Mathematical Journal of Okayama University

On Strong Approximation of Functions by Certain Linear Operators

Lucyna Rempulska*

Mariola Skorupka ${ }^{\dagger}$

[^0]Copyright © 2004 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

On Strong Approximation of Functions by Certain Linear Operators

Lucyna Rempulska and Mariola Skorupka

Abstract

This note is motivated by the results on the strong approximation of 2Π-periodic functions by means of trigonometric Fourier series.In this note is investigated certain cla of positive linear operators in the polynomial weighted spaces. We introduce the strong differences of functions and their operators and we give the Jackson type theorems for them. We give also some corollaries.

KEYWORDS: linear operator, degree of approximation, strong, approximation.

Math. J. Okayama Univ. 46 (2004), 153-161

ON STRONG APPROXIMATION OF FUNCTIONS BY CERTAIN LINEAR OPERATORS

Lucyna REMPULSKA and Mariola SKORUPKA

Abstract

This note is motivated by the results on the strong approximation of 2π-periodic functions by means of trigonometric Fourier series. In this note is investigated certain class of positive linear operators in the polynomial weighted spaces. We introduce the strong differences of functions and their operators and we give the Jackson type theorems for them. We give also some corollaries.

1. Introduction

1.1. The problem of strong approximation of functions connected with Fourier series was examined in many papers presented by G. Alexits, K. Tandori, L. Leindler, R. Taberski, V. Totik and other authors (see [5]).

The monograph [5] is devoted to the strong approximation of 2π-periodic functions belonging to various classes by the means of trigonometric Fourier series.

For example, if $S_{n}(f ; x)$ is the n-th partial sum of trigonometric Fourier series of f, then the n-th $(C, 1)$-mean of this series is defined by the formula

$$
\sigma_{n}(f ; x):=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(f ; x), \quad n \in N_{0}=\{0,1, \ldots\}
$$

The n-th strong $(C, 1)$-mean of this series is defined as follows

$$
H_{n}^{q}(f ; x):=\left\{\frac{1}{n+1} \sum_{k=0}^{n}\left|S_{k}(f ; x)-f(x)\right|^{q}\right\}^{\frac{1}{q}}, \quad n \in N_{0}
$$

where q is a fixed positive number. It is clear that

$$
\left|\sigma_{n}(f ; x)-f(x)\right| \leq H_{n}^{1}(f ; x)
$$

and

$$
H_{n}^{q}(f ; x) \leq H_{n}^{p}(f ; x), \quad 0<q<p<\infty,
$$

for all $x \in R$ and $n \in N_{0}$. The last inequalities show that examination of the strong means of Fourier series is useful.

The purpose of this note is to show that investigation of the strong approximation connected with linear operators is also useful.

[^1]1.2. In [2] were examined approximation properties of the Szász-Mirakjan operators ([6])
\[

$$
\begin{equation*}
S_{n}(f ; x):=e^{-n x} \sum_{k=0}^{\infty} \frac{(n x)^{k}}{k!} f\left(\frac{k}{n}\right) \tag{1}
\end{equation*}
$$

\]

and the Baskakov operators ([1])

$$
\begin{equation*}
V_{n}(f ; x):=\sum_{k=0}^{\infty}\binom{n-1+k}{k} x^{k}(1+x)^{-n-k} f\left(\frac{k}{n}\right) \tag{2}
\end{equation*}
$$

$n \in N=\{1,2, \ldots\}, x \in R_{0}=[0, \infty)$, for the functions f belonging to the polynomial weighted spaces $C_{p}, p \in N_{0}$. The space $C_{p}, p \in N_{0}$, is associated with the weighted function

$$
\begin{equation*}
w_{0}(x):=1, \quad w_{p}(x):=\left(1+x^{p}\right)^{-1} \quad \text { if } \quad p \geq 1 \tag{3}
\end{equation*}
$$

and it is the set of all real-valued functions f for which $w_{p} f$ is uniformly continuous and bounded on R_{0} and the norm is defined by the formula

$$
\begin{equation*}
\|f\|_{p} \equiv\|f(\cdot)\|_{p}:=\sup _{x \in R_{0}} w_{p}(x)|f(x)| . \tag{4}
\end{equation*}
$$

The author proved in [2] that for every $p \in N_{0}$ there exists a positive constant $M(p)$ depending only on p such that for every $f \in C_{p}$ there holds

$$
\begin{equation*}
w_{p}(x)\left|V_{n}(f ; x)-f(x)\right| \leq M(p) \omega_{2}\left(f ; \sqrt{\left(x+x^{2}\right) / n}\right) \quad n \in N, x \in R_{0} \tag{5}
\end{equation*}
$$

where $\omega_{2}(f ; \cdot)$ is the second modulus of smoothness of f. From (5) it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V_{n}(f ; x)=f(x), \quad x \in R_{0}, \quad f \in C_{p} \tag{6}
\end{equation*}
$$

and this convergence is uniform on every interval $\left[x_{1}, x_{2}\right], x_{1} \geq 0$.
The analogous results for the Szász-Mirakyan operators are given in [2] also.

In this note we introduce certain class of linear operators in the spaces C_{p} and we define the strong differences for them. We give two theorems and some corollaries on these strong differences.

We shall denote by $M_{k}(\alpha, \beta), k \in N$, suitable positive constants depending only on indicated parameters α, β.

2. Definitions and preliminary results

2.1. Let Ω be the set of all infinite matrices $A=\left[a_{n k}\right], n \in N, k \in N_{0}$, of functions in C_{0} having the following properties:
(i) $a_{n k}(x) \geq 0$ for $x \in R_{0}, n \in N, k \in N_{0}$,
(ii) $\sum_{k=0}^{\infty} a_{n k}(x)=1$ for $x \in R_{0}, n \in N$,
(iii) for every $n, r \in N$ the series $\sum_{k=0}^{\infty} k^{r} a_{n k}(x)$ is uniformly convergent on R_{0} and its sum is a function belonging to the space C_{r},
(iv) for every $r \in N$ there exists positive constant $M_{1}(r, A)$ independent on $x \in R_{0}$ and $n \in N$ such that for the functions

$$
\begin{equation*}
T_{n, 2 r}(x ; A):=\sum_{k=0}^{\infty} a_{n k}(x)\left(\frac{k}{n}-x\right)^{2 r}, \quad x \in R_{0} \tag{7}
\end{equation*}
$$

(belonging to $C_{2 r}$) there holds

$$
\left\|T_{n, 2 r}(\cdot ; A)\right\|_{2 r} \leq M_{1}(r, A) n^{-r}, \quad n \in N
$$

Choosing $A \in \Omega$ and $p \in N_{0}$ we define for $f \in C_{p}$ the following positive linear operators

$$
\begin{equation*}
L_{n}(f ; A ; x):=\sum_{k=0}^{\infty} a_{n k}(x) f\left(\frac{k}{n}\right), \quad n \in N, \quad x \in R_{0} \tag{8}
\end{equation*}
$$

The properties $(i)-(i v)$ of the matrix A imply that the operators $L_{n}(f ; A)$ are well-defined and

$$
\begin{equation*}
L_{n}(1 ; A ; x)=1 \quad \text { for } \quad x \in R_{0}, \quad n \in N \tag{9}
\end{equation*}
$$

and by (8) and (9) we have

$$
\begin{equation*}
L_{n}(f ; A ; x)-f(x)=\sum_{k=0}^{\infty} a_{n k}(x)\left(f\left(\frac{k}{n}\right)-f(x)\right) . \tag{10}
\end{equation*}
$$

For $L_{n}(f ; A)$ and $f \in C_{p}$ we define the strong difference with the power $q>0$ as follows:

$$
\begin{equation*}
H_{n}^{q}(f ; A ; x):=\left\{\sum_{k=0}^{\infty} a_{n k}(x)\left|f\left(\frac{k}{n}\right)-f(x)\right|^{q}\right\}^{\frac{1}{q}}, \quad x \in R_{0}, n \in N . \tag{11}
\end{equation*}
$$

Then we see that by the properties $(i)-(i v)$ of A the $H_{n}^{q}(f ; A)$ are welldefined for every $f \in C_{p}, p \in N_{0}$, and $q>0$. Moreover (10) and (11) imply that

$$
\begin{gather*}
H_{n}^{q}(f ; A ; x)=\left\{L_{n}\left(|f(t)-f(x)|^{q} ; A ; x\right)\right\}^{\frac{1}{q}}, \tag{12}\\
\left|L_{n}(f ; A ; x)-f(x)\right| \leq H_{n}^{1}(f ; A ; x), \tag{13}
\end{gather*}
$$

and by the Hölder inequality and (12) and (9)

$$
\begin{equation*}
H_{n}^{q}(f ; A ; x) \leq H_{n}^{r}(f ; A ; x), \quad 0<q<r<\infty \tag{14}
\end{equation*}
$$

for every $f \in C_{p}, x \in R_{0}$ and $n \in N$.
2.2. First we shall give some properties of the operators $L_{n}(f ; A)$.

Lemma 2.1. Let $A \in \Omega, p \in N_{0}$ and $q>0$ be fixed. Then there exists $M_{2} \equiv M_{2}(p, q, A)>0$ such that

$$
\begin{equation*}
\left\|\left(L_{n}\left(\left(w_{p}(t)\right)^{-q} ; A ; \cdot\right)\right)^{\frac{1}{q}}\right\|_{p} \leq M_{2}, \quad n \in N \tag{15}
\end{equation*}
$$

and for every $f \in C_{p}$

$$
\begin{equation*}
\left\|\left(L_{n}\left(|f|^{q} ; A ; \cdot\right)\right)^{\frac{1}{q}}\right\|_{p} \leq M_{2}\|f\|_{p}, \quad n \in N \tag{16}
\end{equation*}
$$

Proof. a) Let $q=1$. From (3), (8) and (9) we get

$$
\begin{aligned}
L_{n}\left(1 / w_{p}(t) ; A ; x\right) & =1+L_{n}\left(t^{p} ; A ; x\right) \\
& \leq 1+2^{p}\left(L_{n}\left(|t-x|^{p} ; A ; x\right)+x^{p}\right) \\
& \leq 2^{p}\left(\left(w_{p}(x)\right)^{-1}+L_{n}\left(|t-x|^{p} ; A ; x\right)\right), x \in R_{0}, n \in N .
\end{aligned}
$$

By the Hölder inequality and (9), we have

$$
L_{n}\left(|t-x|^{p} ; A ; x\right) \leq\left(L_{n}\left((t-x)^{2 p} ; A ; x\right)\right)^{\frac{1}{2}}
$$

and by the inequality $\left(w_{p}(x)\right)^{2} \leq w_{2 p}(x)$ for $x \in R_{0}$, we get

$$
w_{p}(x) L_{n}\left(1 / w_{p}(t) ; A ; x\right) \leq 2^{p}\left(1+\left(w_{2 p}(x) L_{n}\left((t-x)^{2 p} ; A ; x\right)\right)^{\frac{1}{2}}\right)
$$

Applying (7) and the inequality given in (iv), we obtain

$$
w_{p}(x) L_{n}\left(1 / w_{p}(t) ; A ; x\right) \leq M_{2}(p, A) \quad \text { for } \quad x \in R_{0}, \quad n \in N
$$

which by (4) implies (15).
b) Let $q \geq 2$ be integer. From (3) we get the following inequalities

$$
\begin{equation*}
\left(w_{p}(x)\right)^{q} \leq w_{p q}(x), \quad\left(w_{p}(x)\right)^{-q} \leq 2^{q}\left(w_{p q}(x)\right)^{-1} \tag{17}
\end{equation*}
$$

for $x \in R_{0}$. Applying (17) we can write

$$
\begin{aligned}
w_{p}(x)\left(L_{n}\left(\left(w_{p}(t)\right)^{-q} ; A ; x\right)\right)^{\frac{1}{q}} & \leq 2\left(w_{p q}(x) L_{n}\left(1 / w_{p q}(t) ; A ; x\right)\right)^{\frac{1}{q}} \\
& \leq 2\left(\left\|L_{n}\left(1 / w_{p q}(t) ; A ; \cdot\right)\right\|_{p q}\right)^{\frac{1}{q}}
\end{aligned}
$$

and we can apply (15) for the last norm. This implies (15).
c) Let $0<q \notin N$. Then by the Hölder inequality and (9) we get

$$
\left(L_{n}\left(\left(w_{p}(t)\right)^{-q} ; A ; x\right)\right)^{\frac{1}{q}} \leq\left(L_{n}\left(\left(w_{p}(t)\right)^{-r} ; A ; x\right)\right)^{\frac{1}{r}}, \quad x \in R_{0}
$$

for every $0<q<r<\infty$. In particular setting $r=[q]+1$ ([q] denotes the integral part of q), we have

$$
\left\|\left(L_{n}\left(\left(w_{p}(t)\right)^{-q} ; A ; \cdot\right)\right)^{\frac{1}{q}}\right\|_{p} \leq\left\|\left(L_{n}\left(\left(w_{p}(t)\right)^{-r} ; A ; \cdot\right)\right)^{\frac{1}{r}}\right\|_{p},
$$

and by the case b) we obtain (15) for $0<q \notin N$. Thus the proof of (15) is completed.

If $f \in C_{p}$ and $q>0$, then by (8) and (4) we get

$$
\left\|\left(L_{n}\left(|f|^{q} ; A ; \cdot\right)\right)^{\frac{1}{q}}\right\|_{p} \leq\|f\|_{p}\left\|\left(L_{n}\left(\left(w_{p}(t)\right)^{-q} ; A ; \cdot\right)\right)^{\frac{1}{q}}\right\|_{p},
$$

and by (15) we obtain (16).
Lemma 2.2. Let A, p and q be as in Lemma 2.1. Then there exists $M_{3} \equiv$ $M_{3}(p, q, A)>0$ such that

$$
\begin{equation*}
w_{p}(x)\left\{L_{n}\left(\left(\frac{|t-x|}{w_{p}(t)}\right)^{q} ; A ; x\right)\right\}^{\frac{1}{q}} \leq M_{3}\left(L_{n}\left((t-x)^{2 s} ; A ; x\right)\right)^{\frac{1}{2 s}} \tag{18}
\end{equation*}
$$

for all $x \in R_{0}$ and $n \in N$, where

$$
s=\left\{\begin{array}{ccl}
q & \text { if } & q \in N, \tag{19}\\
{[q]+1} & \text { if } & 0<q \notin N .
\end{array}\right.
$$

Proof. By (8) and by the Hölder inequality we get

$$
\begin{aligned}
w_{p}(x)\left(L_{n}\left(\left(\frac{|t-x|}{w_{p}(t)}\right)^{q} ; A ; x\right)\right)^{\frac{1}{q}} \leq & w_{p}(x)\left(L_{n}\left(\left(w_{p}(t)\right)^{-2 q} ; A ; x\right)\right)^{\frac{1}{2 q}} \times \\
& \times\left(L_{n}\left((t-x)^{2 q} ; A ; x\right)\right)^{\frac{1}{2 q}}
\end{aligned}
$$

for all $x \in R_{0}, n \in N$. Applying (15) and the inequality

$$
\begin{equation*}
\left(L_{n}\left(|t-x|^{q} ; A ; x\right)\right)^{\frac{1}{q}} \leq\left(L_{n}\left(|t-x|^{r} ; A ; x\right)\right)^{\frac{1}{r}}, \quad x \in R_{0}, \quad n \in N \tag{20}
\end{equation*}
$$

for $0<q<r<\infty$, we easily obtain the desired estimation (18).
Lemma 2.2 and the property (iv) of A imply the following
Corollary 1. For every matrix $A \in \Omega, p \in N_{0}$ and $q>0$ there exists $M_{4} \equiv M_{4}(p, q, A)>0$ such that

$$
w_{p}(x)\left\{L_{n}\left(\left(\frac{|t-x|}{w_{p}(t)}\right)^{q} ; A ; x\right)\right\}^{\frac{1}{q}} \leq M_{4} \frac{1+x}{\sqrt{n}}
$$

for all $x \in R_{0}$ and $n \in N$.

3. Theorems and corollaries

3.1. First we shall give two theorems on the strong differences $H_{n}^{q}(f ; A)$ defined by (11). We shall use the modulus of continuity of $f \in C_{p}$ ([3])

$$
\begin{equation*}
\omega(f ; t)=\sup _{0 \leq h \leq t}\left\|\Delta_{h} f(\cdot)\right\|_{p}, \quad t \geq 0 \tag{21}
\end{equation*}
$$

where $\Delta_{h} f(x)=f(x+h)-f(x)$.

It is known $([3])$ that $\lim _{t \rightarrow 0^{+}} \omega(f ; t)=0$ for every $f \in C_{p}, p \in N_{0}$.
Let C_{p}^{1} be the class of all $f \in C_{p}$ having the first derivative on R_{0} and $f^{\prime} \in C_{p}$.

Theorem 3.1. Suppose that $A \in \Omega, p \in N_{0}$ and $q>0$. Then there exist $M_{5} \equiv M_{5}(p, q, A)>0$ such that for every $f \in C_{p}^{1}$ there holds

$$
\begin{equation*}
w_{p}(x) H_{n}^{q}(f ; A ; x) \leq M_{5}\left\|f^{\prime}\right\|_{p}\left(T_{n, 2 s}(x ; A)\right)^{\frac{1}{2 s}}, \tag{22}
\end{equation*}
$$

for all $x \in R_{0}$ and $n \in N$, where $T_{n, 2 s}(\cdot ; A)$ is defined by (7) and s is given by (19).

Proof. For $f \in C_{p}^{1}$ and $t, x \in R_{0}$ we have

$$
|f(t)-f(x)|=\left|\int_{x}^{t} f^{\prime}(u) d u\right| \leq\left\|f^{\prime}\right\|_{p}\left(\frac{1}{w_{p}(t)}+\frac{1}{w_{p}(x)}\right)|t-x|
$$

From this we get

$$
H_{n}^{q}(f ; A ; x) \leq\left\|f^{\prime}\right\|_{p}\left(L_{n}\left(\left(\frac{1}{w_{p}(t)}+\frac{1}{w_{p}(x)}\right)^{q}|t-x|^{q} ; A ; x\right)\right)^{\frac{1}{q}}
$$

and further

$$
\begin{aligned}
w_{p}(x) H_{n}^{q}(f ; A ; x) \leq 2\left\|f^{\prime}\right\|_{p}\left\{w _ { p } (x) \left(L_{n}(\right.\right. & \left.\left.\left(\frac{|t-x|}{w_{p}(t)}\right)^{q} ; A ; x\right)\right)^{\frac{1}{q}}+ \\
& \left.+\left(L_{n}\left(|t-x|^{q} ; A ; x\right)\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

for $x \in R_{0}$ and $n \in N$. Appling Lemma 2.2 and (7) and the inequality (20) with $r=2 q$, we obtain

$$
w_{p}(x) H_{n}^{q}(f ; A ; x) \leq 2\left\|f^{\prime}\right\|_{p}\left(T_{n, 2 s}(x ; A)\right)^{\frac{1}{2 s}}\left(M_{3}(p, q, A)+1\right)
$$

for $x \in R_{0}, n \in N$ and s defined by (19). Thus the proof of (22) is completed.

Theorem 3.2. Let $A \in \Omega, p \in N_{0}$ and $q>0$. Then there exists $M_{6} \equiv$ $M_{6}(p, q, A)=$ const. >0 such that for every $f \in C_{p}$ we have

$$
\begin{equation*}
w_{p}(x) H_{n}^{q}(f ; A ; x) \leq M_{6} \omega\left(f ; \frac{1+x}{\sqrt{n}}\right), \tag{23}
\end{equation*}
$$

for all $x \in R_{0}$ and $n \in N$, where $\omega(f ; \cdot)$ is the modulus of continuity of f, defined by (21).

Proof. Let $q \geq 1$. We shall apply the Stieklov function f_{h} for $f \in C_{p}$:

$$
f_{h}(x):=\frac{1}{h} \int_{0}^{h} f(x+u) d u, \quad x \in R_{0}, \quad h>0
$$

From this formula and (21) we get for $h>0$:

$$
\begin{align*}
& \left\|f-f_{h}\right\|_{p} \leq \omega(f ; h) \tag{24}\\
& \left\|f_{h}^{\prime}\right\|_{p} \leq h^{-1} \omega(f ; h) \tag{25}
\end{align*}
$$

i.e. $f_{h} \in C_{p}^{1}$ if $f \in C_{p}$. It is obvious that

$$
|f(t)-f(x)| \leq\left|f(t)-f_{h}(t)\right|+\left|f_{h}(t)-f_{h}(x)\right|+\left|f_{h}(x)-f(x)\right|
$$

for $x, t \in R_{0}$ and $h>0$. This fact and (12), (8) and (9) and the Minkowski inequality imply that

$$
\begin{aligned}
H_{n}^{q}(f ; A ; x) \leq & \left(L_{n}\left(\left|f(t)-f_{h}(t)\right|^{q} ; A ; x\right)\right)^{\frac{1}{q}}+ \\
& +\left(L_{n}\left(\left|f_{h}(t)-f_{h}(x)\right|^{q} ; A ; x\right)\right)^{\frac{1}{q}}+\left|f_{h}(x)-f(x)\right| \\
:= & \sum_{i=1}^{3} Z_{n, i}(x)
\end{aligned}
$$

for $x \in R_{0}, n \in N$ and $h>0$. By (24) we have

$$
\left\|Z_{n, 3}(\cdot)\right\|_{p} \leq \omega(f ; h), \quad h>0
$$

Applying (16) and (24), we get

$$
\left\|Z_{n, 1}(\cdot)\right\|_{p} \leq M_{2}(p, q, A)\left\|f-f_{h}\right\|_{p} \leq M_{2}(p, q, A) \omega(f ; h), \quad h>0
$$

By Theorem 3.1 and (25) we have

$$
\begin{aligned}
w_{p}(x) Z_{n, 2}(x) & \leq M_{5}\left\|f_{h}^{\prime}\right\|_{p}\left(T_{n, 2 s}(x ; A)\right)^{\frac{1}{2 s}} \\
& \leq M_{5} h^{-1} \omega(f ; h)\left(T_{n, 2 s}(x ; A)\right)^{\frac{1}{2 s}}
\end{aligned}
$$

From the above and by the property (iv) of A we obtain

$$
w_{p}(x) H_{n}^{q}(f ; A ; x) \leq M_{6}(p, q, A) \omega(f ; h)\left(1+h^{-1} \frac{1+x}{\sqrt{n}}\right)
$$

Setting $h=\frac{1+x}{\sqrt{n}}$, we obtain (23) for $q \geq 1$.
If $0<q<1$ then by (14) we have

$$
H_{n}^{q}(f ; A ; x) \leq H_{n}^{1}(f ; A ; x), \quad x \in R_{0}, \quad n \in N
$$

and by (23) for $q=1$ we get (23) for $0<q<1$.
Theorem 3.2 implies the following
Corollary 2. If the assumptions of Theorem 3.2 are satisfied, then for every $f \in C_{p}, p \in N_{0}$, we have

$$
\lim _{n \rightarrow \infty} H_{n}^{q}(f ; A ; x)=0 \quad \text { at every } x \in R_{0}
$$

This convergence is uniform on every interval $\left[x_{1}, x_{2}\right], x_{1} \geq 0$.

Remark. The inequality (13) shows that results given for $H_{n}^{q}(f ; A)$ in Theorem 3.1, Theorem 3.2 and Corollary 2 concern also the difference $\mid L_{n}(f ; A ; x)$ $-f(x) \mid$. Thus the strong approximation for considered operators is more general.
3.2. Now we shall give three examples of operators of the $L_{n}(f ; A)$ type defined by (8).

1. The Szász-Mirakyan operators $S_{n}, n \in N$, defined by (1) are generated by the matrix $A_{1}=\left[a_{n k}(x)\right]$ with

$$
a_{n k}(x)=e^{-n x} \frac{(n x)^{k}}{k!}, \quad n \in N, \quad k \in N_{0}, \quad x \in R_{0}
$$

It is easily verified that $A_{1} \in \Omega$, i.e. the A_{1} satisfies the conditions $(i)-(i v)$.
2. The Baskakov operators with $V_{n}, n \in N$, defined by (2), are connected with the matrix A_{2} on the elements

$$
a_{n k}(x)=\binom{n-1+k}{k} x^{k}(1+x)^{-n-k}, \quad n \in N, k \in N_{0}, x \in R_{0}
$$

We can prove that $A_{2} \in \Omega$ also.
3. The Bernstein operators

$$
B_{n}(f ; x):=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right), \quad n \in N,
$$

defined for continuous functions f on the interval $[0,1]$ are operators of the type $L_{n}(f ; A)$ with the matrix $A_{3}=\left[a_{n k}(x)\right]$ where

$$
a_{n k}(x)=\left\{\begin{array}{lll}
\binom{n}{k} x^{k}(1-x)^{n-k} & \text { if } \quad 0 \leq k \leq n \\
0 & \text { if } \quad k>n
\end{array}\right.
$$

for $n \in N$. Here for considered functions $f(\cdot)$ and $a_{n}(\cdot)$ we set: $f(x)=f(1)$ and $a_{n k}(x)=a_{n k}(1)$ for all $x>1$. We can verify that $A_{3} \in \Omega$.

Hence the above lemmas, theorems and corollaries concern also the strong approximation of functions by the Szász-Mirakyan, Baskakov and Bernstein operators.

We remark also that the order of the strong differences given in Theorem 3.2 and Corollary 2 are similar to (5) and (6) for the Baskakov operators.

References

[1] V. Baskakov, An example of sequence of linear operators in the space of continuous functions, Dokl. Akad. Nauk. SSSR, 113(1957), 249-251.
[2] M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27(1)(1978), 127-142.
[3] R.A. De Vore, G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin 1993.
[4] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer-Verlag, New York 1987.
[5] L. Leindler, Strong Approximation by Fourier Series, Akad. Kiado, Budapest 1985.
[6] O. SzÁsz, Generalizations of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, Sect. B., 45(1950), 239-245

Lucyna Rempulska

Institute of Mathematics Poznań University of Technology
Piotrowo 3A 60-965 Poznań, POLAND
e-mail address: lrempuls@math.put.poznan.pl
Mariola Skorupka
Institute of Mathematics Poznań University of Technology
Piotrowo 3A 60-965 Poznań, POLAND e-mail address: mariolas@math.put.poznan.pl
(Received December 25, 2003)

[^0]: *University of Technology Piotrowo
 †University of Technology Piotrowo

[^1]: Mathematics Subject Classification. 41A25.
 Key words and phrases. linear operator, degree of approximation, strong approximation.

