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Abstract 

   The present study was undertaken to examine the potential roles of glucose and pyruvate in 

nuclear and cytoplasmic maturation of porcine oocytes. Oocyte-cumulus complexes (OCC) from 3 

to 6 mm follicles were cultured in a chemically defined medium, pyruvate-free mNCSU37-PVA 

with/without 5.55 mM glucose during in vitro maturation (IVM), germinal vesicle breakdown 

(GVBD) and nuclear maturation of porcine oocytes were prevented in glucose-free medium 

(P<0.05). Subsequently, OCC were cultured for IVM in glucose-containing mNCSU37-PVA 

supplemented with various concentrations of 6-amononicotinamide (6-AN) and 

diphenyleneiodonium (DPI), inhibitors of the pentose phosphate pathway (PPP); both compounds 

(≥10 µM 6-AN and ≥10 nM DPI) inhibited resumption of meiosis (P<0.05). Supplementation of 

glucose-free maturation medium with increasing concentrations of pyruvate induced resumption of 

meiosis and increased the incidence of oocytes reaching the metaphase-II stage in a 

concentration-dependent manner (P<0.05). More mature oocytes were obtained in the presence 

of pyruvate + glucose (P<0.05). After culture to allow maturation, glutathione content was higher in 

the oocytes cultured in the presence of pyruvate, alone than in those cultured in glucose alone; 

inclusion of 6-AN abolished responses to pyruvate (P<0.05). These results demonstrate that, in 

the pig, both glucose and pyruvate play a critical role in the release of oocytes from arrest at the 

GV-I stage, probably through the PPP, whereas supplementation with pyruvate improves the 

cytoplasmic maturation as determined by oocyte glutathione level. 



1. Introduction 

Mammalian oocytes metabolize an essential energy substrate, glucose, via glycolysis, the 

pentose phosphate pathway (PPP) and the tricarboxylic acid cycle [1-3]. The PPP and/or 

glycolysis appears to play a critical role in resumption of meiosis in mouse oocytes [4,5]. 

Gonadotropins induce mouse oocytes to resume via gap junction coupling, between oocyte and 

cumulus cells [6,7], but only when glucose is present in the maturation medium [8,9]. This 

resumption of meiosis appears to be associated with elevated activity of glycolysis and the PPP 

[1,4], but elevated very high levels of glucose have been shown to suppress maturation [9-11]. 

Furthermore, there appears to be some differences in the glucose requirement for oocyte 

maturation among mammalian species. In primate oocytes, nuclear maturation can occur in the 

absence of carbohydrates, but glucose is necessary for cytoplasmic maturation [12]. In bovine 

oocytes, increased metabolism of glucose through one or more metabolic pathways has been 

reported to occur simultaneously with the progression of meiosis to the metaphase-II stage [13]; 

this elevated glucose metabolism in mature oocytes correlates with improved developmental 

competence of bovine embryos [2]. In porcine oocytes, investigations using a chemically defined 

glucose-containing medium supplemented with stimulators or inhibitors of glycolysis and the PPP 

[14] have reported that metabolism through the PPP and/or glycolysis affects the control of 

nuclear and cytoplasmic maturation in vitro. Sturmey and Leese [15] demonstrated that the 

triglyceride content of porcine oocytes decreases during maturation, leading them to suggest that 

a high glucose concentration in the culture medium may be needed to form pyruvate, which in turn, 

produces oxaloacetate that is required to prime the tricarboxylic acid cycle. However, details 

regarding the roles of glucose and pyruvate metabolisms in nuclear and cytoplasmic maturation 

are still unclear, especially in chemically defined media. 

In the present study, we examined the roles of glucose and pyruvate in a chemically defined 

medium on the morphological progress of meiosis and the cytoplasmic maturation, as determined 

by intracellular glutathione content and developmental competence, of porcine oocytes. 

 

 



2. Materials and methods 

2.1. Chemicals and Culture Media 

Potassium chloride, KH2PO4, MgCl2•6H2O, CaCl2•2H2O, sodium citrate and citric acid were 

purchased from Ishizu Pharmaceutical Co., Ltd (Osaka, Japan). Sodium chloride and paraffin 

liquid were obtained from Nacalai Teque Inc. (Kyoto, Japan). Unless specified, other chemicals 

were purchased from Sigma Aldrich Japan K.K. (Tokyo, Japan).   

The medium used for collecting and washing oocyte-cumulus complexes (OCC) was 

modified TL-HEPES-PVA medium composed of 114 mM NaCl, 3.2 mM KCl, 2 mM NaHCO3, 0.34 

mM KH2PO4, 10 mM Na-lactate, 0.5 mM MgCl2•6H2O, 2 mM CaCl2•2H2O, 10 mM HEPES, 0.2 

mM Na-pyruvate, 12 mM sorbitol, 0.1% (w/v) polyvinylalcohol, 25 μg gentamicin/mL and 65 μg 

potassium penicillin G/mL. The basic in vitro maturation (IVM) medium used was modified 

BSA-free North Carolina State University 37 medium [16] supplemented with 0.6 mM cysteine, 5 

μg insulin/mL, 50 µM beta-mercaptoethanol and 0.2% (w/v) polyvinylalcohol (mNCSU37-PVA). 

This IVM medium supports blastocyst development and the birth of piglets following IVF and 

embryo transfer when porcine follicular fluid is used instead of 0.2% polyvinyl alcohol [17]. The 

medium for in vitro development to the blastocyst stage was mNCSU37 supplemented with 0.6 

mM cysteine, 5 μg insulin/mL, 50 µM beta-mercaptoethanol and 0.4% (w/v) BSA 

(mNCSU37-BSA). In some experiments,the medium composition was modified as detailed below. 

All media (except modified TL-HEPES-PVA) were equilibrated under paraffin liquid at 39°C in an 

atmosphere of 5% CO2 in air overnight prior to use. 

 

2.2. Preparation and culture of cumulus-oocyte complexes 

Ovaries were collected from slaughtered prepubertal gilts at a local abattoir and transported 

to the laboratory in 0.9% NaCl containing 75 mg potassium penicillin G/L and 50 mg streptomycin 

sulphate/L. Using an 18-gauge needle and a disposable 10-mL syringe, OCC were aspirated from 

antral follicles (3 to 6 mm in diameter) on the surface of ovaries, and washed three times with 

modified TL-HEPES-PVA medium at room temperature (25 oC) [17]. Forty to fifty OCC with 

uniform ooplasm and a compact cumulus cell mass were washed three times with IVM medium. 

These complexes were subsequently cultured in 500 μL of IVM medium supplemented with 



gonadotropins (10 iu eCG/mL and 10 iu hCG/mL) and 1mM dibutyryl cyclic adenosine 

3’,5’-monophosphate (dbcAMP), for 20 h at 39°C in an atmosphere of 5% CO2 in air. The OCC 

were washed three times in unsupplemented medium, transferred to 500 μL of fresh 

unsupplemented IVM medium and cultured for an additional 24 h [17,18]. Oocytes were stripped 

of cumulus cells by pipetting with 0.1% (w/v) hyaluronidase and evaluated for nuclear and 

cytoplasmic maturation. Oocytes were mounted, fixed for 48 h or more in 25% (v/v) acetic acid: 

alcohol at room temperature, stained with 1% (w/v) orcein in 45% (v/v) acetic acid, and then 

examined under a phase-contrast microscope at 400x magnification. Nuclear morphology of 

oocytes at GV stages, and the meiotic stage of oocytes that had undergone GVBD, were 

classified into categories according to previous studies [17,19,20]. 

 

2.3. Assay of glutathione (GSH) 

The intracellular content of glutathione (GSH) was measured as described previously [21]. 

Briefly, OCC were denuded by pipetting with 0.1% (w/v) hyaluronidase and washed three times in 

modified TL-HEPES-PVA medium and then another three times in stock buffer, 0.2M-sodium 

phosphate containing 10mM Na4-EDTA (pH7.2). Five μL of buffer containing 30 mature oocytes 

was transferred to a 1.5-mL microtube and 5 μL of 1.25 M phosphoric acid was added; samples 

were frozen immediately (-80°C) and kept in the freezer until assayed. The GSH content of 

oocytes was determined by the DTNB-GSSG reductase recycling assay [22]. The total amount of 

GSH measured was divided by the number of oocytes in the sample to obtain the mean content 

per oocyte (pmol/oocyte). 

 

2.4. Electrical activation and in vitro culture of oocytes 

Electrical activation was carried out according to Miyoshi et al. [23] with modifications. The 

medium used for activation was 250.3 mM sorbitol, 0.3 mM HEPES, 0.2 mM hemi-calcium lactate 

and 0.2%(w/v) BSA. Denuded oocytes were washed once with activation medium and then placed 

between the two wire electrodes (1 mm apart) in activation medium; a direct-current pulse of 100 

V/mm for 30 micro sec was applied twice at an interval of 1 min. Just after electrical stimulation, 

the oocytes were incubated in 500 μL of mNCSU37-BSA supplemented with 2.2 mg/mL 



cytochalasin B for 2 h, and then cultured in cytochalasin B-free mNCSU37-BSA medium for 7 

days. Cleavage and morula/blastocyst formation of the activated oocytes were examined on Days 

2 and 7 of culture, respectively. 

 

2.5. Experimental design 

In the first experiment, to determine effect of glucose on resumption of meiosis in porcine 

oocytes, OCC were cultured in pyruvate-free IVM medium with or without 5.55 mM glucose as 

detailed above, then denuded and fixed to observe meiotic status. 

In the second experiment, to determine whether glucose promoted resumption of meiosis in 

porcine oocytes though the PPP pathway, OCC were cultured in IVM medium with glucose plus 

varying concentrations of 6-aminonicotinamide (6-AN; 0, 10, 50 and 100 µM) or 

diphenyleneiodonium (DPI; 0, 10, 50 and 100 nM), inhibitors of the PPP. The meiotic status of the 

oocytes was examined at the end of IVM culture. 

In the third experiment, the effect of various concentrations (0, 0.5, 2.5 and 5.0 mM) of sodium 

pyruvate in glucose-free IVM medium on resumption of meiosis in oocytes was evaluated. These 

concentrations were chosen from a similar range with physiological level of pyruvate (0.26 mM in 

human follicular fluid) and glucose concentration (5.55 mM) in IVM medium. 

In the fourth experiment, the effects of glucose (5.55 mM) or pyruvate (5.55 mM) in the 

absence or presence of 10 µM 6-AN on oocyte glutathione content was determined. At the end of 

IVM culture, these oocytes were denuded and the intracellular GSH content was measured. 

In the fifth experiment, the effects of 5.55 mM glucose and 5.55 mM sodium pyruvate, used 

both individually and in combination, on nuclear and cytoplasmic maturation of oocytes was 

evaluated. At the end of IVM culture, some of the oocytes were denuded and fixed to observe the 

meiotic status. Others were electrically activated, and the developmental competence of the 

oocytes was examined. 

 

2.6. Statistical analysis.  

All oocytes were randomly distributed within each experimental group and each experiment 



was repeated at least 3 times. All percentage data were subjected to arc sine transformation 

before statistical analysis. Statistical analyses of results from 13-15 replicated samples in GSH 

assay and 3-7 replicates in others were used for treatment comparisons and carried out by 

analysis of variance (ANOVA) using the JMP 5.0 (SAS Institute, Inc., Cary, NC) program. If the P 

value was smaller than 0.05 in ANOVA, Tukey-Kramer's HSD test was followed using the same 

program. All data were expressed as means ± S.E.M. P ≤ 0.05 was considered to be statistically 

significant. 

 

 



3. Results 

3.1. Effect of glucose and gonadotropins on resumption of meiosis (Exp. 1) 

As shown in Table 1, the proportions of oocytes undergoing GVBD and developing to the 

metaphase-II stage were significantly lower in IVM medium lacking glucose than in medium 

containing glucose: compared with control oocytes, significantly more of those cultured in 

glucose-free medium were arrested at the GV-I and GV-IV stages. 

 

3.2. Effect of inhibitors of the PPP on resumption of meiosis (Exp. 2) 

Supplementation of glucose-containing IVM medium with inhibitors of the PPP significantly 

inhibited GVBD in a concentration-dependent manner (Fig. 1); maximal inhibition was obtained 

using 50 and 100 μM of 6-AN and 50 and 100 nM of DPI. Most of the arrested oocytes were 

arrested at the GV-I stage (data not shown).   

 

3.3. Effect of various concentrations of sodium pyruvate on resumption of meiosis and the 

progress (Exp. 3) 

When OCC were cultured in glucose-free IVM medium containing various concentrations (0, 

0.5, 2.5 and 5.0 mM) of sodium pyruvate, the percentage of oocytes undergoing GVBD and 

meiotic maturation increased at a higher concentration of pyruvate (Table 2). Supplementation 

with 5.0 mM pyruvate induced GVBD in 95.9% of the oocytes. Although ~50% of oocytes cultured 

in the presence of both 2.5 and 5.0 mM pyruvate were at metaphase-I, more of the oocytes 

cultured in 5.0 mM pyruvate reached the metaphase-II stage (Table 2). 

 



3.4. Effect of glucose and pyruvate on oocyte glutathione content (Exp. 4) 

The glutathione content of oocytes cultured in the presence of 5.55 mM glucose, without or 

with 10 µM 6-AN (3.22±0.35 and 2.96±0.57 pmol/oocyte, respectively) did not differ significantly 

from that of oocytes cultured in the absence of any energy substrates (2.95±0.37 pmol/oocyte; 

Fig. 2). However, glutathione content was significantly higher (5.60±0.97 pmol/oocyte) when 5.55 

mM glucose was replaced with the same concentration of pyruvate; the inclusion of 10 µM 6-AN 

resulted in a much lower glutathione content (2.06±0.28 pmol/oocyte), which was equal to that in 

oocytes without any energy supplementation. 

 

3.5. Effect of glucose and pyruvate on oocyte developmental competence (Exp. 5) 

When oocyte maturation in the presence of 5.55 mM glucose only, 5.55 mM pyruvate only 

and the two in combination was compared, the incidences of GVBD and development to 

metaphase-I did not differ significantly (Table 3). However, there were significant differences in the 

proportions of oocytes reaching the metaphase-II stage. The lowest value (~23%) was observed 

in the pyruvate only group; significantly more had matured in the glucose only group (~51%) and 

more than 75% had matured when both pyruvate and glucose were present. The incidence of 

oocytes developing to or beyond the morula stage after parthenogenetic activation was higher in 

oocytes matured in the presence of both glucose and pyruvate, compared with control oocytes 

matured in the presence of glucose only (Table 4). However, the percentage of oocytes 

developing to the blastocyst stage did not differ. 

 



4. Discussion 

In the present study, the continuous presence of 5.55 mM glucose in a pyruvate-free 

chemically defined IVM medium was required to support GVBD and development to the 

metaphase-II stage in porcine oocytes. In the absence of glucose, oocyte progression beyond the 

GV-I stage occurred in only about half the oocytes, even if dibutyryl cAMP and gonadotropins 

were present during the first 20 h of culture for maturation, and essentially none reached 

metaphase-II. We then investigated the effects of 6-AN, an inhibitor of NADP-requiring enzymes 

(glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase) in the PPP, and 

DPI, a general inhibitor of NADPH oxidase. 6-aminonicotinamide is known to be an effective 

inhibitor of PPP activity in mouse oocytes [5] and bovine zygotes [24]. Diphenyleneiodonium has 

been shown to inhibit the flavoenzyme nitric oxide synthase (NOS) which generates nitric oxide in 

the presence of NADPH [25], and to inhibit reactive oxygen species (ROS) generation in mouse 

spermatozoa [26] and two-cell embryos [27]. In the present study, inclusion of these PPP 

inhibitors significantly inhibited GVBD: the majority of oocytes were arrested at GV-I, despite the 

presence of gonadotropins and dibutyryl cAMP during the first 20 h of IVM.  In an earlier study, 

we demonstrated that supplementation of a glucose-containing medium with dibutyryl cAMP and 

gonadotropins for 20 h induces morphological progression of porcine oocytes from the GV-I to 

GV-II stage [17]. Therefore, glucose metabolism, especially NADPH production through the PPP 

or other pathways, appears to be closely associated with early changes in GV morphology that 

precede GVBD. A recent study has shown that supplementation of a chemically defined 

maturation medium with 100 nM DPI reduced the incidence of porcine oocytes at the metaphase-II 

stage after maturation culture for 40-44h, whereas a majority of the oocytes had undergone GVBD 

[14]. 

  The current study demonstrated that replacement of glucose with pyruvate also supported 

resumption of meiosis in porcine oocytes, but only ~25% reached metaphase-II. Inclusion of both 

glucose and pyruvate significantly improved the proportion of oocytes that matured to 

metaphase-II, compared with either glucose or pyruvate used individually. This additive effect 

suggests that in addition to pyruvate production from glucose metabolism via glycolysis, 

metabolism of glucose through another metabolic pathway, such as the PPP, is required for full 



stimulation of porcine oocytes maturation in mNCSU37. This supports a previous report by Downs 

and Hudson [11] that optimal meiotic maturation in mouse oocytes requires both pyruvate and 

glucose, although each used alone was able to support meiotic progression of ~45-65% of 

oocytes to the metaphase-II stage. However, it is still unclear the mechanism why the incidence of 

metaphase-I oocytes increased when sufficient concentration of pyruvate, which was more than 

10-fold physiological, was supplemented glucose-free modified NCSU-37 medium (an amino 

acid-free chemically defined medium). Further experiments are required to clarify the 

phenomenon. 

In porcine oocytes, a high level of intracellular GSH content, obtained by supplementing 

maturation medium with cysteine and beta-mercaptoethanol is known to be important promoting 

male pronuclear formation [28,29] and obtaining good embryonic development [17,30]. However, 

the effect of energy substrates on GSH content is unclear. In the current study, we found that the 

intracellular GSH content of porcine oocytes was significantly higher when the chemically defined 

maturation medium contained 5.55 mM pyruvate rather than glucose. This result supports recent 

observation that both cytosolic and mitochondrial metabolism of pyruvate regulates cytosolic 

NADPH levels, which may be a critical regulator of GSH production during maturation of mouse 

oocytes, via cytosolic NADP-dependent isocitrate dehydrogenase [31]. However, our results 

demonstrated that inclusion of 6-AN alone with pyruvate significantly reduced the GSH content of 

oocytes, to a level similar to that found in oocytes matured in medium containing glucose 

with/without 6-AN. This result suggests that the PPP may be associated with a supply of cytosolic 

NADPH in porcine oocytes. Furthermore, developmental competence to or beyond the morula 

stage was also increased when OCC were cultured in the presence of both glucose and pyruvate. 

These results suggest that an abundant supply of pyruvate, probably consumed for ATP 

production in the tricarboxylic acid cycle and NADPH production via cytosolic NADP-dependent 

isocitrate dehydrogenase and PPP, is important to synthesize GSH and to improve the 

developmental competence of oocytes in the pig. It has been reported that both oocyte glutathione 

content and developmental competence were changed and correlated when three types of 

maturation media, which contained glucose, were compared for porcine oocytes, whereas oocyte 

ATP contents did not differ among media [32]. There was also a correlation between 



developmental competence and oocyte GSH content when the oocytes were protected from 

oxidative stress [33,34]. In a chemically defined medium, intracellular GSH content of porcine 

oocytes decreased when a PPP inhibitor was present, and further decreased when mitochondrial 

ATP production and the PPP were simultaneously inhibited [14]. One role of the PPP is to 

generate NADPH [35]. NADPH is known to be important both for the GSH reductase/peroxidase 

systems to protect cells against excessive ROS and for NADPH-oxidase to promote physiological 

levels of ROS involved in signaling pathway [36]. An abundant supply of pyruvate should be 

important to maintain a healthy state of porcine oocytes, including the level of intracellular 

glutathione.  

In conclusion, results obtained in the present study demonstrate that glucose plays a critical 

role in resumption of meiosis in porcine oocytes, possibly through the PPP and cytosolic 

NADP-dependent isocitrate dehydrogenase for NADPH production, and that cytoplasmic 

maturation as assessed by glutathione content and developmental competence of oocytes to and 

beyond the morula stage, are improved probably through pathways associated with pyruvate. 

Based on the results, we would recommend adding Na-pyruvate to a glucose containing, 

chemically defined medium, such as mNCSU37 for IVM. 
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Legend of figures 

 

 

Fig. 1. Effect of various concentrations of 6-AN and DPI on meiotic resumption of porcine oocytes. 

Bars show the proportion of all oocytes at GVBD to metaphase-II. Numbers in 

parentheses indicate the total number of oocytes examined. Bars with different letters 

within the same PPP inhibitor differ significantly (P < 0.05). 

 

 

 

 

Fig. 2. Glutathione content in porcine oocytes matured in the presence of either 5.55 mM glucose 

or 5.55 mM Na-pyruvate, with or without 10 µM 6-aminonicotinamide (6-AN). Numbers in 

parentheses indicate the total number of oocytes assayed. Bars with different letters differ 

significantly (P < 0.05). 
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Table 1.  Effect of glucose on the resumption of meiosis in porcine oocytes 

 Concentration No. of %** oocytes at the stage of: % oocytes % M-II 

 of Glucose oocytes  completing oocytes 

 (mM) examined* GV-I GV-II GV-III GV-IV GVBD  

10  0 210 48.7 + 8.6 a 8.2 + 5.4 9.8 + 4.5 12.0 + 2.9 a 21.3 + 4.4 a 0.7 + 0.7 a 

 5.55 191 5.5 + 3.1 b 3.2 + 1.9 0.8 + 0.5 1.8 + 1.8 b 88.7 + 3.6 b 57.6 + 4.6 b 

* Oocytes were cultured for 20 h in pyruvate-free mNCSU37-PVA containing 10 iu/mL eCG, 10 iu/mL hCG and 1 mM dibutyryl cAMP and 

then for 24 h without these supplements. 

**Percentage based on the total number of oocytes examined. 

15 Data are given as mean + S.E.M. from five replicated experiments. 

Values with different superscripts within columns are significantly different (P < 0.05). 



 
 
 
 

5 Table 2.  Effect of pyruvate in glucose-free maturation medium on the resumption of meiosis in porcine oocytes 

 Concentration of No. of %** oocytes %** M-I %** M-II 

 Na-pyruvate oocytes completing oocytes oocytes 

 (mM) examined* GVBD   

 0 230 10.4 + 3.6a 4.0 + 3.1a 0.5 + 0.5a 

10  0.5 226 41.5 + 4.9b 8.3 + 2.5a 7.6 + 3.6a 

 2.5 221 92.5 + 2.7c 51.6 + 8.2b 18.2 + 6.2ab 

 5.0 218 95.9 + 1.1c 54.6 + 9.0b 25.8 + 5.0b  

  

*Oocytes were cultured for 20 h in glucose-free mNCSU37-PVA containing 10 iu/mL eCG, 10 iu/mL hCG and 1 mM 

dibutyryl cAMP and then for 24 h without these supplements. 15 
**Percentage based on the total number of oocytes examined  

Data are given as mean + S.E.M. from four replicated experiments.  

Values with different superscripts within column are significantly different (P < 0.05).   



 

 

 

 

5 Table 3.  Effect of glucose and pyruvate on the resumption of meiosis in porcine oocytes 

  No. of %*** oocytes %*** M-I %*** M-II 

 Energy substrates* oocytes completing oocytes oocytes  

  Examined** GVBD  

 G 138 95.7 + 3.3 43.5 + 3.7a 50.6 + 2.7a 

10  P 146 92.2 + 3.3 53.4 +14.8a 23.3 + 9.3b 

 G + P 156 93.4 + 3.6 10.9 +5.5b 76.3 + 7.2c 

 

*G; 5.55mM glucose, P; 5.55.mM Na-pyruvate. 

** Oocytes were cultured for 20 h in mNCSU37-PVA containing 10 iu/mL eCG, 10 iu/mL hCG and 1 mM dibutyryl 

cAMP and then for 24 h without these supplements. 15 
***Percentage based on the total number of oocytes examined.  

Data are given as mean + S.E.M. from four replicated experiments.  

Values with different superscripts within column are significantly different (P < 0.05).   



 G + P 146 81.2 + 6.2 42.0 + 4.0b 17.4 + 3.1 

  No. of %*** %*** oocytes %*** oocytes  

 Na-pyruvate* activated** cleaved the morula stage the blastocyst  

 Presence of oocytes oocytes developing beyond developing to  

Table 4.  Effect of pyruvate in the maturation medium on the development of electrically activated porcine oocytes in vitro 

 G 135 65.5 +11.6 22.2 + 5.2a 10.1 + 4.2 

**Oocytes were cultured for 20 h in mNCSU37-PVA containing 10 iu/mL eCG, 10 iu/mL hCG and 1 mM dibutyryl 

cAMP and then for 24 h without these supplements. 

***Percentage based on the number of oocytes stimulated.  

Values with different superscripts within column are significantly different (P < 0.05).   

Data are given as mean + S.E.M. from four replicated experiments.  

*G; 5.55mM glucose, P; 5.55.mM Na-pyruvate. 
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