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The Fine Spectra of the Cesàro Operator C 1
over the Sequence Space bvp, (1 ≤ p∞)

Ali M. Akhmedov and Feyzi Basar

Abstract

The sequence space bvp consisting of all sequences (xk) such that (xk - xk-1) in the sequence
space lp has recently been introduced by Basar and Altay [Ukrainian Math. J. 55(1)(2003), 136-
147]; where 1 ≤ p ≤ ∞. In the present paper, the norm of the Cesàro operator C1 acting on
the sequence space bvp has been found and the fine spectrum of the Cesàro operator C1 over the
sequence space bvp has been determined, where 1 ≤ p <∞.
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THE FINE SPECTRA OF THE CESÀRO OPERATOR C1

OVER THE SEQUENCE SPACE bvp, (1 ≤ p < ∞)

Ali M. AKHMEDOV and Feyzi BAŞAR

Abstract. The sequence space bvp consisting of all sequences (xk) such
that (xk − xk−1) in the sequence space `p has recently been introduced
by Başar and Altay [Ukrainian Math. J. 55(1)(2003), 136–147]; where
1 ≤ p ≤ ∞. In the present paper, the norm of the Cesàro operator C1

acting on the sequence space bvp has been found and the fine spectrum of
the Cesàro operator C1 over the sequence space bvp has been determined,
where 1 ≤ p < ∞.

1. Preliminaries, Background and Notation

Let X and Y be the Banach spaces and T : X → Y also be a bounded
linear operator. By R(T ), we denote the range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.

By B(X), we also denote the set of all bounded linear operators on X into
itself. If X is any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a
bounded linear operator on the dual X∗ of X defined by (T ∗f)(x) = f(Tx)
for all f ∈ X∗ and x ∈ X with ‖T‖ = ‖T ∗‖. Also by Ker(T ), we denote the
kernel of a bounded linear operator T .

Let X 6= {θ} be a non trivial complex normed space and T : D(T ) → X
a linear operator defined on a subspace D(T ) ⊆ X. We do not assume that
D(T ) is dense in X, or that T has a closed graph {(x, Tx) : x ∈ D(T )} ⊆
X × X. We mean by the expression ”T is invertible” that there exists a
bounded linear operator S : R(T ) → X for which ST = I on D(T ) and

R(T ) = X; such that S = T−1 is necessarily uniquely determined, and
linear; the boundedness of S means that T must be bounded below, in the
sense that there is k > 0 for which ‖Tx‖ ≥ k‖x‖ for all x ∈ D(T ). Associated
with each complex number α is the perturbed operator

Tα = T − αI,
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136 A. M. AKHMEDOV AND F. BAŞAR

defined on the same domain D(T ) as T . The spectrum σ(T,X) consists of
those α ∈ C for which Tα is not invertible, and the resolvent is the mapping
from the complement σ(T,X) of the spectrum into the algebra of bounded
linear operators on X defined by α 7→ T−1

α .
The name resolvent is appropriate, since T −1

α helps to solve the equation
Tαx = y. Thus, x = T−1

α y provided T−1
α exists. More important, the

investigation of properties of T−1
α will be basic for an understanding of the

operator T itself. Naturally, many properties of Tα and T−1
α depend on α,

and spectral theory is concerned with those properties. For instance, we
shall be interested in the set of all α’s in the complex plane such that T −1

α

exists. Boundedness of T−1
α is another property that will be essential. We

shall also ask for what α’s the domain of T −1
α is dense in X, to name just

a few aspects. For our investigation of T , Tα and T−1
α , we need some basic

concepts in spectral theory which are given as follows (see [11, pp. 370-371]):
By a regular value α of a linear operator T : D(T ) → X is meant a

complex number such that
(R1) T−1

α exists,
(R2) T−1

α is bounded,
(R3) T−1

α is defined on a set which is dense in X.
The resolvent set ρ(T, X) of T is the set of all regular values α of T . Its
complement σ(T, X) = C\ρ(T, X) in the complex plane C is called the
spectrum of T . Furthermore, the spectrum σ(T, X) is partitioned into the
following three disjoint sets:

The point (discrete) spectrum σp(T, X) is the set such that T−1
α does not

exist. Any such α ∈ σp(T, X) is called an eigenvalue of T .
The continuous spectrum σc(T, X) is the set such that T−1

α exists and
satisfies (R3) but not (R2); that is T−1

α is unbounded.
The residual spectrum σr(T, X) is the set such that T−1

α exists (and may
be bounded or not) but not satisfy (R3); that is the domain of T −1

α is not
dense in X.

To avoid trivial misunderstandings, let us say that some of the sets defined
above may be empty. This is an existence problem which we are going to
discuss. Indeed, it is well-known that in the finite dimensional case one has
σc(T, X) = σr(T, X) = ∅ and the spectrum σ(T, X) coincides with the set
σp(T, X).

By a sequence space, we understand a linear subspace of the space w =
C

N of all complex sequences which contains φ, the set of all finitely non-
zero sequences, where N = {0, 1, 2, . . .}. We write `∞, c and c0 for the
sequence spaces of all bounded, convergent and null sequences, respectively.
Also by `p, we denote the spaces of all p-absolutely summable sequences,
respectively; where 1 ≤ p < ∞. bv is the space consisting of all sequences

2
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THE FINE SPECTRA OF THE CESÀRO OPERATOR C1 137

(xk) such that (xk − xk+1) in `1 and bv0 is the intersection of the spaces bv
and c0.

Let n, k ∈ N and A = (ank) be an infinite matrix of complex numbers
ank, and write

(Ax)n =
∑

k

ankxk , (n ∈ N, x ∈ D00(A)),(1.1)

where D00(A) denotes the subspace of w consisting of x ∈ w for which
the sum on the right side of (1.1) exists as a finite sum. For simplicity in
notation, here and in what follows, the summation without limits runs from
0 to ∞. More generally if µ is a normed sequence space, we can write Dµ(A)
for the x ∈ w for which the sum in (1.1) converges in the norm of µ. We
shall write

(λ : µ) = {A : λ ⊆ Dµ(A)}

for the space of those matrices which send the whole of the sequence space
λ into the sequence space µ in this sense. A sequence x is said to be A-
summable to α if Ax converges to α which is called as the A-limit of x.
We shall assume throughout unless stated otherwise that p, q > 1 with
p−1 +q−1 = 1 and use the convention that any term with negative subscript
is equal to naught.

We summarize the knowledge in the existing literature concerning with
the spectrum and the fine spectrum of the linear operators defined by some
particular limitation matrices over some sequence spaces. Wenger [18] ex-
amined the fine spectrum of the integer power of the Cesàro operator in c.
Reade [16] worked with the spectrum of the Cesàro operator in the sequence
space c0. Gonzàlez [10] studied the fine spectrum of the Cesàro operator in
the sequence space `p. Okutoyi [15] computed the spectrum of the Cesàro
operator on the sequence space bv. Recently, Yıldırım [19] worked with the
fine spectrum of the Rhally operators acting on the sequence spaces c0 and
c. Lately, Coşkun [8] studied the spectrum and fine spectrum for p-Cesàro
operator acting on the space c0. Akhmedov and Başar [1, 2] have recently
determined, independently than that of Gonzàlez [10], the fine spectrum of
the Cesàro operator in the sequence spaces c0, `∞ and `p, by the different
way; respectively, where 1 < p < ∞. Quite recently, de Malafosse [14] and
Altay and Başar [5] have respectively studied the spectrum and the fine
spectrum of the difference operator on the sequence spaces sr and c0, c;
where sr denotes the Banach space of all sequences x = (xk) normed by

‖x‖sr = sup
k∈N

|xk|

rk
, (r > 0).

Also, Akhmedov and Başar [3, 4], and Altay and Başar [6] have determined
the fine spectrum with respect to Goldberg’s classification of the difference
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138 A. M. AKHMEDOV AND F. BAŞAR

operator ∆ and the generalized difference operator B(r, s) over the sequence
spaces `p, bvp and c0, c; respectively.

In this work, our purpose is to find the norm of the Cesàro operator
C1 ∈ B(bvp) and to investigate the fine spectrum of the Cesàro operator C1

on the sequence space bvp which is the natural continuation of Akhmedov
and Başar [4], and Altay and Başar [5, 6].

2. The Space bvp of Sequences of p-bounded Variation

We wish to give some required knowledge about the sequence space bvp.
In [7], the sequence space bvp is defined by

bvp =

{

x = (xk) ∈ w :
∑

k

∣

∣

∣xk − xk−1

∣

∣

∣

p
< ∞

}

, (1 ≤ p < ∞).

It was proved that bvp is a BK-space which is linearly isomorphic to the
space `p and the inclusion bvp ⊃ `p strictly holds. The α-, β- and γ-duals
of the space bvp are determined together with the fact that bv2 is the only
Hilbert space among the spaces bvp. The continuous dual of the space bvp

is determined and given by the following lemma which is needed in proving
Theorem 3.2, below:

Lemma 2.1. [4, Theorem 2.3] Define the spaces d1 and dq consisting of all
sequences a = (ak) normed by

‖a‖d1
= sup

k,n∈N

∣

∣

∣

∣

∣

∣

n
∑

j=k

aj

∣

∣

∣

∣

∣

∣

< ∞

and

‖a‖dq
=





∑

k

∣

∣

∣

∣

∣

∣

∞
∑

j=k

aj

∣

∣

∣

∣

∣

∣

q



1/q

< ∞ , (1 < q < ∞).

Then, bv∗1 and bv∗p are isometrically isomorphic to d1 and dq, respectively.

The basis of the space bvp is also constructed and given by the following
lemma:

Lemma 2.2. [7, Theorem 3.1] Define the sequence b(k) =
{

b
(k)
n

}

n∈N
of the

elements of the space bvp for every fixed k ∈ N by

b(k)
n =

{

0 , (n < k)
1 , (n ≥ k)

.
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THE FINE SPECTRA OF THE CESÀRO OPERATOR C1 139

Then the sequence {b(k)}k∈N is a basis for the space bvp and any x ∈ bvp has
a unique representation of the form

x =
∑

k

λkb
(k),

where λk = xk − xk−1 for all k ∈ N.

3. The Fine Spectra of the Cesàro Operator C1 Over the
Sequence Space bvp

In this section, the fine spectra of the Cesàro operator C1 over the se-
quence space bvp has been examined. We shall begin with giving the basic
result concerning with the norm of Cesàro operator C1 on the space bvp.
The Cesàro operator C1 is represented by the matrix

C1 =





















1 0 0 . . . 0 . . .
1
2

1
2 0 . . . 0 . . .

1
3

1
3

1
3 . . . 0 . . .

...
...

...
. . .

...
...

1
n+1

1
n+1

1
n+1 . . . 1

n+1 . . .
...

...
... · · ·

...
. . .





















.

Theorem 3.1. C1 ∈ B(bvp) with the norm ‖C1‖(bvp :bvp) = 1.

Proof. Since the linearity and the boundedness of the operator C1 : bvp →
bvp is obvious, we omit the detail. Let us take any x = (xk) ∈ bvp. Then,
since one can observe that

∣

∣

∣

∣

x0 + x1 + · · · + xk

k + 1
−

x0 + x1 + · · · + xk−1

k

∣

∣

∣

∣

p

=

∣

∣

∣

∣

(xk − x0) + (xk − x1) + · · · + (xk − xk−1)

k(k + 1)

∣

∣

∣

∣

p

and the inequalities

|xk − x0| ≤ |xk − xk−1| + |xk−1 − xk−2| + · · · + |x2 − x1| + |x1 − x0|

|xk − x1| ≤ |xk − xk−1| + |xk−1 − xk−2| + · · · + |x2 − x1|

...

|xk − xk−2| ≤ |xk − xk−1| + |xk−1 − xk−2|

hold we see by using the following known inequalities
(

k
∑

n=1

|an|

)p

≤ kp−1
k
∑

n=1

|an|
p , (p ≥ 1),

5
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140 A. M. AKHMEDOV AND F. BAŞAR

and
np

(k + 1)p
≤

k

k + 1
; (1 ≤ n ≤ k , p ≥ 1)

that
˛

˛

˛

˛

x0 + x1 + · · · + xk

k + 1
−

x0 + x1 + · · · + xk−1

k

˛

˛

˛

˛

p

≤
(k|xk − xk−1| + (k − 1)|xk−1 − xk−2| + · · · + 2|x2 − x1| + |x1 − x0|)

p

kp(k + 1)p

≤
kp−1(kp|xk − xk−1|

p + (k − 1)p|xk−1 − xk−2|
p + · · · + 2p|x2 − x1|

p + |x1 − x0|
p)

kp(k + 1)p

=
kp|xk − xk−1|

p + (k − 1)p|xk−1 − xk−2|
p + · · · + 2p|x2 − x1|

p + |x1 − x0|
p

k(k + 1)p

≤
k|xk − xk−1|

p + (k − 1)|xk−1 − xk−2|
p + · · · + 2|x2 − x1|

p + |x1 − x0|
p

k(k + 1)
.

Now, we obtain by applying the Application 1 of Knopp [12, p. 143] that

‖C1x‖
p
bvp

≤ |x0|
p +

∞
∑

k=1

∑k
j=1 j|xj − xj−1|

p

k(k + 1)

=
∑

k

|xk − xk−1|
p = ‖x‖p

bvp
.

So,

‖C1x‖bvp
≤ ‖x‖bvp

,

which leads us to the consequence

‖C1‖(bvp:bvp) ≤ 1.(3.1)

Now, let us consider the element

b(0) = (1, 1, 1, . . .).

It is clear that

C1b
(0) = b(0)

and ‖b(0)‖bvp
= 1. Hence,

‖C1‖(bvp :bvp) ≥ ‖C1b
(0)‖bvp

= ‖b(0)‖bvp
= 1,

which yields the fact that

‖C1‖(bvp:bvp) ≥ 1.(3.2)

The inequality (3.1) together with the inequality (3.2) show that

‖C1‖(bvp:bvp) = 1.(3.3)

Thus, (3.3) completes the proof. �

6
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THE FINE SPECTRA OF THE CESÀRO OPERATOR C1 141

Theorem 3.2. C∗

1 ∈ B(dq) with the norm ‖C∗

1‖(dq :dq) = 1; where 1 < q ≤
∞.

Proof. Since d1
∼= bv∗1 and dp

∼= bv∗p by Lemma 2.1 and ‖C∗

1‖(dq :dq) =

‖C1‖(bvp:bvp), this is immediate by Theorem 3.1, where 1 < p < ∞. �

Theorem 3.3. σ(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ ≤ 1
2

}

.

Proof. To prove the theorem, it is enough to show that (C1 − αI)−1 is
bounded for all α’s such that |α − 1/2| > 1/2. Suppose y = (yk) ∈ bvp.
Solving the equation (C1 − αI)x = y for x in terms of y, we derive that

x0 =
1

1 − α
y0

x1 =
−1

(1 − α)(1 − 2α)
y0 +

2

1 − 2α
y1

x2 =
2α

∏3
k=1 1 − kα

y0 −
2

∏3
k=2 1 − kα

y1 +
3

1 − 3α
y2

...

xn =
1

n + 1

n−1
∑

k=0

(−1)n−k





n+1
∏

j=k+1

j

1 − jα



αn−k−1yk +
n + 1

1 − (n + 1)α
yn

Therefore, we have (C1 − αI)−1 = (enk) defined by

enk =











(−1)n−k

n+1

(

∏n+1
j=k+1

j
1−jα

)

αn−k−1 , (0 ≤ k ≤ n − 1)
k+1

1−(k+1)α , (k = n)

0 , (k > n)

Thus, it is seen by [17] that

‖C1 − αI‖(bv1 :bv1) < ∞,

if |α − 1/2| > 1/2 which is equivalent to the fact that Re(1/α) < 1.
Furthermore, if p > 1 then

|xn − xn−1|
p = |xn − xn−1|

p−1 · |xn − xn−1| .(3.4)

We can show that

|xn − xn−1| → 0 ; (n → ∞),(3.5)

if Re(1/α) < 1. Indeed,

xn − xn−1 =
(−1)n

n + 1

n+1
∏

k=1

k

1 − kα
αn−1y0 +

7
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142 A. M. AKHMEDOV AND F. BAŞAR

+

[

(−1)n+1

n + 1

n+1
∏

k=2

k

1 − kα
αn−2y1 −

(−1)n−1

n

n
∏

k=1

k

1 − kα
αn−2y0

]

+

+ · · · +

[

n + 1

1 − (n + 1)α
yn −

n

1 − nα
yn−1

]

.

If we use Lemma 7 in [16, p. 266] with the last relation then we have (3.5).
Thus, (3.4) and (3.5) yield that

∥

∥

∥(C1 − αI)−1
∥

∥

∥

(bvp:bvp)
< ∞ ,

if Re(1/α) < 1. This completes the proof. �

We should remark the reader from now on that the index p has differ-
ent meanings in the notation of the sequence spaces bvp, bv∗p and in the
point spectrums σp(∆, bvp), σp(∆

∗, bv∗p) which occur in the following two
theorems.

Theorem 3.4. σp(C1, bvp) = {1}.

Proof. Suppose that C1x = αx for x 6= θ = (0, 0, 0, . . .) in bvp. Consider
the system of the linear equations

x0 = αx0
1
2x0 + 1

2x1 = αx1
1
3x0 + 1

3x1 + 1
3x2 = αx2

...
1

k+1x0 + 1
k+1x1 + 1

k+1x2 + · · · + 1
k+1xk = αxk

...







































.(3.6)

If x0 is the non-zero term of the sequence x = (xn), then α = 1 and we
obtain from (3.6) that xk = x0 for any k ≥ 1. Hence, x = (xk) ∈ bvp such
that x 6= θ for p ≥ 1.

If xn0
is the first non-zero entry of the sequence x = (xn), then we find

that
1

n0 + 1
xn0

= αxn0
,

which yields the fact α = 1/(n0 + 1). Therefore, we also get by (3.6) that

xn0+k =
(n0 + 1)(n0 + 2) · · · (n0 + k)

k!
xn0

for any k ≥ 1. Furthermore,

|xn0+k − xn0+k−1|
p =

np
0(n0 + 1)p · · · (n0 + k − 1)p

(k!)p
|xn0

|p

8
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THE FINE SPECTRA OF THE CESÀRO OPERATOR C1 143

=
1

[(n0 − 1)!]p
(k + 1)p(k + 2)p · · · (n0 + k − 1)p |xn0

|p ,

which shows that x /∈ bvp and this completes the proof. �

Prior to giving Theorem 3.6 we shall quote a lemma which is needed in
proving.

Lemma 3.5. [13, p. 115] All harmonic series
∑

n n−α for α ≤ 1 are diver-
gent, and for α > 1, convergent.

Theorem 3.6. σp(C
∗

1 , bv∗p) =
{

α ∈ C : |α − 1
2 | < 1

2

}

∪ {1}.

Proof. Suppose C∗

1f = αf for f 6= θ in bv∗p. Then, by solving the system of
the linear equations

f0 + 1
2f1 + 1

3f2 + · · · = αf0
1
2f1 + 1

3f2 + · · · = αf1
1
3f2 + · · · = αf2

...
1

k+1fk + · · · = αfk
...







































we obtain that

fk =

k
∏

n=1

(

1 −
1

nα

)

f0 , (k = 1, 2, . . .)

if α 6= 0. Since f = (f0, 0, 0, . . .) 6= θ in bv∗p for α = 1, it is clear that
1 ∈ σp(C

∗

1 , bv∗p). Define the sequence z = (zk) by

zk =

k
∏

n=1

(

1 −
1

nα

)

, (k = 1, 2, . . .).

Okutoyi [15, Lemma 1.4] has proved that

zk = A · k−1/α + O
(

k−Re(1/α)−1
)

,

where A is a constant and the series
∑

zk is bounded if Re(1/α) > 1,
diverges if Re(1/α) ≤ 1. Consider the sequence s = (sk) defined by

sk =
∞
∑

j=k

1

j1/α
, (k ∈ N).

It is known that |s1| < ∞ if and only if Re(1/α) > 1. Denote Re(1/α) =
β and let β > 1. Therefore, using the fact given by Lemma 3.5 for the

9
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144 A. M. AKHMEDOV AND F. BAŞAR

convergence of the series

s1 =
∞
∑

j=1

1

jβ

we obtain that

sk ≤

[

1

2(m−1)β
+ · · · +

1

(2m − 1)β

]

+

[

1

2mβ
+ · · · +

1

(2m+1 − 1)β

]

+ · · · ,

(3.7)

where 2m−1 ≤ k ≤ 2m − 1. Now, replacing any separate term by the first
term in each parenthesis in (3.7) we get that

sj ≤
2β−1

2β−1 − 1
·

1

2(m−1)(β−1)
.(3.8)

It is clear by (3.8) that
∣

∣

∣

∣

∣

∣

∞
∑

j=k

1

j1/α

∣

∣

∣

∣

∣

∣

≤
2β−1

2(m−1)(β−1) (2β−1 − 1)
, (k ∈ N),(3.9)

if Re(1/α) > 1. Similarly, one can show that
∣

∣

∣

∣

∣

∣

∞
∑

j=k

j−Re(1/α)−1

∣

∣

∣

∣

∣

∣

≤ B ·
1

2(m−1)(β−1)
, (k ∈ N),(3.10)

where B is a positive constant. It follows from (3.9) and (3.10) that

sup
k,n∈N

∣

∣

∣

∣

∣

∣

n
∑

j=k

fj

∣

∣

∣

∣

∣

∣

< ∞.(3.11)

If f0 6= 0 and Re(1/α) > 1, then f ∈ bv∗1 and f 6= θ whenever f0 6= 0.
It is clear that

{

α ∈ C : Re

(

1

α

)

> 1

}

=

{

α ∈ C :

∣

∣

∣

∣

α −
1

2

∣

∣

∣

∣

<
1

2

}

.

Now, using (3.9) and (3.10) we obtain that
∣

∣

∣

∣

∣

∣

n
∑

j=k

fj

∣

∣

∣

∣

∣

∣

q

≤ M ·
1

2(m−1)(β−1)q
,(3.12)
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where M is a positive constant. Consequently, we derive from (3.12) that

∑

k

∣

∣

∣

∣

∣

∣

∞
∑

j=k

fj

∣

∣

∣

∣

∣

∣

q

< ∞.

This means that (fk) ∈ bv∗p and (3.11) together with (3.12) complete the
proof. �

Now, we may give the following lemma requiring in the proof of next
theorem:

Lemma 3.7. [9, p. 59] A linear operator T has a dense range if and only
if the adjoint T ∗ of T is one to one.

Theorem 3.8. σc(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ = 1
2 , α 6= 1

}

.

Proof. It is not hard to show that
{

α ∈ C :

∣

∣

∣

∣

α −
1

2

∣

∣

∣

∣

=
1

2

}

=

{

α ∈ C : Re

(

1

α

)

= 1

}

∪ {0}.

Suppose that α 6= 1. Then, it follows by Theorem 3.6 that α /∈ σp(C
∗

1 , bv∗p).
Hence, Ker(C∗

1 − αI∗) = {θ} for such α’s which shows that

R(C1 − αI) = bvp.(3.13)

Now, suppose that α = 0 and consider the equation

C1x = θ.

Then, it is easy to see that x = θ, i.e., Ker(C1) = {θ} and C1 has an inverse.
One can also see that Ker(C∗

1 ) = {θ} and we thus have

R(C1) = bvp.(3.14)

Therefore, we obtain by combining (3.13), (3.14) and Lemma 3.7 that

σc(C1, bvp) = {0} ∪

{

α ∈ C : Re

(

1

α

)

= 1 , α 6= 1

}

,

which completes the proof. �

Theorem 3.9. σr(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ < 1
2

}

.

Proof. This immediately follows from Theorems 3.3, 3.4 and 3.8, by taking
into account the definition of the concept of the spectrum of a bounded
linear operator acting in a Banach space. �

Combining Theorems 3.1, 3.3, 3.4 and Theorems 3.8, 3.9; we have the
following main theorem:
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Theorem 3.10. (a) C1 ∈ B(bvp) with the norm ‖C1‖(bvp :bvp) = 1,

(b) σ(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ ≤ 1
2

}

,

(c) σp(C1, bvp) = {1},

(d) σc(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ = 1
2 , α 6= 1

}

,

(e) σr(C1, bvp) =
{

α ∈ C :
∣

∣α − 1
2

∣

∣ < 1
2

}

.
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[8] C. Coşkun, The spectra and fine spectra for p-Cesàro operators, Turkish J. Math.
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[18] R. B. Wenger, The fine spectra of Hölder summability operators, Indian J. Pure Appl.

Math. 6(1975), 695–712.
[19] M. Yıldırım, On the spectrum and fine spectrum of the compact Rhally operators,

Indian J. Pure Appl. Math. 27(8)(1996), 779–784.

Ali M. AKHMEDOV
Baku State University, Department of Mech. & Math., Z. Khalilov Str., 23,

P.O. Box 370145 Baku/Azerbaijan

e-mail address: ali akhmedov@hotmail.com

Feyzi BAŞAR
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