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TWO COMMUTATIVITY PROPERTIES
FOR RINGS

EvaceLos PSOMOPOULOS, Hisao TOMINAGA and Api. YAQUB

Throughout the present paper. R will represent an associative ring with
center C, and N the set of all nilpotent elements in R. A ring R is called
left (resp. right) s-unital if x € Rx (resp. x € xR ) for everyx € R; R
is called s-unital if R is both left and right s-unital.

Let n, m be fixed positive integers, and A a non-empty subset of R,
We consider the following conditions :

(I-A) For each x € R there exists a polynomial f(t) in Z[¢] such

that x—x*f(x) € A.
(In-A) For each x € R there exists a polynomial f(¢) in Z[t] such
that nx—x*f{x) € A.
(In-A) For each x € R, either x € C or there exists a polynomial
f(t) in Z[?] such that nx—x*fix) € A.
(I-A) Ifx.y € Rand x—y € A, then either x* = y® or x and y both
belong to the centralizer Vi{A) of A in R.
Q(n) For any x. y € R. n[x,y] = 0 implies [x,y] = 0.
Pi(m) For each pair of elements x, y in R there exists a positive
integer i = i(x.y) such that [x,y™] = 0.
(C) For each pair of elements x, y in R there exist f(t), g(t) €
Z[t] such that [x—x*f(x),y—y’gly)] = 0.

Recently, by making use of a theorem of Bell [1, Theorem 2], Cheru-
bini and Varisco [2. Theorem 1] proved that if R contains a commutative
subset A for which R satisties (I-4) and (II-A) then R is commutative.
Soon after, in the preceding paper, the second author proved directly the
same ([7, Theorem 1]).

The present objective is to prove the following commutativity theorem,
which generalizes [7, Theorem 1], and leads to a generalization of [3.
Corollary 1] and [7, Corollary 1].

Theorem 1. The following are equivalent :

1) R is commulative.

2) R satisfies Q(n) and contains a commulative subset A for which R
satisfies (In-A) and (II-4).

3) R satisfies Q(n) and N contains a commutative subset A for which
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R satisfies (In-A) and (II-A).

In preparation for proving our theorem, we state the following four
lemmas.

Lemma 1. (1) If R satisfies (II-A), then [a,x*] = 0 for every a €
A and x € R.
(2) If R has 1 and satisfies (II-A), then ACCU |x € R|2x=01.

(3) Suppose R satisfies (11-A). If either N C R? or R is semiprime,
then A is commuiative.

(4) If R satisfies (1,-A ) then for each u € N there exists a positive
integer k such that n*u € (A U C)~, the additive subsemigroup of R gener-
ated by A U C.

(5) If R satisfies (I1,-A), (II-A) end Q(n) then R is normal, that is,
every idempotent of R is central.

(6) Suppose a left (or right) s-unital ring R satisfies Py(m). If (n.m)
=1 then R satisfies Q(n).

Proof. (1) and (2) are given in [7, Lemma 1], and (4) can be seen by
a trivial induction on nilpotency index.

(3) Suppose, to the contrary, that there exists b € A\Vi(A). Let
a be an arbitrary element of A. Since for every x € R, either x or x+b6

is in R\Vx{A), we have ¢ =(a+6)* = b* = 0. Thus, A C N and bx+xb

= (x+b)*—x* = 0. Since bxy = —xby = xyb for any x, y € R, if NC
R? then we have a contradiction b € Vi(N) C Vi{A). Since bxb = —b’x
=0 for every x € R, if R is semiprime then we have a contradiction
b = 0.

(5) Let e be an idempotent of R. Let x be an arbitrary element of
R, and set u = xe—exe. Obviously, u* =0, and hence nu € A U C by
(I,-A). Since [nu,e] =0 by Lemma 1 (1), we get v = [u,e] =0, i.e.,
xe = exe. Similarly, we can show that ex = exe, and therefore ex = xe.

(6) Let I={x € R | m’x = 0 for some positive integer j|. Then I
is an ideal of R and R/I is m-torsion free. Since R/I satisfies Ps(m) (and
is s-unital), R/I is commutative by [6, Theorem 2 (1)]. Hence, for each
pair of elements x, y in R, there exists a positive integer k = k(x,y) such
that m*[x,y] = 0. If nlx,y] =0 then (n,m) =1 implies [x,y] =0,
which proves that R satisfies Q(n).

Lemma 2. Let A be a commutative subset of R.
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(1) If R satisfies (In-A) and Q(n) then N C Vi(A).
(2) If R satisfies (In-A) and Q(n) then R does (C). If, furthermore,
A C C then R is commuiative.

Proof. (1) Letu € N, and n*u € (A U C)* (Lemma 1 (4)). Since
A is commutative, we have n*[u.a] = [n*u,a] = 0 for all a € A. Hence
[u,a] = 0 by Q(n), which proves that N C Vi(A).

(2) Let x, y € R. Then, by (I;-A), there exist h(z), k(t) € Z[#]
such that n’x—n’x*h(nx), n’y—n’*y’k(ny) € A U C. Since A is commuta-
tive, we have n'[x—x’h(nx),y—y*k(ny)] = 0, and hence Q(n) gives (C).
If, furthermore, 4 C C then n*[x—x*h(nx).y] = 0, so that x—x’h(nx)
€ C by Q(n). Hence R is commutative by a theorem of Herstein [4,
Theorem 19].

Lemma 3. Let R be a normal, subdirectly irreducible ring. Suppose
N contains a commutative subset A for which R satisfies (I1,-A). If R
satisfies Q(n) and A € C, then R has 1 and the characteristic of R is a

power of a prime.

Proof. Choose a € A and x € R such that [a,x] # 0. By (I-4),
n*x—(nx)*f(n*x) € A C N for some f(t) € Z[t]. Then, we can easily
see that (n’x)’ = (n’x)*’g(x) with some { >0 and g(t) € Z[t]. Since
n’x & N by Lemma 2 (1), e = (n®x)%g(x) is a non-zero central idempotent,
and therefore e = 1 and n°x is invertible. Then, noting that 1 = n*'x’g(x),
we see that x™' is integral over Z-1. Since a cannot commute with both
2x ! and 3x~'. there exists an integer k > 1 such that [a,kx™'] # 0. Then,
by the above argument, (kx~')~' is integral over Z-1, and hence (k-1)"' =
(kx™')"'x™" also is integral over Z-1. Obviously, this implies that the
additive order of 1 is non-zero, and therefore a power of a prime.

Lemma 4. Let R be a subdirectly irreducible ring with 1. Suppose R
(resp. N) contains a subset A for which R satisfies (1,-A) (resp. (I5-4))
and (I-A). If R satisfies Q(n) then R is commutative.

Proof. In view of Lemma 1 (3), A is commutative. By Lemma 2 (2),
it suffices to show that A € C. Suppose, to the contrary, that [a,x] = 0
for some ¢ € A and x € R. By hypothesis, (nx)? = (£*f(x))? with some
f(t) € Z[t]. Since R satisfies (C) (L.emma 2 (2)), N forms a (commuta-
tive) nil ideal containing the commutator ideal D of R, by a theorem of
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Chacron (see, e.g., [5, Theorem 1]). By (I,-4), 2n?—4n’g(2n) € A with
some g(t) € Z[t], and so we can find a non-zero integer k such that k-1
€ A. Noting that (k-1+x)* =x® and (k-1 —x)* = (—x)* by (II-4), we
obtain 2k*-1 = 0. This implies that the subdirectly irreducible ring R is
of characteristic p® with some prime p. (In case R satisfies (In-A) and
(II-A) for some A C N, Lemma 3 together with Lemma 1 (5) shows that R
is of characteristic p®) Combining this with 2¢ = 0 (Lemma 1 (2)), we
see that p = 2. Obviously, (n,2) = 1 by Q(n), and the non-zero subring of
R/N generated by x+ N is a finite field GF(2*®) (Lemma 2 (1) and Lemma 1
(5)), and therefore x> —x € N C Vi(4) (Lemma 2 (1)). But, [x*,a] =0
by Lemma 1 (1), and we have a contradiction [x,a] = [x*.a] —[x*—x,a]
= 0.

We are now ready to complete the proof of our theorem.

Proof of Theorem 1. It is enough to show that each of 2) and 3) implies
1). To see this, by Lemma 2 (2), it suffices to show that A € C. Suppose,
to the contrary, that [a,x] = O for some @ € A and x € R. It is clear that
[a,n’x] # 0 and n’x &€ N (Lemma 2 (1)). By (I,-A), there exists f(t) €
Z[t] such that n*x—n‘x*f(n’x) € A. Since [a,n’x] # 0, we have (n’x)* =
in'c? f(nx) 1 = (Px) nxf(n’x))? = (Px)¥ nxf(n’x)|® = (n’x)'g(x) with
some g(t) € Z[t]. Then e = (n’x)?g(x) is a non-zero central idempotent
(Lemma 1 (5)). As is well known, R is a subdirect sum of subdirectly
irreducible rings Ry with epimorphisms ¢v: R - Ry (y € I'). Choose §
€ I such that [¢s{a), gs(n’x)] + 0. Then ¢s(n’x®) + 0. For, otherwise,
n*r—n'x’f(n’x) € A and n'x*f(n’x) —n*x*| xf(n’x) |*h(n’x*f(n’x))E AUC
with some A(z) € Z[t] give a contradiction ¢s(n’x) € ¢((4 U C)*).
Hence, the non-zero central idempotent ¢s{e) is the identity element 1 of R,
and n-1 is invertible, In particular, R, satisfies Q(n). Hence, R;s is
commutative by LLemma 4. This contradiction shows that A C C.

Combining Theorem 1 with Lemma 1 (3), we readily obtain the follow-
ing generalization of [3, Corollary 1] and [7, Corollary 1].

Corollary 1. Let R be a ring with Q(n). Suppose R (resp. N)
contains a subset A for which R satisfies (1,-A) (resp. (I5-A)) and (II-A).
If either N C R? or R is semiprime. then R is commutative.

Corollary 2. Let(n,m) = 1. IfR is left (or right) s-unital, then the
Jollowing are equivaleni :
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1) R is commutative.

2) R satisfies Ps(m) and contains a subset A for which R satisfies
(In-A) and (II-A).

3) R satisfies Ps(m) and N contains a subset A for which R satisfies
(In-A) and (II-A).

Proof. It suffices to show that each of 2) and 3) implies 1). By
Lemma 1 (3) and (6), A is commutative and R satisfies Q(n). Hence, R is
commutative by Theorem 1.

We conclude this paper with the following example which shows that
Theorem 1 is not necessarily true if we change (II-4) to (II-4);: if x,
¥y € R and x—y € A then either x* = y® or x and y both belong to V(A ).

Example 1. Consider the subsets

K=10(p §) (7 1) (o) ama =10, (3 ). (6 1) 1)

of M(GF(2)). Then R = *((7)‘ :) | x € K, » € H} is a non-commutative

algebra over GF(2), and N = (}? 8) squares to zero. It is easy to see that

3x—x' = x+x' € N for all x € R, and hence (I;-N). Further, it can be
verified that R satisfies (II-N);.

In conclusion, we would like to express our indebteness and gratitude
to Prof. Y. Hirano for his helpful suggestions and valuable comments.
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