Mathematical Journal of Okayama University

Volume 27, Issue 1

1985

Article 6

JANUARY 1985

On generalization of a theorem of posner

Motoshi Hongan*

Andrzej Trzepizur[†]

Copyright ©1985 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Tsuyama College of Technology

[†]Jagellonian University

Math. J. Okayama Univ. 27 (1985), 19-23

ON GENERALIZATION OF A THEOREM OF POSNER

MOTOSHI HONGAN and ANDRZEJ TRZEPIZUR

Throughout the present paper, R will represent a ring with center C, $d: x \to x'$ a derivation of R, and U a differential ideal of R whose left annihilator l(U) = 0. Let $K = \{x \in R \mid x' = 0\}$, and $K_0 = \{x \in R \mid (RxR)' = 0\}$, which is an ideal of R. Let I be the ideal of R generated by R', and $V = U \cap K$.

Our present objective is to prove the following theorems.

Theorem 1. Let R be a d-semiprime ring such that $[u', u] \in C$ for all $u \in U$. If K_0 is commutative, then $[U, U] \subseteq C$.

Theorem 2. Let R be a d-semiprime ring such that $[u', u] \in C$ for all $u \in U$. If $[V, V] \subseteq I$ and $[U, R] \subseteq K$ then R is commutative.

If R is a semiprime ring then $K_0 \subseteq K$. Furthermore, if R is a prime ring and $d \neq 0$ then K_0 has to be zero (see, e.g., [2, Lemma 1 (3)]), and Theorem 1 deduces a generalization of Posner's theorem [4, Theorem 2] (see Corollary 1).

In advance of proving our theorem, we recall several definitions and preliminary results (see [3, § 3]). We say that R is d-prime provided if J_1 , J_2 are differential ideals of R and $J_1J_2=0$ then $J_1=0$ or $J_2=0$, or equivalently, if $x, y \in R$ and $xRy^{(k)}=0$ for all $k \geq 0$ then x=0 or y=0. If R is d-prime then it is easy to see that R is either of prime characteristic or torsion free. A differential ideal P of R is said to be d-prime if the factor ring R/P is d-prime. We say that R is d-semiprime if the intersection of all d-prime ideals of R is zero, or equivalently, if R is differentially isomorphic to a subdirect sum of d-prime rings. If R is d-semiprime, then l(U)=0 shows that the intersection of all d-prime ideals not including U is zero. If R is d-prime, "l(U)=0" becomes " $U\neq 0$ ".

Lemma 1. Let A be a ring with center Z, and S an ideal of A with l(S) = 0. If $[S, S] \subseteq Z$ then [s, x][s, y] = 0 for any $s \in S$ and $x, y \in A$.

Proof. Let $s, t, u \in S$, and $x, y \in A$. Since [s, t][s, u] = [s, ts]u

20

-[s,t]us = u[s,ts] - u[s,t]s = 0, we see that [s,t][s,x]u = [s,t][s,xu] - [s,t]x[s,u] = 0, which implies [s,t][s,x] = 0. Hence, [s,x][s,y]t = [s,x][s,yt] - [s,x]y[s,t] = 0, which concludes that [s,x][s,y] = 0.

Lemma 2. Let R be a d-prime ring. Suppose that $[u', u] \in C$ for all $u \in U$. Then either $[U, U] \subseteq C$ or [u', u] = 0 for all $u \in U$. In case $[U, U] \subseteq C$, $[u, v]^2 = 0$ for all $u, v \in U$.

Proof. We claim first that $C \subseteq K$ or $[U, U] \subseteq C$. Linearlizing the relation $[u', u] \in C$ ($u \in U$), we get $[u, v'] - [u', v] \in C$ ($u, v \in U$). Hence, for any $c \in C$, $[u, v]c' = ([u, (vc)'] - [u', vc]) - ([u, v'] - [u', v])c \in C$, so that $[[u, v], x]c^{(k)} = 0$ ($x \in R$, $u, v \in U$ and $k \ge 1$). This implies that either $C \subseteq K$ or $[U, U] \subseteq C$.

If $[U,U] \subseteq C$ then $[u,v]^2=0$ by Lemma 1. We assume henceforth that $C\subseteq K$. From the proof of [2, Theorem 1 (2)], we can easily see that $u[u',u]^2=0$ $(u\in U)$. Combining this with $[u',u]\in K$, we get $u[u',u]R[u',u]^{(k)}=0$ $(k\geq 0)$, and therefore u[u',u]=0. Furthermore, this implies that $uR[u',u]^{(k)}=0$ $(k\geq 0)$. Hence [u',u]=0.

Lemma 3. Let R be a d-prime ring. If $[U, U] \subseteq C$ and $[U, R] \subseteq K$, then R is commutative.

Proof. Let $u \in U$, and $x, y \in R$. Then, by Lemma 1, [u, x]y[u, x] = [u, x][u, yx] - [u, x][u, y]x = 0, i.e., [u, x]R[u, x] = 0, and therefore $[u, x]R[u, x]^{(k)} = 0$ for all $k \ge 0$. Hence [u, x] = 0, which proves that $U \subseteq C$. Now, we see that [x, y]u = [x, yu] = 0, and therefore [x, y] = 0.

Lemma 4. Let R be a d-semiprime ring such that [u', u] = 0 for all $u \in U$.

- (1) $R' \subseteq C$ and $[R, R] \subseteq K$.
- (2) $I[R, K] = [R, K]I = 0 \text{ and } R[R, K] \cup [R, K]R \subseteq K.$
- (3) $I \cap K$ contains no non-zero nilpotent elements.

Proof. (1) Let P be an arbitrary d-prime ideal of R not including U. Then, in view of [3, Lemma 7], either $R' \subseteq P$ or $[R, R] \subseteq P$, so that $[R', R]' \subseteq P$. Hence [R', R] = 0 and $[R, R] \subseteq K$.

(2) Let $x, y \in R$, and $a \in K$. Then, by (1), x'[y, a] = [y, x'a] = [y, (xa)'] - [y, xa'] = 0 and (x[y, a])' = x'[y, a] = 0. This proves that I[R, K] = 0 and $R[R, K] \subseteq K$, and similarly [R, K]I = 0 and

21

 $[R, K]R \subseteq K$.

(3) Let a be an element of $I \cap K$ such that $a^2 = 0$. Then, for any $x \in R$, (2) shows that axa = a[x, a] = 0, which proves that a generates a nilpotent differential ideal of R. Hence a = 0.

Lemma 5. Let R be a d-semiprime ring such that [u', u] = 0 for all $u \in U$. If $[V, V] \subseteq I$ then R is commutative.

Proof. Let $v, w \in V$, and $x, y, z \in R$. By Lemma 4 (2), we have $[v, w]^2 = 0$. Hence, [v, w] = 0 by Lemma 4 (3); V is commutative. Since both [x, v] and [x, v]y are in V by Lemma 4 (1) and (2), we get [x, v][y, v] = v[x, v]y - [x, v]vy = 0. Furthermore, $[x, v]y \cdot [z, v] = [z, v][x, v]y = 0$. This proves that [x, v] generates a nilpotent differential ideal of R. Hence, [x, v] = 0; $V \subseteq C$. Now, let $u \in U$. Noting that $[R, U] \subseteq V \subseteq C$ (Lemma 4 (1)), we have $[x, u]^2 = xu[x, u] - u[x, xu] = x[x, u]u - [x, xu]u = 0$. This proves that [x, u] generates a nilpotent differential ideal of R, so that [x, u] = 0; $U \subseteq C$. We see therefore that [x, v]u = [x, yu] = 0, which implies [x, y] = 0.

We are now ready to complete the proof of our theorems.

Proof of Theorem 1. There holds $\bigcap_{\lambda \in \Lambda} P_{\lambda} = 0$ with d-prime ideals $P_{\lambda} \supsetneq U$. We put $\Lambda_1 = |\lambda \in \Lambda| \ P_{\lambda} \supsetneq R'|$ and $\Lambda_2 = |\lambda \in \Lambda| \ P_{\lambda} \supsetneq R'|$. Let D_0 be the ideal of R generated by [[U,U],R]. Then, Lemma 2 together with [3, Lemma 7] shows that $D_0 \subseteq P_{\lambda}$ for all $\lambda \in \Lambda_2$. Hence $D_0' \subseteq P_{\lambda}$ for all $\lambda \in \Lambda$, and therefore $D_0' = 0$ and $D_0 \subseteq K_0$. By hypothesis, D_0 is then a commutative ideal. Now, let $\mu \in \Lambda_1$. Then $\overline{R} = R/P_{\mu}$ is a prime ring. If $D_0 \nsubseteq P_{\mu}$ then \overline{D}_0 is a non-zero commutative ideal of the prime ring \overline{R} . Hence \overline{R} is commutative by [2, Lemma 1 (1)], which contradicts $\overline{D}_0 \not\equiv 0$. We have thus seen that $D_0 \subseteq P_{\lambda}$ for all $\lambda \in \Lambda$, namely $D_0 = 0$, which concludes $[U, U] \subseteq C$.

Corollary 1. Let R be a semiprime ring such that $[u', u] \in C$ for all $u \in U$. If $[K_0, K_0] \subseteq I$ then R is commutative. In particular, if K_0 is commutative then R is commutative.

Proof. Since R is a d-semiprime ring, the intersection of all d-prime ideals not including U is zero. Hence, by Lemma 2, $[u', u]^2 = 0$, and therefore [u', u] = 0 for all $u \in U$. Then, Lemma 4 (2) shows that

 $[K_0, K_0][R, K_0] = 0$, and we can easily see that $[K_0, K_0]$ generates a nilpotent ideal of R. Thus K_0 has to be commutative. Now, Theorem 1 shows that $[U, U] \subseteq C$. Then, by Lemma 1, $[u, v]^2 = 0$, and so [u, v] = 0 for all $u, v \in U$. Since [x, v]u + [xu, v] = 0 for all $x \in R$, we get $U \subseteq C$. Furthermore, for any $x, y \in R$ we have [x, y]u = [xu, y] = 0, which implies [x, y] = 0.

Given an element x of R and a positive integer k, we denote by $T_k(x)$ the ideal of R generated by $\{x, x', ..., x^{(k-1)}\}$. Now, let S be a subset of R. Following [1], we say that d satisfies the condition (F) on S if for each $s \in S$ there exists a positive integer k = k(s) such that $s^{(k)} \in T_k(s)$.

Corollary 2. Let R be a d-semiprime ring such that $[u', u] \in C$ for all $u \in U$. Suppose that K_0 is commutative. If d satisfies the condition (F) on [U, U], then R is commutative. In particular, if for each $u \in U$ there exists a positive integer k = k(u) such that $u^{(k)} \in C$, then R is commutative.

Proof. It suffices to show that [U, U] = 0 (see the proof of Corollary 1). Suppose, to the contrary, that $s = [u_0, v_0] \neq 0$ for some $u_0, v_0 \in U$. In view of Theorem 1, $[U, U] \subseteq C$ and $[u, v]^2 = 0$ for all $u, v \in U$ (Lemma 1). By hypothesis, there exists a positive integer k such that $s^{(k)} \in T_k(s)$. Then $T_k(s)$ is a non-zero nilpotent differential ideal of R, which is a contradiction.

Proof of Theorem 2. Let P be an arbitrary d-prime ideal of R not including U, and $\overline{R}=R/P$. Then, by Lemma 2, either $[\overline{U},\overline{U}]$ is included in the center of \overline{R} or $[\overline{u}',\overline{u}]=0$ for all $u\in U$. In case $[\overline{U},\overline{U}]$ is included in the center of \overline{R} , Lemma 3 shows that \overline{R} is commutative; in particular, $[\overline{u}',\overline{u}]=0$ for all $u\in U$. This proves that [u',u]=0 for all $u\in U$. Hence, R is commutative by Lemma 5.

References

- M. FERRERO, K. KISHIMOTO and K. MOTOSE: On radical polynomial rings of derivation type,
 J. London Math. Soc. (2) 28 (1983), 8-16.
- [2] Y. HIRANO, A. KAYA and H. TOMINAGA: On a theorem of Mayne, Math. J. Okayama Univ. 25 (1983), 125-132.
- [3] Y. HIRANO and H. TOMINAGA: Some commutativity Theorems for prime rings with derivations and differentially semiprime rings, Math. J. Okayama Univ. 26 (1984), 101-108.
- [4] E. C. POSNER: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093 -1100.

ON GENERALIZATION OF A THEOREM OF POSNER

TSUYAMA COLLEGE OF TECHNOLOGY, TSUYAMA 708, JAPAN JAGELLONIAN UNIVERSITY, CRACOW, POLAND

(Received October 9, 1984)

23