), x] = 0. Hence in this case [D(x), x]
=0 for all x € U, and R is commutative by Theorem 4 of [1].

It remains only to dispose of the case where for each x € U, either D*(x)
= 0 or D(x)U = {0}. The sets of elements of U for which these two conditions
hold are additive subgroups of U whose union is U ; consequently, we must have
either D¥(U) = {0} or D(U)U = {0}. If the first of these holds, the computation
above shows that [x, D(x)] = 0 for all x € U, so that commutativity of R again
follows from Theorem 4 of [1]. If D(U)U = {0}, then the condition that [x, yz]
= [D(x), D(yz)] vields yD{(x)D(z) =0 for all x,y,2E U. Hence U[D(x),
D(2)] = {0} = Ulx, z] for all x, z€ U. We conclude that U is commutative,
hence R is commutative.
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We remark that Theorem 5 implies that the division rings in Theorem 4 are
in fact fields.
Returning to near-rings, we have

Theorem 6. Let N be a prime near-ring and A a nonzero ideal of N which
is a distributively-genevated near-ring with identity. If N adwmits a derivation D
such that [x, v] = [D(x), D(y)] for all x, y € A, then N is a commutative ring.

Proof. Let e be the identity element of A. Since ex = x forallx € A, we
have eD{(x)+ D(e)x = D(x), hence eD(e)A = {0} and eD(e) = 0. Thus, for
each x € A we have xD(e) = xeD(e) = 0, so that AD{(e) = {0} and D(e) = 0.
Of course D(e+e) = 0 as well, so by a modification of Lemma 1, we see that
both e and e+ e commute with elements of A and hence (A, +) is abelian.
Thus, for all a€ A and all x,y € N, we have a{x+y—x—y) = 0; conse-
quently (N, +) is abelian.

Now since A is d-g with identity and (A, +) is abelian, it follows that A
is distributive. Let x,y € N and a, b€ A. Then (ax+ay)b = axb+ayb,
hence a((x+y)b—(xb+yb)) = 0 = (x+y)b—(xb+ yb) —i.e. elements of A
are distributive in N. Replacing b by zb for arbitrary z € N gives (x+y)zb =
xz2b+yzb ; and using the distributivity of 4, we get ((x+v)z—(xz2+yz)A =
{0}, so that N is distributive. We have now shown that N is a ring, and
commutativity follows by Theorem 5.

Corollary 4. Let N be a prime distributively-generated near-ring with 1. If
N admits an scp-derivation, then N is a commultative ving.

3. Daif derivations: the first kind. A Daif derivation of the first kind (a
Daif 1-derivation) on a near-ring NV is defined to be a derivation with the property
that —xy+D(xy) = —yx+D(yx) for all x, y € N ; a Daif derivation of the
second kind (a Daif 2-derivation) is one for which xy+D(xy) = yx + D(vx) for
all x, y € N. In [4] it is shown that a prime ring R must be commutative if it
admits one of these kinds of derivation ; and the two kinds are treated together.
For near-rings the two kinds require quite different treatment. In this section we
consider the first kind, which is somewhat simpler.

We shall make use of the following lemma, due to Wang [9]. For the sake
of completeness, we reproduce the proof.

Lemma 4. Let D be a devivation on the near-ving N. Then D(xy) = D(x)y
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+xD(y) for all x,y € N.
Proof. For all x, vy € N, we have

D(x(y+y)) = xD(y+y)+ D(x)(y+ ) = xD(y)+xD(y)+ D(x)y + D(x)y
and

D(xy+xy) = D(xy)+ D(xy) = xD(y)+ D(x)y +xD(y)+ D(x)y.

Comparing these two expressions gives xD(y)+ D(x)y = D(x)y+xD(y).
Our aim in this section is to prove

Theorem 7. If N is a prime near-ring admitting a nonzero Daif 1-
derivation, then (N, +) is abelian. Moveover, if N is 2-tovsion-free, then N is a
commutative ring.

The following two lemmas will be needed for its proof.

Lemma 5. Let D be a Daif 1-derivation on the near-ving N. Then
(i) D(c) = c for each commutator ¢ = [x, y] ;
() D(2)x, y] =[x, ¥]1D(2) for all x,y, z € N.

Proof. The first statement is clear from the definition. To arrive at the
second, we note that —[x, y]z+ D([x, ¥]z) = —z[x, y]+ D(z[x, ¥]) ; and using
Lemma 4, we rewrite this as —[x, ylz+ D([x, yD)z+[x, y]D(z) = —z[x, ]
+2zD([x, y])+ D(2)[x, y]. In view of Lemma 5(i), we now get [x, y]D(z) =
D(2)[x, y].

Lemma 6. Let N be a prime near-ving admitting a Daif 1-derivation D.
(i) If ¢ is a commutator and uc = vc, then cD(u—v) = 0.
(i) If ¢ and c2 ave commutators with ¢ic2 = 0, then ¢, =0 or ¢c; = 0.

Proof. (i) Apply D to uc = vc, and use both parts of Lemma 5.
(i) If cic2 = 0 = 0cy, (i) yields

3) c:D(c1)) =0 ;

thus c2ci = 0. Now since (3) depended only on the fact that c; is a commutator,
we can replace ¢ by yc, thereby obtaining c:D(ye) =0 = c:yD(c))
+c2D(y)c1. Since D(y) commutes with ¢ by Lemma 5(ii), we get c2D(¥)c1 =
0 and hence c2ND{(c1) = {0} = c2Nci. Thus, 1 = 0 or ¢z = 0.

Proof of Theorem 7. Since [x, xy] = x[x, ] for all x, y € N, Lemma 5
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(i) gives D(2)x[x, y] = x[x, y]1D(z) = xD(2)[x, y] for all x,y,zE€ N, By
Lemma 6(i), we get [x, y]D(D(2)x —xD(z)) = 0, hence [x, y][D(2), x] = 0. By
Lemma 6(ii), we see that either x € Z or [D(z), x] = 0. Thus D(N) & Z, and
our theorem follows from Theorem 2 of [2].

4, Daif derivations : the second kind. For rings, Daif 2-derivations have
the useful property that D(c) = — ¢ for each commutator ¢. This will be true
for a near-ring N only if xy+yx = yx+xy for all x, y € N. A near-ring with
this property we shall call psexdo-abelian.

A fundamental tool in the study of Daif 2-derivations is the following lemma,
the proof of which is similar to that of Lemma 5(ii).

Lemma 7. Let N be pseudo-abelian and D a Daif 2-devivation on N. If z
€ N has the property that cz+D(c)z = 0 for all commutators c, then [D(2), c]
= 0 for all commutators c. In particular, if z is distributive or if N has 1 and
[z, =1] = 0, then [D(2), c] = 0 for all commutators c.

Theorem 8. If N has no nonzero divisors of zero and admils a nonzero
Daif 2-derivation, then N is a commutative ring.

Proof. The defining condition can be written as
4) —yx+xy = D([y,x]) forall x,y €EN.

Replacing x by yx yields —y*x+yxy = D(ly, yx]) = D(y[y, x]), which may be
rewritten as yD([y, x]) = yD([y, x])+ D(¥)[y, x]. Thus

(5) D(y)[y,x] =0 forall x,y €EN.

Replacing x by D(y) and using the fact that N has no zero divisors shows that
D is commuting, hence (N, +) is abelian by Theorem 1 of [2]. It also follows
from (5) that either D(y) = 0 or y € Z——that is, nonconstants are central.
But substituting into (4) shows that constants commute with each other, hence N
is commutative and is therefore a ring.

It is easy to conjecture that this result can be extended to arbitrary prime
near-rings. The best result we can prove, however, is

Theorem 9. Let N be a 2-torsion-free pseudo-abelian prime d-g near-ring
with 1. If N adwmits a nonzero Daif 2-derivation, then N is a commutative ring.
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Proof. Let x be an element of N which commutes with —1. Then by
Lemma 7, both D(x) and D((—1)x) = (=1)D(x) commute with all commuta-
tors c¢. Since [x, —1] = 0 implies [D(x), —1] = 0 and since ¢(—1) = —c is also
a commutator, we have D(x)(—1)c = (=1)D(x)c = ¢(—1)D(x) =
D(x)c(—1), from which it follows that D(x)[—1,¢c] =0=[~1, c]D(x). In
particular, [—1, c]D() = 0 for all distributive #, so that [—1, ¢]D(N) = {0}.
Thus, by Lemma 3(iii) of [2], [—1, ¢] = 0 for all commutators c.

A little calculation shows that [—1,[—1, x]] = 0 implies

(6) x+x=(=1{—x)+(=1)—x) forall x E N.

Since N is pseudo-abelian, (—1)x —x(—1) = —x(—1)+(—1)x, so that (—1)x
+x =x+(—1)x for all x € N. It now follows from (6) that x+(—1)x has
additive order 2, hence is 0. Thus, —1 € Z (N, +) is abelian, and therefore N
is a ring. Commutativity now follows from Theorem 1 of [4].
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