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Atsusat NAKAJIMA

In [4], S. Ikehata gave some characterizations of Galois extensions of
commutative rings and applied these results to construct Azumaya algebras
from skew polynomial rings in [5]. The essential part in his main theorems
(5, Theorems 2.2 and 3.3] is to determine H-separable polynomials in skew
polynomial rings. In this paper, we give a characterization of Hopf Galois
extensions which is a generalization of [4, Theorem 2], and show that H-
separable polynomials in the skew polynomial rings are closely related to
the dual Hopf Galois extensions. Moreover we give another examples of H-
separable polynomials.

Throughout the following, R is a commutative ring with identity 1, and
A is a Hopf algebra over R which is a finitely generated projective R-module
unless otherwise stated. An R-algebra means a ring extension of R with
the same identity 1 such that R is contained in the center. Each ®, Hom,
etc. is taken over R and each map is R-linear. As for notations and
terminologies of Hopf algebras and Hopf Galois extensions used here, we
follow [1], [6] and [9].

Let A be a Hopf algebra which is not necessary finitely generated
projective R-module. Let S be an R-algebra which is a left A-module. Then
S ® S and R are left A-modules by the comultiplication A and the counit ¢
of A:

alx ® y) = e a'r ® a¥y where Ale) = 2w ad" @ a?
and
ar = ela)r,

respectively (@ in A, x, ¥ in S and » in R). An R-algebra S is called a
left A-module algebra if S is a left A-module such that the structure maps

Us: S®S > Sx®y—xy) and ls: R S(re7r)
are left A-module homomorphisms. These conditions say that
alxy) = 2 (a™x)(a®y) and al = efa)l.
109
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Let T be an R-algebra. T is called an A-comodule algebra if T is a
right A-comodule with the structure map p: T -» T ® A such that p is an
R-algebra homomorphism. For an A-module algebra S and an A-comodule
algebra T, we can define the smash product algebra S # T which is equal to
S ® T as R-module but the multiplication given by

(81 o4 tl)(SZ # tz) = me Sl(tlmsz) # hm:tz»

where o(t,) = 2 1" ® £, is in T @ A. As is easily seen, S # T is an
R-algebra with identity 1 # 1 and the maps

is: S>SHT(sH»s#Hl), in T->-SETGH1H#1)

are R-algebra homomorphisms. Since A is an A-comodule algebra by A, we
can construct the usual smash product S # A.

Let A be a Hopf algebra. A left A-module algebra S is called an A-
Hopf Galois extension of R if S is a finitely generated projective faithful R-
module and the map ¢: S # A — Hom(S, S) defined by ¢(s # a)(x) =
salx) is an R-algebra isomorphism. Since S is a faithfully flat R-module,
S is an A-Hopf Galois extension of R if and only if S is a Galois A* =
Hom(A, R )-object in the sense of Chase-Sweedler [1, Theorem 9.3]. When
this is the case, S* = |s in S|as = ¢(a)s for any a in A | is equal to R.
For details, we refer to [6].

Definition 1. A Morita context consists of the following data

(a) R-algebras S and T.

(b) An (S. T)-bimodule P and a (T, S )-bimodule Q. both centralized
by R; i.e., rx = xr for all x in P or @, r in R.

(¢) An (S, S)-bimodule homomorphism | , }|: P® , = S and a (T,
T )-bimodule homomorphism [, ]: @ & sP = T. Given x in P, y in Q, we
shall denote the images of x ® y and y ® x, under these mappings, by {x,
y | and [y, x], respectively. These mappings will be called pairings.

(d) The following equations hold for all x, z in P and y, w in @

lx, ylz = x[y. 2], [y z]w=ylz. w}.

The Morita context will be called strict if the pairings { , | and [, ]
are surjective ([1,Chap. I, § 8]).

Definition 2. Let S be a left A-module algebra. Assume that S* =
R.letD=S# A and Q=D"={winS # A|(1 # a)w = e(a)w for
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any @ in A}, a right ideal in D. Define pairings{,!: S® ,Q » D, [, ]:
Q ® ,S - S' = R by the formulae

le, w] =(x £ Dw, [w,x] = wlx) (xinS and w in Q).

where S is a left D-module via (s # a)(x) = sa(x). Note that the definition
of @ guarantees that [, ] is well defined. Then the algebras D and R, the
(D, R)-bimodule S, the (R, D)-bimodule Q, and the pairings | . {, [.] con-
stitute a Morita context ([1, Definition and Remarks 9.4]).

Lemma 3. Let S be a left A-module algebra, and S* = R. Then the

map
@: Homs: (S, S H A) > (S # A)

defined by o(f) = f(1) is an (R, S £ A )-bimodule isomorphism, where the
right S # A-module structure of Homs- (S, S # A) is given by (f(s # a))
(x) = flx)(s # a).

Proof. For any a in A and f in Homs (S, S & A), we have (1 # a)
fQ) = f(1 # a)l) = fe(a)l) = e(a) f(1) and so a is well defined. Clear-
ly @ is one to one and (R, S # A )-bimodule homomorphism. If s # @ is in
(S # A)", then the map fqz o defined by fer olx) = (x # 1)(s # a) is a left

S # A-module homomorphism and thus « is an isomorphism. Q.E.D.

Let T be a ring extension of R with the common identity 1. I T ® T
is isomorphic to a direct summand of a finite direct sum of T as a (T, T)-
bimodule, then T is called an H-separable extension of R.

Now, we have the following theorem which is a generalization of [4,

Theorem 2].

Theorem 4. Let S be a left A-module algebra. Assume that S* = R.
Then the following statements are equivalent.

(1) S is an A-Hopf Galois extension of R.

(2) S # A is an Azumaya R-algebra.
(3) S # A is an H-separable extension of S.
(4) The Morita context of Definition 2 is strict.

Proof. (1) =>(2) follows from definition. (2) = (3). Since S # A is
projective left S-module, it follows from [4, Theorem 1]. (3) = (4) = (1).
By [4. Lemma], the left S # A-module S is a generator, i.e., the map r:
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S ® Homs- (S, S # A) > S # A defined by z(s ® f) = f(s) is an epi-

morphism. By Lemma 3, we have the following commutative diagram

S ® Homs-4(S. S # A4) ———>S® (S#A)

N

S#A

Since r is an epimorphism, | , | is an epimorphism and by [1, Theorem 8.
4], the Morita context defined in Definition 2 is strict. Thus by the same
argument as used in the proof of [1, Theorem 9.6], S is an A-Hopf Galois
extension of R. Q.E.D.

Let S be a commutative left A-module algebra over R and R in S*.
TLet R < X,i...., X, > be the (non-commutative) free algebra on n-variables.
Suppose that R < X,,....X, > is a right A-comodule algebra. We say that
S[Xi....Xa; Al =S # R < X,,....X, > is a generalized skew polynomial
ring of type A. In this definition, we do not assume that A is a finitely
generated projective R-module.

Example 5. Let S be a commutative R-algebra. Let o be an R-algebra
automorphism of S and let D be a g-derivation of S (i.e.. D is an R-module
endomorphism of S such that D(xy) = D(x)o(y) + xD(y)). We set

S°=1{sinS|o(s) =s}, S>=1{sin S|D(s) = 0}.

Then R is contained in S° N S”. Let R{s, D] be the commutative free R-
algebra on variables ¢, D which has coalgebra structure maps and antipode
as follows:

Ao?) = ' ® o, eld?) =1, Mo =0o7",

ADHY =D ® o+1 ® D), D) =0 and AND) =(—Do -
As is easily seen, R[o, D] is a Hopf algebra and S is a left R[o, D]-
module algebra. Let R[X] be the polynomial ring over R. Define an R-
linear map p: R[X] -» R[X] ® R[s, D] by

p(X)=X® s+l ®D)".

Then R[X] is a right R[o, D]-comodule algebra. Let S[X; o, D] be the
skew polynomial ring in which the multiplication is given by
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Xs = o(s)X+D(s) (s in S),

(cf. [3]). Wedefineamap ¢: S # R[X] - S[X: o. D] by ¢(20s: £ X9
= > 5,X* Then it is easy to check that ¢ is an R-algebra isomorphism.
Therefore the skew polynomial ring S[X; o, D] is a special case of our
generalized skew polynomial ring.

In the following, we denote R[o, 0] (resp. R[1,D]) by R[s] (resp.
R[D]). When this is the case, we also denote S[X; g, 0] (resp. S[X;
1,D]) by S[X; o] (resp. S[X: D]), which is called the skew polynomial
ring of automorphism (resp. derivation) type.

A Hopf algebra A is called a free Hopf algebra if there exists a {non-
commutative) free R-algebra R < X,,...,X, > with Hopf algebra structure
such that A is isomorphic to R < X1,...,X, > as Hopf algebras. If 4 is a
finitely generated free Hopf algebra, then there exist polynomials Ai,...,A,
in R < X,,...,X,, > such that A is isomorphic to R < X1,....X»> /(h1,...,
hn) as Hopf algebras. Since this Hopf algebra isomorphism is an
A-comodule algebra isomorphism, S £ A is isomorphicto S # R < X,,...,
X, > /(hy1,...,hn) as R-algebras for any left A-module algebra S. Thus by
Theorem 4, we have the following theorem (cf. [5, Theorems 2.2 and 3.3]).

Theorem 6. Let A be a free Hopf algebra and let S be an R-algebra.
Assume that S is a left A-module algebra such that S* = R. Then the
Jfollowing statements are equivaleni.

(1) A is a finitely generated free Hopf algebra and S is an A-Hopf
Galois extension of R.

(2) There exist polynomials gi,....gn in R < X1,...,X, > satisfying
the following conditions :

(a) R< Xy ..., X > /(g10eer8n) = A as right A-comodule algebras.
(b) SER<X\,....X0o,> /(g1,....gn) is an Azumaya algebra.

(3) There exist polynomials hi,....hn in R < Xi,...,Xn > satisfying
the following conditions :

(a) R< Xu....Xu> /lhy,e...hn) = A as right A-comodule algebras.
(b) SER<X.\.....X0 > /(hr,....hn) is an H-separable extension
of S.

Let A be a Hopf algebra which is not necessary finitely generated pro-
jective R-module. Let R[X,...., X,] be the polynomial ring on n-variables
which is a right A-comodule algebra, and let {f,....,fn | be monic polynomi-
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als in R[X,,....X,). A set|fi,....fnl is called a set of comodule polynomi-
als if the ideal generated by | f,.....fn} is a right A-subcomodule in R[X,,
..., X,]. Let S be a left A-comodule algebra over R. A set of comodule
polynomials {f1,....fn! in R[X1,....Xs] is said to be H-separable in S[X,,
v Xay AL Gf S[Xi....Xn; A)/(f1r....fn) is an H-separable extension of
S.

Let A be a Hopf algebra, S an A*-comodule algebra and T an A-
comodule algebra. In [2], J. Gamst and K. Hoechsman defined a smash
product S # T as follows: As an R-module S # T equals to S ® T and
the product is defined by

(51 ﬁ tl)(sz # tz) = Z-‘sz-.(tlt slszloz < Szmv tlm > Q® h:mtz,

where ps: S > S ® A* (resp. pr: T > T ® A) is defined by psls,) =
Z{S:)sl(m ® Szm(reSP- ,Ov(i]) = Z;z.,tlm' ® 11“’) and <, >: A* ® A->R
is the evaluation. Since S is an A*-comodule algebra, S is an A-module
algebra by as = 2.5, < s, @ > s'”. When this the case, we can construct
our smash product S # T, which is equal to that of [2].

Theorem 7. Let S be a commutative A-Hopf Galois extension of R. If
{ froeeefmt is a set of comodule polynomials in R[X:,....Xn] such that R[X,,
cerr Xnl/(frreeefm) is an A*-Hopf Galois extension of R, then | f1,....fn]| is
H-separable in S[X,,....Xn; A].

Proof. By [2, Theorem 1], S # R[X,,....X.]/(f1.....fn) is an Azu-

maya R-algebra and so by [4, Theorem 1], S # R{X1,....X0)/(fr1reeeifn) is
an H-separable extension of S. Since S £ R[X1,....Xn)/(f1reeifn) is
isomorphic to S[X......Xn: A1/(f1seeeifmn). 1f1seoonfnl is H-separable
in S[X.....X.; Al Q.E.D.

Example 8. Let R be a commutative algebra over the prime field
GF(2). Define a commutative Hopf algebra 4 = R[s,D] by

algebra structure: ¢*=1 and D? = ¢’+1,

coalgebra structure: Alg) = o ® 0. AD) =D ® o+1 ® D,
e(o) =1 and €(D) =0,

antipode: AMo) = ¢7'(= 0% and AND) = Do~

Let R[X, Y] be the polynomial ring on two variables. Define a map p:
RIX. Y] 5R[X, Y] ® A by
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0 X)=X® 0 p(Y)=Y® 0+1 @ D and p(X*Y") = p(X)'p(Y)'.

Then R[X, Y] is a right A-comodule algebra via p. When this is the case,
the ideal generated by X*+1 and Y*+X?+1 is a right A-subcomodule in
R[X, Y]. Since R[X, Y]/(X*+1, Y*+X*+1) is isomorphic to R[¢, D]
as R[o, D]-comodule algebras and R[o, D] is a Galois R[o, D]-object by
[1, Proposition 9.1], i.e., R[X, Y]/(X*+1, Y"+X*+1) is a R[s D]*-
Hopf Galois extension of R, the pair of polynomials | X*'+1, Y*+X*+1}
satisfies the condition in Theorem 7. Moreover if S is a commutative R g,
D ]-Hopf Galois extension of R, then by Theorem 6, S # R[X, Y]1/(X*+1,
Y+ X?4+1) = S[X, Y: 0. D]/(X*+1, Y*+X*+1) is Azumaya R-algebra.

Theorems 6 and 7 give some information in relation to Hopf algebras,
H-separable polynomials in skew polynomial rings and Azumaya algebras.
Under suitable conditions, H-separable polynomials in S[X; o] (resp.
S[X: D1) were completely determined by S. Ikehata [5]. There are
closely related to A*-Hopf Galois extension of R, where 4 = R[¢] or A =
R[D].

Now let A be a Hopf algebra which is not necessary finitely generated
projective R-module. Let S be a commutative A-module algebra such that
S* = R. Let f(X) be a monic polynomial in R[X] such that S[X: A]f(X)
= f(X)S[X; A].

Automorphism type. Assume that ¢ is an R-algebra automorphism of S
and A = R[s]. If f(X) is H-separable in S[X; o], then by [5, Theorem
2.1], the order of s is m and f(X) = X™++, where r is invertible in R.
When this is the case, R[X]/(X™+7r) has an R[¢]-comodule structure map
0: Rlx] » R[x] ® R[o] defined by p(x) = x ® o, where x = X+(X™+
r). As is easily checked, p induces an R-algebra isomorphism R[x] ®
R[x] = R[x] ® R[s]. which shows that R[x] is an R[¢]*-Hopf Galois
extension of R (cf. [1, Chapter I, § 4]).

Derivation type. Let R be a commutative algebra over the prime field
GF(p). Assume that D is a derivation of S and A = R[D]. If f(X) is H-
separable in S[X; D], then by [5, Lemma 1.6 and Theorem 3.3],

f(X) = Xpe_ue—lXpE_]_"'_UIXp_uoX_u_x (u,— in R)

and f(D)=—u_,. Define a map p: R[x] - R[x] ® R[D] by p(x) = x ® 1
+1 ® D, where x = X+(f(X)). Then we can check that p gives an R[D]
-comodule structure on R[x] and induces an R-algebra isomorphism R[x] ®
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R[x] = R[x] ® R[D], which shows that R[x] is an R[D]*-Hopf Galois
extension of R (cf. [8, Theorem 1.3]). Under the above assumptions and
notations, we get the following

Theorem 9. If f(X) is H-separable in S[X; o] (resp. S[X; D)),
then R[X1/(f(X)) is an R[o]* (resp. R[D]1*)-Hopf Galois extension of R.

By [1, Chapter I, § 4], [8. Theorem 1.4], [2] and [5, Theorems 2.1
and 3.1], we have the converse case of Theorem 9.

Theorem 10. Let f(X) be a monic polynomial in R[X].

(1) If ois of order m and if R[X]/(f(X)) is an R[o]*-Hopf Galois
extension of R, then for any R[o]-Hopf Galois extension S of R, f(X)S[X;
o]l = S[X; o]f(X) and f(X) is H-separable in S[X; o).

(2) Let R be a commutative algebra over the prime field GF(p). If
D* —ue D' —oi—u,DP—ueD = 0 (u; in R) and if R[X]/(f(X)) is an
R[D]*-Hopf Galois extension of R, then for any R[D]-Hopf Galois extension
S of R, fIX)S[X; D] = S[X; D]f(X) and f(X) is H-separable in S[X;
D].

Remark 11. In the skew polynomial rings of automorphism type and
derivation type, the following hold by [3, Corollary 1.5 and Lemma 1.6].
Let f{X) be in S[X: £] and AX)S[X: €] = S[X: £]f(X), where § =
gor £ =D. Then, f(X) is in R[X] when f(X) is in S[X; o] and S is a
semiprime ring, or when f(X) is in S[X; D]. Thus the assumption that
f(X) is contained in R[X] in Theorem 10 is reasonable.

Finally we give the following example which is an H-separable polyno-
mial of another case.

Example 12. ILet R be a commutative algebra over the prime field
GF(p). Letu be a fixed element in R and H(u, p®) the Hopf algebra defined
in [7], that is, H(u, p®) has an R-free basis 1, D,...,D**~' and a Hopf al-
gebra structure is given by the following;

algebra structure: D* =0,
coalgebra structure: AD)=D®1+1 ® D+uD ® D, (D) =0,
antipode: A(D) = 20955 (—=1)%''D

For a polynomial ring R[X]. we define an R-module homomorphism p: R[X]
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- R[X] ® H(u, p¢) by p(X") =(X ® o+1 ® D)’, where o= 1+uD.
Then it is easy to see that R[X] is a right H(u. p®)-comodule algebra by o.
Let S be an H(u, p€)-module algebra over R. Since Alg) = ¢ ® o, (o)
=1and AD) = 6 ® D+D ® 1, D is a ¢g-derivation on S and thus we can
construct the skew polynomial ring S[X; ¢. D]. Then by

XP's = ¢”(s)X?"+D”(s) (s in S),

we have X**s = sX®*. Moreover S # H(u. p®) is canonically isomorphic
to S[X: o, D]/X*S[X; o.D] as R-algebras. Therefore if S is an H(u,
p¢)-Hopf Galois extension of R, then S[X; o, D]/X**S[X: 0.D] is an
Azumaya R-algebra and by [4, Theorem 1], S[X; o, D]/X*”*S[X; o, D]
is an H-separable extension of S. This shows that X* is an H-separable
polynomial in S[X; o, D]. When this is the case, R[X]/(X**) is also an
H(u, p®)*-Hopf Galois extension of R. Finally we note that if we set § =
D—uD. then 8 is also a o-derivation and we can prove that S[X; o, 8]/
(X**—1) S[X; o, 8] is Azumaya R-algebra. Thus X**—1 is H-separable
in S[X: o, 6].
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