Mathematical Journal of Okayama University

Volume 20, Issue 1

1978 March 1978

Article 9

Note on the n-center of an algebra

Shûichi Ikehata*

*Okayama University

Copyright ©1978 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

NOTE ON THE *n*-CENTER OF AN ALGEBRA

SHÛICHI IKEHATA

Let R be a ring with 1, and $S_n[x_1, x_2, \dots, x_n]$ the standard polynomial of degree n. In [6], A. Kovacs defined the n-center $C_n(R)$ of R as the set $\{a \in R \mid S_n [a, r_1, \dots, r_{n-1}] = 0$ for all $r_i \in R\}$, and denoted by $R^{(n)}$ the additive subgroup of R generated by all the substitutions of R in $S_n[x_1, x_2, \dots, x_n]$. He deduced there general properties of $C_n(R)$, and characterized $C_n(R)$ for prime rings and semiprime rings. In general $C_n(R)$ is a module over the center C(R) of R, and if n is even then C(R) is contained in $C_n(R)$ ([6, Lemma 2]).

In this note, we shall prove the following two theorems.

Theorem 1. Let C be a commutative algebra over a field K of characteristic 0, and R an Azumaya algebra of rank m^2 over C. Then there hold the following:

(a)
$$C_n(R) = \begin{cases} R & (n \ge 2m), \\ C & (n \ even, \ n < 2m), \\ 0 & (n \ odd, \ n < 2m). \end{cases}$$

(b) $R^{(n)} = \begin{cases} 0 & (n \ge 2m), \\ R^{(2)} & (n \ even, \ n < 2m), \\ R & (n \ odd, \ n < 2m). \end{cases}$

(c) $R = C_n(R) \bigoplus R^{(n)}$ (as C(R)-modules) for each n.

Theorem 2. If R is a semiprime PI-algebra over a field K of characteristic 0, then $C_{\mu}(R) \cap R^{(n)} = 0$ for each n.

Throughout the subsequent study, K will represent a field of characteristic 0, and R a K-algebra with 1. First we prove the next

Lemma 1. If $R = M_m(C)$ with a commutative subalgebra C then $R^{(n)} = \begin{cases} 0 & (n \ge 2m), \\ R^{(2)} & (n \text{ even}, n < 2m), \\ R & (n \text{ odd}, n < 2m). \end{cases}$

S. IKEHATA

Proof. As is well known, if $n \ge 2m$ then $R^{(n)} = 0$ by a theorem of Amitsur and Levitzki (see for instance [4, p. 21]). Henceforth, we limit ourselves to the case n < 2m, and distinguish between two cases.

(1) n = 2k. Evidently,

$$e_{1,k+1} = S_n [e_{12}, e_{22}, e_{23}, e_{33}, \dots, e_{kk}, e_{k,k+1}, e_{k+1,k+1}] \in \mathbb{R}^{(n)}$$

ad

and

74

 $e_{11} - e_{k+1,k+1} = S_n [e_{12}, e_{22}, e_{33}, \dots, e_{kk}, e_{k,k+1}, e_{k+1,1}] \in R^{(n)}.$ Hence $\{e_{ij} \mid i \neq j\} \cup \{e_{11} - e_{ii} \mid i \neq 1\}$ is a subset of $R^{(n)}$. Since $me_{11} = 1 + \sum_{i=2}^{m} (e_{11} - e_{ii}) \in C + R^{(n)}$ and K is of characteristic 0, it follows $e_{11} \in C + R^{(n)}$. Thus, $e_{ij} \in C + R^{(n)}$ for all i, j, so $R = C + R^{(n)}$. Considering the trace, it is obvious that $R^{(2)} \cap C = 0$. Since $R^{(n)} \subseteq R^{(2)}$ by [6, Corollary 10 (iii)], we have then $R^{(n)} = R^{(2)}$.

(2) n = 2k + 1. Evidently,

 $e_{1,k+1} = S_n [e_{11}, e_{12}, e_{22}, e_{23}, e_{33}, \dots, e_{kk}, e_{k,k+1}, e_{k+1,k+1}] \in \mathbb{R}^{(n)}$, so that $e_{ij} \in \mathbb{R}^{(n)}$ for all $i \neq j$. In order to prove $\mathbb{R}^{(n)} = \mathbb{R}$, it suffices therefore to show that $e_{11} \in \mathbb{R}^{(n)}$. Since

 $2(e_{11} + e_{22} + \dots + e_{kk}) + e_{k+1,k+1} = S_n [e_{11}, e_{12}, e_{22}, e_{23}, e_{33}, \dots, e_{kk}, e_{k,k+1}, e_{k+1,1}] \in \mathbb{R}^{(n)},$

there hold the following:

$$2 (e_{22} + e_{33} + \dots + e_{k+1,k+1}) + e_{11} \in R^{(n)}.$$

$$2 (e_{33} + e_{44} + \dots + e_{11}) + e_{22} \in R^{(n)}.$$

$$\dots$$

$$2 (e_{k+1,k+1} + e_{11} + \dots + e_{k-1,k-1}) + e_{kk} \in R^{(n)}.$$

Now, summing up those above, we get

$$(2k+1)(e_{11}+e_{22}+\cdots+e_{k+1,k+1}) \in \mathbb{R}^{(n)}.$$

Since K is of characteristic 0, it follows then $e_{11} + e_{22} + \cdots + e_{k+1,k+1} \in \mathbb{R}^{(n)}$. Hence, $e_{11} = 2(e_{11} + e_{22} + e_{33} + \cdots + e_{k+1,k+1}) - \{2(e_{22} + e_{33} + \cdots + e_{k+1,k+1}) + e_{11}\} \in \mathbb{R}^{(n)}$

Proof of Theorem 1. Since R is an Azumaya algebra of rank m^2 over C, we know that there is a commutative faithfully flat C-algebra B such that $R \otimes_{c} B = M_m(B) = M_m(K) \otimes_{\kappa} B$ (see e. g. [7, Corollaire III. 6.7]). So, if $n \ge 2m$ then it is easy to see that $R^{(n)} = 0$ and $C_n(R) = R$. In what follows, we may therefore restrict our attention to the case

n < 2m. It is evident that $C_n(R) \otimes {}_{c}B \subseteq C_n(R \otimes {}_{c}B) = C_n(M_m(K)) \otimes {}_{K}B$. By [6, Theorems 13 and 16],

$$C_n(M_m(K)) = \begin{cases} K & (n \text{ even}), \\ 0 & (n \text{ odd}). \end{cases}$$

Hence,

$$C_n(R) \bigotimes_{c} B = \begin{cases} B & (n \text{ even}), \\ 0 & (n \text{ odd}). \end{cases}$$

Recalling that $_{c}B$ is faithfully flat, it follows at once

$$C_n(R) = \begin{cases} C & (n \text{ even}), \\ 0 & (n \text{ odd}). \end{cases}$$

Next, it is easy to see that $R^{(n)} \otimes {}_{c}B = (R \otimes {}_{c}B)^{(n)} = M_{m}(K)^{(n)} \otimes {}_{\kappa}B$. By Lemma 1,

$$M_m(K)^{(n)} = \begin{cases} M_m(K)^{(2)} & (n \text{ even}), \\ M_m(K) & (n \text{ odd}). \end{cases}$$

Hence,

$$R^{(n)} \bigotimes_{c} B = \begin{cases} R^{(2)} \bigotimes_{c} B & (n \text{ even}), \\ R \bigotimes_{c} B & (n \text{ odd}). \end{cases}$$

Finally, noting that K is of characteristic 0, one can easily see that R is a strongly separable algebra in the sense of Kanzaki [5] (cf. also [3, Theorem 1]). Then, $R = C \bigoplus R^{(2)}$, and (c) is immediate from (a) and (b).

Corollary. Let R be a regular self-injective PI-algebra over a field K of characteristic 0, then $R = C_n(R) \bigoplus R^{(n)}$ (as C(R)-modules) for each n.

Proof. By [1, Theorem 3. 5], $R = R_1 \bigoplus \cdots \bigoplus R_m$, where each R_i is an Azumaya algebra of constant rank. Then it is easy to see that $C_n(R) = C_n(R_1) \bigoplus \cdots \bigoplus C_n(R_m)$ and $R^{(n)} = R_1^{(n)} \bigoplus \cdots \bigoplus R_m^{(n)}$. Since $R_i = C_n(R_i) \bigoplus R_i^{(n)}$ by Theorem 1 (c), we readily obtain $R = C_n(R) \bigoplus R^{(n)}$.

In advance of proving Theorem 2, we state the next.

Lemma 2. Let S be a semiprime PI-ring, and Q the maximal quotient ring of S. Then $C_n(S) \subseteq C_n(Q)$ for each n.

76

S. IKEHATA

Proof. Our proof is quite similar to that of [8, Theorem 2]. Let $a \in C_n(S)$. Given $q_1, q_2, \dots, q_{n-1} \in Q$, we set $q = S_n[a, q_1, q_2, \dots, q_{n-1}]$. Then there exists an essential left ideal J of S such that $Jq_1, Jq_2, \dots, Jq_{n-1}$ and Jq are contained in S. Now, let $x \in J$, and y = xq ($\in S$). If y is non-zero, then $U = SyS \cap J \neq 0$. Since J is a semiprime *PI*-ring by [8, Lemma 2], U contains a non-zero element c in the center of J ([9, Theorem 2]). Noting that the center of J coincides with $J \cap C(S)$ (see [8, Lemma 1]) and each q_ic is in S, we see that $c^{n-1}y = c^{n-1}xq = c^{n-1}xS_n[a, q_1, q_2, \dots, q_{n-1}] = S_n[a, q_1c, q_2c, \dots, q_{n-1}c] = 0$. This implies $c^n \in c^{n-1}SyS = S(c^{n-1}y)S = 0$, which is a contradiction. Hence, Jq = 0, and so q = 0, proving $a \in C_n(Q)$.

Proof of Theorem 2. Since the maximal quotient ring Q of R is a regular self-injective PI-ring (see [2, Theorem 3] and [8, Theorem 2]), $Q = C_n(Q) \bigoplus Q^{(n)}$ by Corollary to Theorem 1. Since $C_n(R) \subseteq C_n(Q)$ by Lemma 2, we obtain $C_n(R) \cap R^{(n)} \subseteq C_n(Q) \cap Q^{(n)} = 0$.

REFERENCES

- E. P. ARMENDARIZ and S. A. STEINBERG: Regular self-injective rings with a polynnomial identity, Trans. Amer. Math. Soc. 190 (1974), 417–425.
- [2] J.W. FISHER: Structure of semiprime P.I. rings, Proc. Amer. Math. Soc. 39 (1973), 465-467.
- [3] A. HATTORI: On strongly separable algebra, Osaka J. Math. 2 (1965), 369-372.
- [4] N. JACOBSON: PI-Algebras, Lecture Notes in Math. 441, Springer-Verlag, Berlin, 1975. [5] T. KANZAKI: Special type of separable algebra over a commutative ring, Proc. Japan
- Acad. 40 (1964), 781-786.
- [6] A. Kovacs: The *n*-center of a ring, J. Algebra 40 (1976), 107-124.
- [7] M.-A. KNUS and M. OJANGUREN: Théorie de la Descente et Algèbres d'Azumaya, Lecture Notes in Math. 389, Springer-Verlag, Berlin, 1974.
- [8] W.S. MARTINDALE, III: On semiprime P.I. rings, Proc. Amer. Math. Soc. 40 (1973), 365-369.
- [9] L. H. ROWEN: Some results on the center of a ring with a polynomial identity, Bull. Amer. Math. Soc. **79** (1973), 219-223.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received October 31, 1977)