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Abstract

We show that the spaces in the title, whose corresponding homotopy groups are isomorphic,
are homotopy equivalent only when n = 3 or n = 7. We produce an explicit diffeomorphism in the
only non trivial case, n = 7.
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WHEN IS RPn × Spin(n) DIFFEOMORPHIC TO Sn × SO(n)
AND HOW

Thomas PÜTTMANN and A. RIGAS

Abstract. We show that the spaces in the title, whose corresponding
homotopy groups are isomorphic, are homotopy equivalent only when
n = 3 or n = 7. We produce an explicit diffeomorphism in the only non
trivial case, n = 7.

Introduction

For n ≥ 3, Spin(n) is the universal covering group of the rotation group
SO(n), whose fundamental group is Z2 (see [5]). This implies that Sn ×
Spin(n) is the fundamental cover of both Sn×SO(n) and of RPn×Spin(n),
for all n ≥ 3 and that the corresponding homotopy groups of these two
spaces are isomorphic. For n = 3 the algebra of quaternions implies that
Spin(3) is isomorphic with S3 and SO(3) is isomorphic with RP 3 (see [5]). A
simple switching of the factors provides the diffeomorphism RP 3×Spin(3) ∼=
S3 × SO(3). Two obvious question arise: The one in the title and ”To
what extend does the existence of an algebra structure on Rn+1 describe
adequately the solution to the first question?”.

In section 1 we show that if RPn×Spin(n) is homotopy equivalent to Sn×
SO(n) then Sn is an H-space and therefore n = 3 or 7 (see [1]) (remember,
here n ≥ 3).

In section 2 we use the Cayley algebra and the principle of triality (see
[2]) to produce an explicit formula for a diffeomorphism in the case n = 7.

The second author is indebted to Zig Fiedorowicz for his help in the first
part. We also want to thank Wolfgang Ziller for his hospitality during our
visit to the University of Pennsylvania. Our joint work was supported by
the CNPq-GMD agreement.

1. Topological obstructions

If n is even RPn is not orientable and there is no homotopy equivalence
between RPn × Spin(n) and Sn × SO(n). So, let n be odd and let h :
Sn×SO(n) → RPn×Spin(n) be a homotopy equivalence. Composing with
the obvious inclusions and projections we have:

RPn → RPn × Spin(n) → Sn × SO(n) → SO(n) →
→ Sn × SO(n) → RPn × Spin(n) → RPn
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where we have employed first h−1 and then h. The induced maps in rational
cohomology compose to

F : H∗(RPn; Q) → H∗(RPn;Q).

From [5], p. 177, Th. 2.19 (2) and Cor. 3.15 (2), p. 122 we see that
the projection induces an isomorphism H∗(SO(n);Q) ∼= H∗(Spin(n);Q)
which is, for odd n, isomorphic to the exterior algebra in the generators e3,
e7, . . ., e2n−3. The projection Sn → RPn also induces an isomorphism in
cohomology with rational coefficients and H∗(RPn; Q) is the exterior algebra
in one generator, s, of degree n. If we follow the composition F around we
easily conclude that F (s) = λs.
Claim: λ is an odd integer.
Proof : It is easy to see that the maps f : RPn → SO(n) and g : SO(n) →
RPn, composed as is obvious from some of the maps that make up F ,
induce isomorphisms on the fundamental groups that are isomorphic to Z2.
Consequently, (g ◦ f)∗ : H∗(RPn; Z2) → H∗(RPn; Z2) is an isomorphism
since H∗(RPn; Z2) is generated by an element of degree 1, the dual of the
generator of the fundamental group. In particular, (g◦f)∗ is an isomorphism.
Corollary: (g ◦ f)∗ : H∗(RPn; Z) → H∗(RPn; Z) is multiplication by an
odd integer.
Corollary: (g ◦ f)∗ : H∗(RPn; Q) → H∗(RPn; Q) is multiplication by an
odd integer.

As a consequence we have that the map g ◦ f is a homotopy equivalence
on the 2-primary localizations of RPn and SO(n), which implies that RPn

(2)

is an H-space (see [4]). Localization is a functor that preserves coverings,
so Sn

(2) is an H-space. Now apply the 2-primary localization to the Hopf
construction (see [6]) to obtain a map S2n+1

(2) → Sn+1
(2) , whose Hopf invariant

is unit in Z(2), the integers localized at 2. Corollary 5.13, p. 89 of [4] implies
now that some odd integer multiple of this must arise from localizing an
actual map S2n+1 → Sn+1, Corollary 15.14, p. 409 of [5] implies now, using
[1], that n = 3 or 7 (recall that n ≥ 3).

2. The diffeomorphism

Recall (see e.g. [3]) that Spin(8) is identified with the subgroup of all
triples (A,B,C) ∈ SO(8) × SO(8) × SO(8) with the property

(T) A(xy) = B(x)C(y), for all x, y ∈ Ca, the Cayley field.

One really needs just two copies of SO(8) as C is determined from A and
the sign of B, but it seems to be more convenient to use all three to express
the triality automorphisms.
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The subgroup Spin(7) ⊂ Spin(8) can be identified with all (N,M, M̃),
where M̃(x) = M(x), for all x ∈ Ca, the bar denoting the usual conjugation
of a Cayley number. This is equivalent to N(1) = 1.

If γ is the usual triality automorphism of order 3, then

γ(Spin(7)) = {(M,N,M) in (T), with N(1) = 1}

Lemma 1. The map γ(Spin(7)) → SO(8) with (M,N,M) 7→ M is an
injective group morphism.

Proof. It is a group morphism by its definition and the kernel is (I, I, I),
because if (I,N, I) 7→ I, then I(y) = I(y1) = N(y)I(1) = N(y) for all
y ∈ Ca, which implies N = I. ¤

From now on Spin(7) is the subgroup of SO(8) with (M,N,M) ∈
γ(Spin(7)), equivalently, N(1) = 1.

Lemma 2. The map π : SO(8) → RP 7 with π(X) = ±Y (1) is well defined.

Proof. Note that (X,±(Y,Z)) is a well defined pair of points in Spin(8),
namely the fiber of the projection onto the first SO(8) factor. ¤
Claim 3. The fiber π−1(1) consists of all X ∈ SO(8) with (X,±(Y,Z)) ∈
Spin(8) and ±Y (1) = 1, i.e., Y ∈ O(7) = SO(7) ∪ −SO(7).

Proof. Y (1) = 1. The element (X,Y,X) ∈ γ(Spin(7))is represented by
X ∈ SO(8). The element −Y (1) = 1 is (X,−Y,−X) ∈ Spin(8), for it is
(X,Y, Z) for some Z, so X(y) = Y (1)Z(y) = −1Z(y) and Z = −X. ¤

Note that the image in SO(8) is the same: X. Also that π−1(±1) is a
subgroup of SO(8) as the first factor projection of

Pin(7) = {(X,Y,X)} ∪ {(X,−Y,−X)}
into SO(8). This projection coincides with the inclusion of Spin(7) ⊂ SO(8)
of Lemma 1.

Proposition 4. The map π of Lemma 2 is the projection of the fibration

Spin(7) · · ·SO(8) → SO(8)/Spin(7).

Proof. Consider the right action by a subgroup multiplication SO(8) ×
Spin(7) → SO(8) with X(M,N,M) 7→ XM . Then (X,±(Y,Z))(M,N,M)
= (XM,±(Y N,ZM)) and the whole orbit XM is mapped through π to
±Y N(1) = ±Y (1): the point π(X) ∈ RP 7. ¤

Consider now the following map χ : RP 7 → SO(8) defined by χ(±α) =
L±α ◦R±α = Lα ◦Rα, where Lα(x) = αx and Rα(x) = xα, Cayley products.

Proposition 5. χ is a well defined section of the principal bundle π.
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Proof. It is clearly well defined. From the Moufang identity α(xy)α =
(αx)(yα) (see e.g. [3]) we see that (Lα ◦ Rα,±(Lα, Rα)) ∈ Spin(8) and
π(χ(±α)) = ±Lα(1) = ±α. ¤

Corollary 6. SO(8) is diffeomorphic to RP 7 × Spin(7) as follows:
RP 7 × Spin(7) 3 (±α,M) 7→ (Lα ◦ Rα)M ∈ SO(8) whose inverse is
SO(8) 3 X 7→ (±Y (1), (L

Y (1)
◦ R

Y (1)
)X) ∈ RP 7 × Spin(7).

Proof. To X corresponds (X,±(Y,Z)), we have also

(LY (1) ◦ RY (1),±(LY (1), RY (1)))

and their product in Spin(8) is

(L
Y (1)

◦ R
Y (1)

,±(L
Y (1)

, R
Y (1)

))(X,±(Y,Z))

= ((L
Y (1)

◦ R
Y (1)

)X,±(L
Y (1)

Y,R
Y (1)

Z)).

But ±(L
Y (1)

Y )(1) = ±1, so (L
Y (1)

◦ R
Y (1)

)X is in Spin(7) ⊂ SO(8). ¤

On the other hand, SO(8) is diffeomorphic to S7 × SO(7) as follows:

SO(8) 3 W 7→ (W (1), L
W (1)

◦ W ) ∈ S7 × SO(7)

whose inverse is S7 × SO(7) 3 (β,A) 7→ Lβ ◦ A ∈ SO(8). Now we can
compose these two diffeomorphisms, i.e., given (β,A) in S7 × SO(7) we
look for its image in RP 7 × Spin(7). Note that A(1) = 1, (A,±(B, B̃)) ∈
Spin(7) ⊂ Spin(8) and Lβ ◦ A = X will go to (±Y (1), L

Y (1)
◦ R

Y (1)
◦

X). From the Moufang identity β(xy) = (βxβ)(βy) (see e.g. [3]) we obtain
(Lβ ,±(Lβ ◦ Rβ , Lβ)) ∈ Spin(8). So the triality triple (X,±(Y,Z)) will be
the product

(Lβ ,±(Lβ ◦ Rβ , Lβ))(A,±(B, B̃)) = (Lβ ◦ A,±(Lβ ◦ Rβ ◦ B,Lβ ◦ B̃)).

Through the identification of SO(8) with RP 7 × Spin(7) this will go to

(±Lβ ◦ Rβ ◦ B(1), L
βB(1)β

◦ R
βB(1)β

◦ Lβ ◦ A)

= (±βB(1)β, L
βB(1)β

◦ R
βB(1)β

◦ Lβ ◦ A),

which we denote by λ.
The following little calculation now

ξ 7→ (βB(1)β)(βA(ξ))(βB(1)β)

= (βB(1))[A(ξ)(βB(1)β)] = (L
βB(1)

)(R
βB(1)β

(A(ξ)))
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and the associativity of the subalgebra generated by the two elements β and
B(1) imply that the operators L

βB(1)
and R

βB(1)β
commute and therefore

λ = (±βB(1)β,R
βB(1)β

◦ L
βB(1)

◦ A) ∈ RP 7 × Spin(7)

is the image of (β,A) ∈ S7 × SO(7).
The inverse of this map is RP 7×Spin(7) 3 (±α,M) 7→ W ∈ S7×SO(7),

where

W = (Lα ◦ Rα) ◦ M 7→ ((Lα ◦ Rα)(M(1)), (L
αM(1)α

◦ Lα ◦ Rα) ◦ M)

To verify that the matrix coordinate is really in SO(7):

((L
αM(1)α

◦ Lα ◦ Rα) ◦ M)(1) = (αM(1)α)(αM(1)α) = 1.
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