Mathematical Journal of Okayama University

Volume 45, Issue 1 2003 Article 6

JANUARY 2003

Some Homotopy Groups of the Homogeneous Space E_6/F_4

Yoshihiro Hirato*

Copyright ©2003 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

Math. J. Okayama Univ. 45 (2003), 83-98

SOME HOMOTOPY GROUPS OF THE HOMOGENEOUS SPACE E_6/F_4

Yoshihiro HIRATO

1. Introduction

Let F_4 and E_6 be the compact, connected, simply connected, simple, exceptional Lie groups of rank 4 and 6 respectively. We consider the homogeneous space E_6/F_4 . Cohen and Selick constructed in [3] a map $\lambda: \Omega^2 S^{17} \to \Omega S^9$ which is $\mathrm{ad}(\sigma_9)$ on the bottom cell where $\mathrm{ad}: \pi_{16}(S^9) \to \pi_{15}(\Omega S^9)$ is an adjoint isomorphism and σ_9 a generator of $\pi_{16}(S^9)$. They also showed that there does not exist a spherical fibration $S^9 \to E \to S^{17}$ giving rise to the λ . Thus the homotopy fibre of λ is expected to be homotopy equivalent to $\Omega^2(E_6/F_4)$.

Conlon has determined $\pi_i(E_6/F_4)$ for $i \leq 23$ in [2]. In this paper we calculate $\pi_i(E_6/F_4:2)$ for $i \leq 39$ where we denote by $\pi_i(Y:p)$ the p-primary component of $\pi_i(Y)$. The calculation will be done by making use of the fibration

$$X \xrightarrow{i} S^9 \xrightarrow{p} E_6/F_4$$

where X is the homotopy fibre of the natural inclusion of S^9 in E_6/F_4 . Our results are stated as follows.

	i		$i \leq$	≤ 8	9	10	11	12	13	3 1	.4	15	1	6	17	7	18
$\pi_i(I)$	E_6/F_4 :	2)	()	∞	2	2	8	0		0	2	()	∞ +	$(2)^2$	$(2)^3$
19	20	21	22	2	3	24	2	5	26	27	7	28		29	30	31]
2	8 + 2	0	0	4		16 + 2	2 2	2 ($(2)^3$	2	1	8+	2	8	2	$(2)^2$	
	32	33	3	34		35		36		37	:	38	39				
32 -	+8 + 2	(2)	$)^{2}$	$(2)^{2}$	4	1 + (2))3	8+	2 ($(2)^2$		2	0				

Here an integer 'n' indicates a cyclic group \mathbf{Z}_n of order n, the symbol ' ∞ ' an infinite cyclic group, the symbol '+' the direct sum of groups and ' $(n)^k$ ' indicates the direct sum of k-copies of \mathbf{Z}_n . These results are stated in Theorem 4.4 in which we also give their generators.

The results on $\pi_i(E_6/F_4:2)$ are expected to determine the homotopy type of homotopy fibre of λ .

We use freely the notation in [14].

I would like to thank Professor Mamoru Mimura for his advice and criticism throughout the preparation of the manuscript, Professor Hirosi Toda

Mathematics Subject Classification. Primary 57T20; Secondary 55Q52.

for suggesting me to use the homotopy fibre of the inclusion map $S^9 \to E_6/F_4$ of the bottom cell, and also the referee for pointing out the work by I. M. James.

2. Preliminaries

We denote by $\mathbb{O}P$ the octonionic projective plane. As is well known (see Conlon [2]), we have

$$E_6/F_4 \simeq \Sigma(\mathbb{OP}) \cup e^{26}$$
 and $\Sigma(\mathbb{OP}) \simeq S^9 \cup_{h_0} e^{17}$

where $h_9 = \sigma_9 + \alpha_2(9) + \alpha_1(9) \in \pi_{16}(S^9) = \mathbf{Z}_{16}\{\sigma_9\} \oplus \mathbf{Z}_3\{\alpha_2(9)\} \oplus \mathbf{Z}_5\{\alpha_1(9)\}$. We denote by $i_{\mathbb{O}} \colon S^9 \to S^9 \cup_{h_9} e^{17}$ the inclusion and by $\omega \in \pi_{17}(\Sigma(\mathbb{OP}), S^9)$ the homotopy class of the characteristic map of 17-dimensional cell of $\Sigma(\mathbb{OP})$. For the boundary homomorphism $\partial : \pi_{17}(\Sigma(\mathbb{OP}), S^9) \to \pi_{16}(S^9)$, we have

$$\partial(\omega) = h_9.$$

Then by Theorem 1.4 of [5], we have

$$\pi_{25}(\Sigma(\mathbb{O}P), S^9) = \mathbf{Z}\{[\omega, \iota_9]\} \oplus \mathbf{Z}_2\{\omega\widehat{\bar{\nu}_{16}}\} \oplus \mathbf{Z}_2\{\omega\widehat{\varepsilon_{16}}\}$$

and

$$\pi_{26}(\Sigma(\mathbb{O}P), S^9) = \mathbf{Z}_2\{[\omega, \eta_9]\} \oplus \mathbf{Z}_2\{\omega\widehat{\nu_{16}^3}\} \oplus \mathbf{Z}_2\{\omega\widehat{\mu_{16}}\} \oplus \mathbf{Z}_2\{\omega\widehat{\eta_{16}\varepsilon_{17}}\}.$$

Here we denote by $\widehat{\alpha}$ an element of $\pi_n(CS^{16}, S^{16})$ such that $\partial(\widehat{\alpha}) = \alpha$ for the boundary homomorphism $\partial: \pi_n(CS^{16}, S^{16}) \to \pi_{n-1}(S^{16})$.

We calculate $\partial: \pi_{25}(\Sigma(\mathbb{O}P), S^9) \to \pi_{24}(S^9)$ and $\partial: \pi_{26}(\Sigma(\mathbb{O}P), S^9) \to \pi_{25}(S^9)$ where

$$\pi_{24}(S^9) = \mathbf{Z}_{16}\{\rho'\} \oplus \mathbf{Z}_2\{\sigma_9\bar{\nu}_{16}\} \oplus \mathbf{Z}_2\{\sigma_9\varepsilon_{16}\} \oplus \mathbf{Z}_2\{\bar{\varepsilon}_9\} \oplus \mathbf{Z}_3\{\alpha_4(9)\} \oplus \mathbf{Z}_5\{\alpha_2(9)\}$$
 and

$$\pi_{25}(S^9) = \mathbf{Z}_2\{\sigma_9\nu_{16}^3\} \oplus \mathbf{Z}_2\{\sigma_9\mu_{16}\} \oplus \mathbf{Z}_2\{\sigma_9\eta_{16}\varepsilon_{17}\} \oplus \mathbf{Z}_2\{\mu_9\sigma_{18}\}.$$

By Theorem 8.18 in Chapter X of [18] and by the fact that the odd primary component of $\pi_{17}(S^9)$ is trivial, we have $[\alpha_2(9), \iota_9] = [\iota_9, \iota_9]\alpha_2(17) = 0$ and $[\alpha_1(9), \iota_9] = [\iota_9, \iota_9]\alpha_1(17) = 0$. Thus we have

$$\begin{split} \partial[\omega, \iota_{9}] &= -[\partial \omega, \iota_{9}] & \text{by (2.1) of [6]} \\ &= -[\sigma_{9}, \iota_{9}] - [\alpha_{2}(9), \iota_{9}] - [\alpha_{1}(9), \iota_{9}] \\ &= -[\iota_{9}, \iota_{9}]\sigma_{17} \\ &= (\sigma_{9}\eta_{16} + \bar{\nu}_{9} + \varepsilon_{9})\sigma_{17} & \text{by (7.1) of [14]} \\ &= \sigma_{9}\bar{\nu}_{16} + \sigma_{9}\varepsilon_{16} & \text{by Lemma 6.4 and 10.7 of [14].} \end{split}$$

So we have

$$\begin{split} \partial[\omega,\eta_9] &= -[\partial\omega,\iota_9]\eta_{24} \\ &= \sigma_9\bar{\nu}_{16}\eta_{24} + \sigma_9\varepsilon_{16}\eta_{24} \\ &= \sigma_9\nu_{16}^3 + \sigma_9\eta_{16}\varepsilon_{17} \end{split} \qquad \text{by Lemma 6.3 of [14]}. \end{split}$$

By the naturality of the boundary homomorphism, we have

$$\partial(\omega\widehat{\bar{\nu}_{16}}) = h_9\bar{\nu}_{16} = \sigma_9\bar{\nu}_{16}, \quad \partial(\omega\widehat{\varepsilon}_{16}) = \sigma_9\varepsilon_{16},$$

$$\partial(\omega\widehat{\nu_{16}^3}) = \sigma_9 \nu_{16}^3, \quad \partial(\omega\widehat{\mu_{16}}) = \sigma_9 \mu_{16}, \quad \partial(\omega\widehat{\eta_{16}\varepsilon_{17}}) = \sigma_9 \eta_{16}\varepsilon_{17}.$$

By the argument above, we have

$$\operatorname{Ker}\{\partial: \pi_{25}(\Sigma(\mathbb{O}P), S^9) \to \pi_{24}(S^9)\} = \mathbf{Z}\{[\omega, \iota_9] + \omega\widehat{\bar{\nu}_{16}} + \omega\widehat{\varepsilon_{16}}\}$$

and

Coker
$$\{\partial : \pi_{26}(\Sigma(\mathbb{O}P), S^9) \to \pi_{25}(S^9)\} = \mathbf{Z}_2\{\mu_9\sigma_{18}\}.$$

Therefore we have

$$\pi_{25}(\Sigma(\mathbb{O}P)) = \mathbf{Z}\{\theta\} \oplus \mathbf{Z}_2\{i_{\mathbb{O}_*}(\mu_9\sigma_{18})\}$$

where θ satisfies

$$j_{\mathbb{O}_*}(\theta) = [\omega, \iota_9] + \omega \widehat{\bar{\nu}_{16}} + \omega \widehat{\varepsilon_{16}}$$

for the homomorphism $j_{\mathbb{O}_*}: \pi_{25}(\Sigma(\mathbb{O}P)) \to \pi_{25}(\Sigma(\mathbb{O}P), S^9)$.

Araki has determined integral cohomology of E_6/F_4 in [1] as follows:

$$H^*(E_6/F_4; \mathbf{Z}) \cong \wedge (x_9, x_{17}).$$

Then by Theorem 3.3 of [6], we have the following.

Proposition 2.1.

$$E_6/F_4 \simeq \Sigma(\mathbb{OP}) \cup_{\beta} e^{26},$$

where $\beta \equiv \theta \mod i_{\mathbb{O}_*}(\mu_9 \sigma_{18})$.

Let X denote the homotopy fibre of the natural inclusion of the S^9 in E_6/F_4 . Thus the Serre spectral sequence implies that the integral cohomology ring satisfies

$$H^*(X; \mathbf{Z}) \cong \Gamma(y_{16}),$$

where $\Gamma(y_{16})$ denotes the divided polynomial algebra on a generator y_{16} of degree 16. Hence we have

$$X \simeq S^{16} \cup_g e^{32} \cup e^{48} \cup \dots,$$

where $g \in \pi_{31}(S^{16}) \cong \mathbf{Z}\{[\iota_{16}, \iota_{16}]\} \oplus \mathbf{Z}_{32}\{\rho_{16}\} \oplus \mathbf{Z}_{2}\{\bar{\varepsilon}_{16}\} \oplus \mathbf{Z}_{3}\{\alpha_{4}(16)\} \oplus \mathbf{Z}_{5}\{\alpha_{2}(16)\}$. By the equality $y_{16}^{2} = 2y_{32}$, we have

$$g = \pm [\iota_{16}, \iota_{16}] + a_1 \rho_{16} + a_2 \bar{\varepsilon}_{16} + a_3 \alpha_4(16) + a_4 \alpha_2(16),$$

Produced by The Berkeley Electronic Press, 2003

3

where a_i are integers. We consider the homotopy exact sequence associated with the fibration

$$X \xrightarrow{i} S^9 \xrightarrow{p} E_6/F_4.$$

Then for the inclusion $j: S^{16} \to X$, we have

$$i_*j_*(\iota_{16}) = ah_9,$$

where a is an integer prime to 2, 3 and 5.

We consider

$$h_9 \circ g = h_9(\pm[\iota_{16}, \iota_{16}] + a_1\rho_{16} + a_2\bar{\varepsilon}_{16} + a_3\alpha_4(16) + a_4\alpha_2(16))$$

= $\pm h_9[\iota_{16}, \iota_{16}] + a_1\sigma_9\rho_{16} + a_2\sigma_9\bar{\varepsilon}_{16} + a_3\alpha_2(9)\alpha_4(16) + a_4\alpha_1(9)\alpha_2(16).$

By (7.2), Corollary 7.12 and Theorem 8.18 in Chapter X of [18], we have

$$h_{9}[\iota_{16}, \iota_{16}] = [h_{9}, h_{9}]$$

$$= [\sigma_{9}, \sigma_{9}] + [\alpha_{2}(9), \alpha_{2}(9)] + [\alpha_{1}(9), \alpha_{1}(9)]$$

$$= [\iota_{9}, \iota_{9}]\sigma_{17}^{2} + [\iota_{9}, \iota_{9}]\alpha_{2}(17)^{2} + [\iota_{9}, \iota_{9}]\alpha_{1}(17)^{2}.$$

By (7.1), Lemma 6.4 and 10.7 of [14] and by the fact that odd primary component of $\pi_{17}(S^9)$ is trivial, we have

$$h_{9}[\iota_{16}, \iota_{16}] = [h_{9}, h_{9}]$$

$$= [\iota_{9}, \iota_{9}] \sigma_{17}^{2}$$

$$= (\sigma_{9} \eta_{16} + \bar{\nu}_{9} + \varepsilon_{9}) \sigma_{17}^{2}$$

$$= 0.$$

By Theorem 7.6 of [15], the homomorphism $E^6: \pi_{25}(S^3:3) \to \pi_{31}(S^9:3)$ is trivial. So we have $\alpha_2(9)\alpha_4(16) = E^6(\alpha_2(3)\alpha_4(10)) = 0$. By the fact $\pi_{31}(S^9:5) = 0$, we have $\alpha_1(9)\alpha_2(16) = 0$. Hence we have

$$h_9 \circ g = a_1 \sigma_9 \rho_{16} + a_2 \sigma_9 \bar{\varepsilon}_{16}.$$

On the other hand, since $j_*(g) = 0 \in \pi_{31}(X)$, we have

$$h_9 \circ g = i_* j_*(g) = 0.$$

Then by the fact that $\sigma_9 \rho_{16}$ and $\sigma_9 \bar{\varepsilon}_{16}$ are generators of order 16 and 2 respectively, we have

$$g \equiv \pm [\iota_{16}, \iota_{16}] \mod 16\rho_{16}, \alpha_4(16), \alpha_2(16).$$

3. Homotopy groups of the X

From now on, we restrict our attention to the 2-primary component and so omit for simplicity the notation '2' indicating 2-primary component of homotopy group.

By the argument in the previous section, we have

$$E_6/F_4 \simeq S^9 \cup_{\sigma_9} e^{17} \cup e^{26}$$

and

$$X \simeq S^{16} \cup_g e^{32} \cup e^{48} \cup \dots,$$

where

$$g \equiv [\iota_{16}, \iota_{16}] \mod 16\rho_{16}.$$

For dimensional reasons, we have

$$\pi_i(X) \cong \pi_i(S^{16} \cup_q e^{32})$$

for $i \leq 46$. We consider the homotopy exact sequence

$$\cdots \to \pi_i(S^{16}) \xrightarrow{j_*} \pi_i(S^{16} \cup_g e^{32}) \to \pi_i(S^{16} \cup_g e^{32}, S^{16}) \xrightarrow{\partial} \pi_{i-1}(S^{16}) \xrightarrow{j_*} \cdots$$

associated with the pair $(S^{16} \cup_g e^{32}, S^{16})$. The collapsing map $\pi: (S^{16} \cup_g e^{32}, S^{16}) \to (S^{32}, *)$ induces a homomorphism

$$\pi_* : \pi_i(S^{16} \cup_g e^{32}, S^{16}) \to \pi_i(S^{32})$$

which is an isomorphism for $i \leq 45$ by the Blakers-Massey theorem. Therefore the following sequence is exact for $i \leq 45$:

$$\cdots \to \pi_i(S^{16}) \xrightarrow{j_*} \pi_i(S^{16} \cup_g e^{32}) \xrightarrow{\pi_*} \pi_i(S^{32}) \xrightarrow{\Delta'} \pi_{i-1}(S^{16}) \xrightarrow{j_*} \cdots,$$

where

$$\Delta' = \partial \circ \pi_*^{-1} : \pi_i(S^{32}) \xleftarrow{\pi_*} \pi_i(S^{16} \cup_g e^{32}, S^{16}) \xrightarrow{\partial} \pi_{i-1}(S^{16}).$$

For any element $\alpha \in \pi_n(S^{31})$, we have

(3.1)
$$\Delta'(\Sigma \alpha) \equiv [\iota_{16}, \iota_{16}] \alpha \mod (16\rho_{16}) \alpha.$$

By use of this formula, we calculate $\Delta': \pi_{n+1}(S^{32}) \to \pi_n(S^{16})$ for $n \leq 39$. We recall here some necessary results on $\pi_{n+i}(S^n)$ for $i \leq 30$ determined by Toda [14], Mimura-Toda [10], Mimura [8], Mimura-Mori-Oda [9], and Oda [12].

Table 1.

i	9	10	11	12	13	14	15	16	17
$\pi_{i+1}(S^{32})$	0	0	0	0	0	0	0	0	0
generator									
$\pi_i(S^{16})$	0	0	0	0	0	0	0	\mathbf{Z}	\mathbf{Z}_2
generator								ι_{16}	η_{16}
$\pi_i(S^9)$	\mathbf{Z}	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_8	0	0	\mathbf{Z}_2	\mathbf{Z}_{16}	${f Z}_2 \oplus {f Z}_2 \oplus {f Z}_2$
generator	ι_9	η_9	η_9^2	ν_9	0	0	ν_9^2	σ_9	$\sigma_9\eta_{16},ar u_9,arepsilon_9$

18	19	20	21	22	23
0	0	0	0	0	0
\mathbf{Z}_2	\mathbf{Z}_8	0	0	\mathbf{Z}_2	\mathbf{Z}_{16}
η_{16}^2	$ u_{16}$			$ u_{16}^{2}$	σ_{16}
$\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$	${\bf Z}_8 \oplus {\bf Z}_2$	${f Z}_8 \oplus {f Z}_2$	0	\mathbf{Z}_2	$\mathbf{Z}_{16} \oplus \mathbf{Z}_4$
$\sigma_9\eta_{16}^2, \nu_9^3, \mu_9, \eta_9\varepsilon_{10}$	$\sigma_9\nu_{16},\eta_9\mu_{10}$	$\zeta_9, \bar{\nu}_9 \nu_{17}$		$\sigma_9 \nu_{16}^2$	σ_9^2, κ_9

24	25
0	0
${f Z}_2\oplus{f Z}_2$	${f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\bar{\nu}_{16}, \varepsilon_{16}$	$ u_{16}^3, \mu_{16}, \eta_{16} \varepsilon_{17} $
$\mathbf{Z}_{16} \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$	${f Z}_2\oplus {f Z}_2\oplus {f Z}_2\oplus {f Z}_2$
$\rho', \sigma_9 \bar{\nu}_{16}, \sigma_9 \varepsilon_{16}, \bar{\varepsilon}_9$	$\sigma_9 \nu_{16}^3, \sigma_9 \mu_{16}, \sigma_9 \eta_{16} \varepsilon_{17}, \mu_9 \sigma_{18}$

26	27	28	29
0	0	0	0
${f Z}_2$	\mathbf{Z}_8	0	0
$\eta_{16}\mu_{17}$	ζ_{16}		
${f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$	${f Z}_8 \oplus {f Z}_2$	${f Z}_8 \oplus {f Z}_2$	\mathbf{Z}_8
$\sigma_9 \eta_{16} \mu_{17}, \nu_9 \kappa_{12}, \bar{\mu}_9, \eta_9 \mu_{10} \sigma_{19}$	$\sigma_9\zeta_{16},\eta_9ar{\mu}_{10}$	$ar{\zeta}_9,ar{\sigma}_9$	$\bar{\kappa}_9$

30	31
0	Z
	ι_{32}
${f Z}_2\oplus {f Z}_2$	$\mathbf{Z}\oplus\mathbf{Z}_{32}\oplus\mathbf{Z}_{2}$
$\sigma_{16}^2, \kappa_{16}$	$[\iota_{16},\iota_{16}],\rho_{16},\bar{\varepsilon}_{16}$
$\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$	${f Z}_{16}\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\eta_9\bar{\kappa}_{10},\sigma_9\kappa_{16},\sigma_9^3$	$\sigma_9 \rho_{16}, \varepsilon_9 \kappa_{17}, \nu_9 \bar{\sigma}_{12}, \sigma_9 \bar{\varepsilon}_{16}$

32
${f Z}_2$
η_{32}
${f Z}_2\oplus {f Z}_2\oplus {f Z}_2\oplus {f Z}_2$
$\eta_{16}^*, \Sigma \eta^{*\prime}, \omega_{16}, \sigma_{16} \mu_{23}$
${f Z}_{16}\oplus{f Z}_8\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\bar{\rho}_9, \nu_9 \bar{\kappa}_{12}, \phi_9, \bar{\kappa}_9 \nu_{29} - \nu_9 \bar{\kappa}_{12}, \sigma_9^2 \mu_{23}, \sigma_9 \omega_{16}$

33
${f Z}_2$
η_{32}^2
${f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\eta_{16}^* \eta_{32}, (\Sigma \eta^{*\prime}) \eta_{32}, \varepsilon_{16}^*, \sigma_{16} \eta_{23} \mu_{24}, \nu_{16} \kappa_{19}, \bar{\mu}_{16}$
$\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$
$\delta_9, \bar{\mu}_9 \sigma_{26}, \bar{\sigma}_9', \sigma_9 \bar{\mu}_{16}, \sigma_9^2 \eta_{23} \mu_{24}, \sigma_9 \nu_{16} \kappa_{19}, \sigma_9 \varepsilon_{16}^*$

34
${f Z}_8$
$ u_{32}$
${f Z}_8\oplus{f Z}_8\oplus{f Z}_8\oplus{f Z}_2$
$\nu_{16}^*, \xi_{16}, \Sigma^3 \lambda, \eta_{16} \bar{\mu}_{17}$
${f Z}_8 \oplus {f Z}_4 \oplus {f Z}_2 \oplus {f Z}_2 \oplus {f Z}_2$
$\sigma_9 \xi_{16}, \sigma_9 \nu_{16}^*, \sigma_9 \eta_{16} \bar{\mu}_{17}, \mu_{3,9}, \eta_9 \bar{\mu}_{10} \sigma_{27}$

Produced by The Berkeley Electronic Press, 2003

35	36
0	0
${f Z}_8\oplus{f Z}_2\oplus{f Z}_2$	${f Z}_8$
$ar{\zeta}_{16}, ar{\sigma}_{16}, \omega_{16} u_{32}$	$ar{\kappa}_{16}$
${f Z}_8 \oplus {f Z}_2 \oplus {f Z}_2$	${f Z}_8 \oplus {f Z}_8 \oplus {f Z}_2$
$\sigma_9\bar{\zeta}_{16}, \sigma_9\omega_{16}\nu_{32}, \sigma_9\bar{\sigma}_{16}, \bar{\kappa}_9\nu_{29}^2, \bar{\sigma}_9\sigma_{28}, \nu_9^2\bar{\kappa}_{15}, \eta_9\mu_{3,10}$	$\sigma_9\bar{\kappa}_{16},\zeta_{3,9},\bar{\nu}_9\bar{\sigma}_{17}$

37
${f Z}_2$
$ u_{32}^2 $
${f Z}_2\oplus {f Z}_2\oplus {f Z}_2\oplus {f Z}_2$
$\eta_{16}\bar{\kappa}_{17}, \sigma_{16}^3, (\Sigma^3\lambda)\nu_{34}, \nu_{16}^*\nu_{34}$
${f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\sigma_9^4, \sigma_9 \eta_{16} \bar{\kappa}_{17}, \sigma_9 \nu_{16}^* \nu_{34}, \bar{\nu}_9 \bar{\kappa}_{17}, \varepsilon_9 \bar{\kappa}_{17}$

38
${f Z}_{16}$
σ_{32}
$\mathbf{Z}_{16} \oplus \mathbf{Z}_{16} \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$
$\sigma_{16}^*, \Sigma \sigma^{*\prime}, \omega_{16} \nu_{32}^2, \varepsilon_{16} \kappa_{24}, \nu_{16} \bar{\sigma}_{19}$
${f Z}_{16}\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\sigma_9\sigma_{16}^*, \sigma_9\omega_{16}\nu_{32}^2, \sigma_9\varepsilon_{16}\kappa_{24}, \sigma_9\nu_{16}\bar{\sigma}_{19}, \eta_9\varepsilon_{10}\bar{\kappa}_{18}$

39
${f Z}_2\oplus {f Z}_2$
$ar u_{32}, arepsilon_{32}$
$oxed{\mathbf{Z}_{16}\oplus\mathbf{Z}_{8}\oplus\mathbf{Z}_{2}\oplus\mathbf{Z}_{2}\oplus\mathbf{Z}_{2}\oplus\mathbf{Z}_{2}\oplus\mathbf{Z}_{2}\oplus\mathbf{Z}_{2}}$
$\bar{\rho}_{16}, \nu_{16}\bar{\kappa}_{19}, \phi_{16}, \psi_{16}, \Sigma \bar{\varepsilon}^{*\prime}, \Sigma \bar{\nu}^{*\prime}, \bar{\varepsilon}_{16}^{*}, \bar{\nu}_{16}^{*}$
${f Z}_{16}\oplus{f Z}_8\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$\sigma_9 \bar{\rho}_{16}, \sigma_9 \nu_{16} \bar{\kappa}_{19}, \sigma_9 \phi_{16}, \sigma_9 \psi_{16}, \phi_9 \sigma_{32}$

As for the boundary formula (3.1) we have

Lemma 3.1. (1) $\Delta'(\iota_{32}) \equiv [\iota_{16}, \iota_{16}] \mod 16\rho_{16},$ (2) $\Delta'(\eta_{32}) \equiv \Sigma \eta^{*'} \mod \omega_{16}, \sigma_{16}\mu_{23},$ (3) $\Delta'(\eta_{32}^2) \equiv (\Sigma \eta^{*'})\eta_{32} \mod \omega_{16}\eta_{32}, \sigma_{16}\mu_{23}\eta_{32},$ (4) $\Delta'(\nu_{32}) = \pm(\Sigma^3\lambda - 2\nu_{16}^*),$

- (5) $\Delta'(\nu_{32}^2) = (\Sigma^3 \lambda) \nu_{34}$,
- (6) $\Delta'(\sigma_{32}) = a\Sigma\sigma^{*\prime} \pm 2\sigma_{16}^{*}$, for some odd integer a,
- (7) $\Delta'(\bar{\nu}_{32}) = \Sigma \bar{\nu}^{*\prime}$ and $\bar{\Delta}'(\varepsilon_{32}) = \Sigma \bar{\varepsilon}^{*\prime}$.

Proof. We remark that $P(\iota_{33}) = \pm [\iota_{16}, \iota_{16}]$, where P denotes the boundary homomorphism of the EHP-exact sequence.

- (1) is included in (3.1).
- (2) By the argument in p. 160 of [14], we have

$$\Delta'(\eta_{32}) = P(\eta_{33}) \equiv \Sigma \eta^{*\prime} \mod \omega_{16}, \sigma_{16}\mu_{23}.$$

- (3) The relation $\Delta'(\eta_{32}^2) \equiv (\Sigma \eta^{*\prime}) \eta_{32} \mod \omega_{16} \eta_{32}, \sigma_{16} \mu_{23} \eta_{32}$ follows immediately from (2).
- (4) By Lemma 12.18 of [14], we have

$$\Delta'(\nu_{32}) = \pm P(\nu_{33}) = \pm (\Sigma^3 \lambda - 2\nu_{16}^*).$$

- (5) The relation $\Delta'(\nu_{32}^2) = (\Sigma^3 \lambda) \nu_{34}$ follows immediately from (4).
- (6) By the argument in p. 323 of [8], we have

$$\Delta'(\sigma_{32}) = \pm P(\sigma_{33}) \equiv \pm (\Sigma \sigma^{*\prime} - 2\sigma_{16}^{*}) \mod \rho_{16}\sigma_{31}.$$

Then by Part III, Proposition 2.3 (4) of [12], we have $\Delta'(\sigma_{32}) = a\Sigma \sigma^{*\prime} \pm 2\sigma_{16}^{*}$ for some odd integer a.

(7) By (3.4) of [9] we have

$$\Delta'(\bar{\nu}_{32}) = P(\bar{\nu}_{33}) = \Sigma \bar{\nu}^{*\prime}$$
 and $\Delta'(\varepsilon_{32}) = P(\varepsilon_{33}) = \Sigma \bar{\varepsilon}^{*\prime}$.

It follows directly from Lemma 3.1 and Table 1 that the homomorphisms $\Delta': \pi_{i+1}(S^{32}) \to \pi_i(S^{16})$ are monomorphisms for $i \leq 39$. Therefore we obtain the following lemma.

Lemma 3.2. We have the following table of $\pi_i(X)$ for $i \leq 39$.

i	$i \le 15$	16	17	18	19	20	21	22
$\pi_i(X)$	0	\mathbf{Z}	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_8	0	0	\mathbf{Z}_2
generator		$j_*(\iota_{16})$	$j_*(\eta_{16})$	$j_*(\eta_{16}^2)$	$j_*(\nu_{16})$			$j_*(\nu_{16}^2)$

23	24	25	26	27
\mathbf{Z}_{16}	${f Z}_2\oplus {f Z}_2$	${f Z}_2\oplus {f Z}_2\oplus {f Z}_2$	${f Z}_2$	\mathbf{Z}_8
$j_*(\sigma_{16})$	$j_*(\bar{\nu}_{16}), j_*(\varepsilon_{16})$	$j_*(\nu_{16}^3), j_*(\mu_{16}), j_*(\eta_{16}\varepsilon_{17})$	$j_*(\eta_{16}\mu_{17})$	$j_*(\zeta_{16})$

	28	29	30	31	32
	0	0	$\mathbf{Z}_2 \oplus \mathbf{Z}_2$	$\mathbf{Z}_{32}\oplus\mathbf{Z}_{2}$	${f Z}_2\oplus {f Z}_2\oplus {f Z}_2$
ĺ			$j_*(\sigma_{16}^2), j_*(\kappa_{16})$	$j_*(\rho_{16}), j_*(\bar{\varepsilon}_{16})$	$j_*(\eta_{16}^*), j_*(\omega_{16}), j_*(\sigma_{16}\mu_{23})$

Produced by The Berkeley Electronic Press, 2003

91

33
${f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2\oplus{f Z}_2$
$j_*(\eta_{16}^*\eta_{32}), j_*(\varepsilon_{16}^*), j_*(\sigma_{16}\eta_{23}\mu_{24}), j_*(\nu_{16}\kappa_{19}), j_*(\bar{\mu}_{16})$

34	35	36
$\mathbf{Z}_8 \oplus \mathbf{Z}_8 \oplus \mathbf{Z}_2$	$\mathbf{Z}_8 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$	\mathbf{Z}_8
$j_*(\nu_{16}^*), j_*(\xi_{16}), j_*(\eta_{16}\bar{\mu}_{17})$	$j_*(\bar{\zeta}_{16}), j_*(\omega_{16}\nu_{32}), j_*(\bar{\sigma}_{16})$	$j_*(\bar{\kappa}_{16})$

37	38
${f Z}_2\oplus {f Z}_2\oplus {f Z}_2$	${f Z}_{16}\oplus {f Z}_2\oplus {f Z}_2\oplus {f Z}_2$
$j_*(\eta_{16}\bar{\kappa}_{17}), j_*(\sigma_{16}^3), j_*(\nu_{16}^*\nu_{34})$	$j_*(\sigma_{16}^*), j_*(\omega_{16}\nu_{32}^2), j_*(\varepsilon_{16}\kappa_{24}), j_*(\nu_{16}\bar{\sigma}_{19})$

4. Some calculations

We consider the homotopy exact sequence

$$\cdots \to \pi_i(X) \xrightarrow{i_*} \pi_i(S^9) \xrightarrow{p_*} \pi_i(E_6/F_4) \xrightarrow{\Delta} \pi_{i-1}(X) \xrightarrow{i_*} \cdots$$

associated with the 2-local fibration

$$X \stackrel{i}{\longrightarrow} S^9 \stackrel{p}{\longrightarrow} E_6/F_4.$$

Then for the inclusion $j: S^{16} \to X$, we have

$$(4.1) i_* j_*(\iota_{16}) = \sigma_9.$$

By use of this formula, we calculate $i_*: \pi_n(X) \to \pi_n(S^9)$ for $n \leq 39$.

Lemma 4.1. (1) $\sigma_9 \eta_{16}^* \equiv \phi_9 \mod \sigma_9^2 \mu_{23}, 4\nu_9 \bar{\kappa}_{12},$

- (2) $\sigma_9 \eta_{16}^* \eta_{32} \equiv \delta_9 \mod \bar{\mu}_9 \sigma_{26}, \sigma_9^2 \eta_{23} \mu_{24}$
- (3) $\sigma_9(\bar{\bar{\varepsilon}}_{16}^* + \bar{\nu}_{16}^*) = \phi_9\sigma_{32}.$

Proof. (1) is obtained in Part I, Proposition 3.4 (7) of [12].

(2) By (1), we have

$$\sigma_9 \eta_{16}^* \eta_{32} \equiv \phi_9 \eta_{32} \mod \sigma_9^2 \eta_{23} \mu_{24}.$$

By Part I, Proposition 3.5 (9) of [12], we have

$$\phi_9\eta_{32} \equiv \delta_9 \bmod \bar{\mu}_9\sigma_{26}, \nu_9\eta_{12}\bar{\kappa}_{13}.$$

Since $\nu_9 \eta_{12} = 0$ ((5.9) of [14]), we have

$$\sigma_9 \eta_{16}^* \eta_{32} \equiv \delta_9 \mod \bar{\mu}_9 \sigma_{26}, \sigma_9^2 \eta_{23} \mu_{24}.$$

(3) By the definition of $\bar{\varepsilon}_{16}^*$ (see (3.4) of [9]) and (1) we have $\sigma_9(\bar{\varepsilon}_{16}^* + \bar{\nu}_{16}^*) = \sigma_9 \eta_{16}^* \sigma_{32} \equiv \phi_9 \sigma_{32} \mod \sigma_9^2 \mu_{23} \sigma_{32}, 4\nu_9 \bar{\kappa}_{12} \sigma_{32}.$

By (2.3) of [9], we have

$$\sigma_9^2 \mu_{23} \sigma_{32} = 0.$$

By Part III, Proposition 2.2 (5) of [12], we have

$$4\nu_9\bar{\kappa}_{12}\sigma_{32} = 0.$$

Hence we have $\sigma_9(\bar{\varepsilon}_{16}^* + \bar{\nu}_{16}^*) = \phi_9 \sigma_{32}$.

For $i_*: \pi_n(X) \to \pi_n(S^9)$, we have the following.

Lemma 4.2. (1) The homomorphisms $i_*: \pi_n(X) \to \pi_n(S^9)$ are epimorphisms for n = 16, 21, 22, 39. For the other values of n (17 $\leq n \leq 38$), we have the following table of the cokernels of i_* .

n	17	18	19	20	23	24
Coker i_*	${f Z}_2\oplus {f Z}_2$	${f Z}_2 \oplus {f Z}_2 \oplus {f Z}_2$	\mathbf{Z}_2	${f Z}_8\oplus {f Z}_2$	\mathbf{Z}_4	$\mathbf{Z}_{16} \oplus \mathbf{Z}_{2}$
generator	$\bar{ u}_9, arepsilon_9$	$\nu_9^3, \mu_9, \eta_9 \varepsilon_{10}$	$\eta_9\mu_{10}$	$\zeta_9, \bar{\nu}_9 \nu_{17}$	κ_9	$ ho', ar{arepsilon}_9$

25	26	27	28	29	30	31
\mathbf{Z}_2	${f Z}_2 \oplus {f Z}_2 \oplus {f Z}_2$	\mathbf{Z}_2	${f Z}_8\oplus {f Z}_2$	\mathbf{Z}_8	\mathbf{Z}_2	${f Z}_2\oplus {f Z}_2$
$\mu_9\sigma_{18}$	$\nu_9\kappa_{12}, \bar{\mu}_9, \eta_9\mu_{10}\sigma_{19}$	$\eta_9ar{\mu}_{10}$	$ar{\zeta}_9,ar{\sigma}_9$	$\bar{\kappa}_9$	$\eta_9ar{\kappa}_{10}$	$\varepsilon_9 \kappa_{17}, \nu_9 \bar{\sigma}_{12}$

32	33	34
${f Z}_{16}\oplus{f Z}_8\oplus{f Z}_2$	${f Z}_2 \oplus {f Z}_2$	${f Z}_2\oplus {f Z}_2$
$\bar{\rho}_9, \nu_9 \bar{\kappa}_{12}, \bar{\kappa}_9 \nu_{29} - \nu_9 \bar{\kappa}_{12}$	$\bar{\mu}_9\sigma_{26}, \bar{\sigma}_9'$	$\mu_{3,9}, \eta_9 \bar{\mu}_{10} \sigma_{27}$

35	36	37	38
${f Z}_2\oplus {f Z}_2\oplus {f Z}_2\oplus {f Z}_2$	${f Z}_8 \oplus {f Z}_2$	${\bf Z}_2\oplus {\bf Z}_2$	\mathbf{Z}_2
$\bar{\kappa}_9 \nu_{29}^2, \bar{\sigma}_9 \sigma_{28}, \nu_9^2 \bar{\kappa}_{15}, \eta_9 \mu_{3,10}$	$\zeta_{3,9}, \bar{\nu}_9\bar{\sigma}_{17}$	$\bar{\nu}_9\bar{\kappa}_{17}, \varepsilon_9\bar{\kappa}_{17}$	$\eta_9 \bar{\varepsilon}_{10} \bar{\kappa}_{18}$

(2) For n = 16, 31, 34, we have the following table of the kernels of i_* : $\pi_n(X) \to \pi_n(S^9)$.

n	16	31	34
$\operatorname{Ker} i_*$	\mathbf{Z}	\mathbf{Z}_2	\mathbf{Z}_2
generator	$16j_*(\iota_{16})$	$16j_*(\rho_{16})$	$4j_*(\nu_{16}^*)$

For other values of n (n \leq 38), the homomorphisms i_* are monomorphisms.

Proof. (1) By (4.1), Lemmas 3.2 and 4.1, we obtain the results easily. (2) By (4.1), Lemmas 3.2 and 4.1, we can determine $\operatorname{Ker}\{i_*: \pi_n(X) \to \pi_n(S^9)\}$ easily except for the case n=31.

93

We consider $i_*: \pi_{31}(X) \to \pi_{31}(S^9)$ where

$$\pi_{31}(S^9) = \{\sigma_9 \rho_{16}, \varepsilon_9 \kappa_{17}, \nu_9 \bar{\sigma}_{12}, \sigma_9 \bar{\varepsilon}_{16}\} \cong \mathbf{Z}_{16} \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2.$$

For the case $g = [\iota_{16}, \iota_{16}] + 16\rho_{16}$, we have $\pi_{31}(X) = \{j_*(\rho_{16}), j_*(\bar{\varepsilon}_{16})\} \cong \mathbf{Z}_{32} \oplus \mathbf{Z}_2$ and $j_*([\iota_{16}, \iota_{16}]) = 16j_*(\rho_{16})$. By (4.1) we have $i_*j_*(\rho_{16}) = \sigma_9\rho_{16}$ and $i_*j_*(\bar{\varepsilon}_{16}) = \sigma_9\bar{\varepsilon}_{16}$. By (4.1) and the argument in Section 2, we have $i_*j_*([\iota_{16}, \iota_{16}]) = \sigma_9[\iota_{16}, \iota_{16}] = 0$. Hence we have $\mathrm{Ker}\{i_* : \pi_{31}(X) \to \pi_{31}(S^9)\} = \{16j_*(\rho_{16})\} \cong \mathbf{Z}_2$ and $j_*([\iota_{16}, \iota_{16}]) = 16j_*(\rho_{16})$.

For the case $g = [\iota_{16}, \iota_{16}]$, we have $\pi_{31}(X) = \{j_*(\rho_{16}), j_*(\bar{\varepsilon}_{16})\} \cong \mathbf{Z}_{32} \oplus \mathbf{Z}_2$. Then by the above argument, we have $\operatorname{Ker}\{i_* : \pi_{31}(X) \to \pi_{31}(S^9)\} = \{16j_*(\rho_{16})\} \cong \mathbf{Z}_2$.

The following lemma will be used later.

Lemma 4.3. Let (E, p, B) be a fibration, F a fiber $p^{-1}(*)$ and Δ the boundary homomorphism in the homotopy exact sequence of the fibration. Then for any element α of $\pi_{i+1}(B)$, we have

$$\alpha \in \{p, i, \Delta(\alpha)\}.$$

Proof. Let E^{i+1}_+ (resp. E^{i+1}_-) be the upper-(resp. lower-)hemisphere of S^{i+1} . Since $p_*: \pi_{i+1}(E,F) \to \pi_{i+1}(B,*)$ is an isomorphism, there exists $a: (E^{i+1}_+,S^i) \to (E,F)$ such that $p\circ a$ and $a|_{S^i}$ are representatives of α and $\Delta(\alpha)$ respectively. Then we define a map $\tilde{a}: S^{i+1} \to E \bigcup CF$ by $\tilde{a}|_{E^{i+1}_+} = a$ and $\tilde{a}|_{E^{i+1}_-}(x,t) = (a|_{S^i}(x),1-2t) \in CF$. We define a map $\bar{p}: E \bigcup CF \to B$ by $\bar{p}|_E = p$ and $\bar{p}|_{CF} = *$. Then by the definition of Toda bracket, $\bar{p}\circ \tilde{a}$ represents an element of $\{p,i,\Delta(\alpha)\}$. Since $\bar{p}\circ \tilde{a}\simeq p\circ a$, we have $\alpha\in\{p,i,\Delta(\alpha)\}$.

Let us state our main result.

Theorem 4.4. We have the following table of $\pi_i(E_6/F_4)$ for $i \leq 39$.

i	$i \leq 8$	9	10	11	12	13	14	15
$\pi_i(E_6/F_4)$	0	\mathbf{Z}	\mathbf{Z}_2	\mathbf{Z}_2	\mathbf{Z}_8	0	0	\mathbf{Z}_2
generator		$p_*(\iota_9)$	$p_*(\eta_9)$	$p_*(\eta_9^2)$	$p_{*}(\nu_{9})$			$p_*(\nu_9^2)$

16	17	18	19
0	$\mathbf{Z}\oplus\mathbf{Z}_2\oplus\mathbf{Z}_2$	$\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$	\mathbf{Z}_2
	$[16j_*(\iota_{16})], p_*(\bar{\nu}_9), p_*(\varepsilon_9)$	$p_*(\nu_9^3), p_*(\mu_9), p_*(\eta_9 \varepsilon_{10})$	$p_*(\eta_9\mu_{10})$

20	21	22	23	24	25
${\bf Z}_8 \oplus {\bf Z}_2$	0	0	\mathbf{Z}_4	${f Z}_{16}\oplus {f Z}_2$	\mathbf{Z}_2
$p_*(\zeta_9), p_*(\bar{\nu}_9\nu_{17})$			$p_*(\kappa_9)$	$p_*(\rho'), p_*(\bar{\varepsilon}_9)$	$p_*(\mu_9\sigma_{18})$

26	27	28	29
${f Z}_2\oplus {f Z}_2\oplus {f Z}_2$	\mathbf{Z}_2	${f Z}_8\oplus {f Z}_2$	\mathbf{Z}_8
$p_*(\nu_9\kappa_{12}), p_*(\bar{\mu}_9), p_*(\eta_9\mu_{10}\sigma_{19})$	$p_*(\eta_9\bar{\mu}_{10})$	$p_*(\bar{\zeta}_9), p_*(\bar{\sigma}_9)$	$p_*(\bar{\kappa}_9)$

30	31		
\mathbf{Z}_2	${f Z}_2\oplus {f Z}_2$		
$p_*(\eta_9\bar{\kappa}_{10})$	$p_*(\varepsilon_9\kappa_{17}), p_*(\nu_9\bar{\sigma}_{12})$		

32	33
$\mathbf{Z}_{32} \oplus \mathbf{Z}_8 \oplus \mathbf{Z}_2$	${\bf Z}_2 \oplus {\bf Z}_2$
$\boxed{[16j_*(\iota_{16})]\rho_{17}, p_*(\nu_9\bar{\kappa}_{12}), p_*(\bar{\kappa}_9\nu_{29} - \nu_9\bar{\kappa}_{12})}$	$p_*(\bar{\mu}_9\sigma_{26}), p_*(\bar{\sigma}_9')$

$$\begin{array}{c|c}
34 \\
\mathbf{Z}_2 \oplus \mathbf{Z}_2 \\
p_*(\mu_{3,9}), p_*(\eta_9 \bar{\mu}_{10} \sigma_{27})
\end{array}$$

$$\begin{array}{|c|c|c|c|c|}\hline
& 35 \\
& \mathbf{Z}_4 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \\
\hline
& [4j_*(\nu_{16}^*)], p_*(\bar{\sigma}_9\sigma_{28}), p_*((a+1)\bar{\kappa}_9\nu_{29}^2 + a\nu_9^2\bar{\kappa}_{15}), p_*(\eta_9\mu_{3,10})
\end{array}$$

36	37	38	39
${f Z}_8 \oplus {f Z}_2$	${\bf Z}_2 \oplus {\bf Z}_2$	\mathbf{Z}_2	0
$p_*(\zeta_{3,9}), p_*(\bar{\nu}_9\bar{\sigma}_{17})$	$p_*(\bar{\nu}_9\bar{\kappa}_{17}), p_*(\varepsilon_9\bar{\kappa}_{17})$	$p_*(\eta_9\bar{\varepsilon}_{10}\bar{\kappa}_{18})$	

Here we denote by $[\alpha]$ an element of $\pi_i(E_6/F_4)$ such that $\Delta([\alpha]) = \alpha \in \pi_{i-1}(X)$. The following relations hold:

$$\begin{split} &2[16j_*(\iota_{16})]\rho_{17} = -p_*(\bar{\rho}_9),\\ &2[4j_*(\nu_{16}^*)] \equiv p_*(a\bar{\kappa}_9\nu_{29}^2 + (a+1)\nu_9^2\bar{\kappa}_{15}) \bmod p_*(\bar{\sigma}_9\sigma_{28}), \end{split}$$

where a = 0 or 1.

Proof. By Lemma 4.2, we can determine $\pi_i(E_6/F_4)$ for $i \leq 39$ easily except for the case i = 32, 35.

Consider the case i = 32; by Lemma 4.2, we have an exact sequence

$$0 \to \mathbf{Z}_{16} \oplus \mathbf{Z}_8 \oplus \mathbf{Z}_2 \stackrel{p_*}{\to} \pi_{32}(E_6/F_4) \stackrel{\Delta}{\to} \mathbf{Z}_2 \to 0,$$

Produced by The Berkeley Electronic Press, 2003

where $\mathbf{Z}_{16} \oplus \mathbf{Z}_8 \oplus \mathbf{Z}_2$ is generated by $\bar{\rho}_9, \nu_9 \bar{\kappa}_{12}, \bar{\kappa}_9 \nu_{29} - \nu_9 \bar{\kappa}_{12}$ and \mathbf{Z}_2 is generated by $16j_*(\rho_{16})$. For $p_*(\rho') \in \pi_{24}(E_6/F_4)$, we have

$$p_*(\rho') \in p \circ \{\sigma_9, 16\iota_{16}, \sigma_{16}\}$$
 by the definition of ρ' ([14])
 $= -\{p, \sigma_9, 16\iota_{16}\} \circ \sigma_{17}$
 $= -\{p, i_*j_*(\iota_{16}), 16\iota_{16}\} \circ \sigma_{17}$ by (4.1)
 $\supset -\{p, i, 16j_*(\iota_{16})\} \circ \sigma_{17}$
 $= -\{p, i, \Delta[16j_*(\iota_{16})]\} \circ \sigma_{17}$
 $\ni -[16j_*(\iota_{16})]\sigma_{17}$ by Lemma 4.3.

By Lemma 10.7 of [14] and (4.1), we have

$$p_*\pi_{17}(S^9)\sigma_{17} + \pi_{17}(E_6/F_4)16\sigma_{17} = \{p_*(\bar{\nu}_9\sigma_{17}), p_*(\varepsilon_9\bar{\sigma}_{17}), p_*(\sigma_9\eta_{16}\sigma_{17})\} = 0.$$

Hence we have $p_*(\rho') = -[16j_*(\iota_{16})]\sigma_{17}$. Then we have

$$\begin{array}{lll} p_*(\bar{\rho}_9) & \in & \{p_*(\rho'), 16\iota_{24}, \sigma_{24}\} & \text{by (3.2) of [9]} \\ & = & \{-[16j_*(\iota_{16})]\sigma_{17}, 16\iota_{24}, \sigma_{24}\} \\ & \supset & -[16j_*(\iota_{16})] \circ \{\sigma_{17}, 16\iota_{24}, \sigma_{24}\} \\ & \ni & -[16j_*(\iota_{16})] \circ \Sigma^8 \rho' & \text{by the definition of } \rho' \ ([14]) \\ & = & -[16j_*(\iota_{16})] \circ 2\rho_{17} & \text{by Lemma 10.9 of [14].} \end{array}$$

The indeterminacy of $\{p_*(\rho'), 16\iota_{24}, \sigma_{24}\}$ is

$$p_*(\rho') \circ \pi_{32}(S^{24}) + \pi_{25}(E_6/F_4) \circ \sigma_{25} = \{p_*(\rho'\varepsilon_{24}), p_*(\rho'\bar{\nu}_{24}), p_*(\mu_9\sigma_{18}^2)\}.$$

By Part III, Proposition 2.2 (1) of [12] and (4.1), we have

$$p_*(\rho'\bar{\nu}_{24}) = 0$$

and

$$p_*(\rho'\varepsilon_{24}) = p_*(\sigma_9^2\mu_{23}) = 0.$$

By Lemma 2.1 (4) of [13], we have

$$\mu_9 \sigma_{18}^2 \equiv \rho' \eta_{24} \sigma_{25} + \sigma_9^2 \mu_{23} \mod \sigma_9 \nu_{16}^3 \sigma_{25}, \sigma_9 \eta_{16} \varepsilon_{17} \sigma_{25}.$$

By (7.20) of [14], we have $\sigma_9 \nu_{16}^3 \sigma_{25} = 0$. By Lemma 10.7 of [14], we have $\sigma_9 \eta_{16} \varepsilon_{17} \sigma_{25} = 0$. By Lemma 6.4 of [14] and Part III, Proposition 2.2 (1) of [12], we have $\rho' \eta_{14} \sigma_{25} = \rho' \bar{\nu}_{24} + \rho' \varepsilon_{24} = \sigma_9^2 \mu_{23}$. Hence we have

$$\mu_9 \sigma_{18}^2 = 2\sigma_9^2 \mu_{23} = 0.$$

So we have

$$p_*(\rho') \circ \pi_{32}(S^{24}) + \pi_{25}(E_6/F_4) \circ \sigma_{25} = 0$$

and

$$p_*(\bar{\rho}_9) = -2[16j_*(\iota_{16})]\rho_{17}.$$

Therefore we have

$$\pi_{32}(E_6/F_4) = \{ [16j_*(\iota_{16})]\rho_{17}, p_*(\nu_9\bar{\kappa}_{12}), p_*(\bar{\kappa}_9\nu_{29} - \nu_9\bar{\kappa}_{12}) \} \cong \mathbf{Z}_{32} \oplus \mathbf{Z}_8 \oplus \mathbf{Z}_2.$$

Consider the case i = 35; by Lemma 4.2, we have an exact sequence

$$0 \to \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \stackrel{p_*}{\to} \pi_{35}(E_6/F_4) \stackrel{\Delta}{\to} \mathbf{Z}_2 \to 0,$$

where $\mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2$ is generated by $\bar{\kappa}_9 \nu_{29}^2$, $\bar{\sigma}_9 \sigma_{28}$, $\nu_9^2 \bar{\kappa}_{15}$, $\eta_9 \mu_{3,10}$ and \mathbf{Z}_2 is generated by $4j_*(\nu_{16}^*)$. By the exactness there exists an element $[4j_*(\nu_{16}^*)] \in \pi_{35}(E_6/F_4)$ such that $\Delta([4j_*(\nu_{16}^*)]) = 4j_*(\nu_{16}^*)$. We consider $\{\sigma_9, 4\nu_{16}^*, 2\iota_{34}\}$. The indeterminacy of the Toda bracket is

$$\sigma_9 \circ \pi_{35}(S^{16}) + 2\pi_{35}(S^9) = \{\sigma_9 \bar{\zeta}_{16}, \sigma_9 \omega_{16} \nu_{32}, \sigma_9 \bar{\sigma}_{16}\}.$$

So the Toda bracket $\{\sigma_9, 4\nu_{16}^*, 2\iota_{34}\}$ is represented by

$$a\bar{\kappa}_9\nu_{29}^2 + b\bar{\sigma}_9\sigma_{28} + c\nu_9^2\bar{\kappa}_{15} + d\eta_9\mu_{3,10} \in \{\sigma_9, 4\nu_{16}^*, 2\iota_{34}\}$$

for some integers a, b, c, d. By Part I, Proposition 3.5 (6) of [12], we have $\bar{\sigma}_{10}\sigma_{29} = 0$. Then the facts that $\langle \sigma, 4\nu^*, 2\iota \rangle = \nu^2 \bar{\kappa}$ by Theorem 1 of [4] and that $\pi_{26}^S(S^0) = \{\nu^2 \bar{\kappa}, \eta \mu_{3,*}\} \cong \mathbf{Z}_2 \oplus \mathbf{Z}_2$ imply that

$$\{\sigma_9, 4\nu_{16}^*, 2\iota_{34}\} \ni a_1\bar{\kappa}_9\nu_{29}^2 + (a_1+1)\nu_9^2\bar{\kappa}_{15} + a_2\bar{\sigma}_9\sigma_{28},$$

where $a_i = 0$ or 1. We have

$$\begin{array}{lll} p_*\{\sigma_9,4\nu_{16}^*,2\iota_{34}\} &=& -\{p,\sigma_9,4\nu_{16}^*\} \circ 2\iota_{35} \\ &=& -\{p,i_*j_*(\iota_{16}),4\nu_{16}^*\} \circ 2\iota_{35} & \text{by (4.1)} \\ &\supset& -\{p,i,4j_*(\nu_{16}^*)\} \circ 2\iota_{35} \\ &=& -\{p,i,\Delta([4j_*(\nu_{16}^*)])\} \circ 2\iota_{35} \\ &\ni& [4j_*(\nu_{16}^*)] \circ 2\iota_{35} & \text{by Lemma 4.3.} \\ &=& 2[4j_*(\nu_{16}^*)] \end{array}$$

Since $p_*(\sigma_9) = 0$ by (4.1), we have

$$p_*(\sigma_9 \circ \pi_{35}(S^{16}) + 2\pi_{35}(S^9)) = p_*(\{\sigma_9\bar{\zeta}_{16}, \sigma_9\omega_{16}\nu_{32}, \sigma_9\bar{\sigma}_{16}\}) = 0.$$

Therefore we have

$$p_*(a_1\bar{\kappa}_9\nu_{29}^2 + (a_1+1)\nu_9^2\bar{\kappa}_{15} + a_2\bar{\sigma}_9\sigma_{28}) = 2[4j_*(\nu_{16}^*)],$$

where $a_i = 0$ or 1. So we have

$$\pi_{35}(E_6/F_4) = \{ [4j_*(\nu_{16}^*)], p_*((a+1)\bar{\kappa}_9\nu_{29}^2 + a\nu_9^2\bar{\kappa}_{15}), p_*(\bar{\sigma}_9\sigma_{28}), p_*(\eta_9\mu_{3,10}) \}$$

$$\cong \mathbf{Z}_4 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2 \oplus \mathbf{Z}_2.$$

References

- [1] S. Araki, Cohomology modulo 2 of the compact exceptional groups E₆ and E₇, J. Math. Osaka City Univ. **12** (1961), 43–65.
- [2] L. CONLON, An application of the Bott suspension map to the topology of EIV, Pacific J. Math. 19 (1966), 411–428.
- [3] F. R. COHEN AND P. S. SELICK, Splittings of two function spaces, Quart. J. Math. Oxford Ser. (2) 41 (1990), 145–153.

97

- [4] Y. HIRATO AND J. MUKAI, Some Toda bracket in $\pi_{26}^S(S^0)$, Math. J. Okayama Univ. **42** (2000), 83–88.
- [5] I. M. JAMES, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford Ser. (2) 5 (1954), 260-270.
- [6] I. M. JAMES, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383.
- [7] M. MIMURA, On the generalized Hopf homomorphism and the higher composition. Part I, J. Math. Kyoto Univ. 4 (1964), 171-190.
- [8] M. MIMURA, On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}(S^n)$ for i = 21 and 22, J. Math. Kyoto Univ. 4 (1965), 301-326.
- [9] M. MIMURA, M. MORI AND N. ODA, Determinations of 2-components of the 23- and 24-stems in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. 29 (1975), 1-42.
- [10] M. MIMURA AND H. TODA, The (n+20)-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37-58.
- [11] N. Oda, On the 2-components of the unstable homotopy groups of spheres. II, Proc. Japan Acad. 53, Ser. A(1977), 215-218.
- [12] N. Oda, Unstable homotopy groups of spheres, Bull. of the Inst. for Advanced Research of Fukuoka Univ. 44 (1979), 49-152.
- [13] N. Oda, Some relations in the 18-stem of the homotopy groups of spheres, Bull. Central Res. Inst. Fukuoka Univ., 104, (1988), 75–83.
- [14] H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, 49, Princeton, (1962).
- [15] H. Toda, On iterated suspensions I, J. Math. Kyoto Univ. 5 (1965), 87–142.
- [16] H. Toda, On iterated suspensions II, J. Math. Kyoto Univ. 5 (1966), 209–250.
- [17] H. Toda, On iterated suspensions III, J. Math. Kyoto Univ. 8 (1968), 101–130.
- [18] G. W. WHITEHEAD, *Elements of Homotopy Theory*, Graduate texts in mathematics, **61**, Springer, (1978).

Yoshihiro Hirato

The Graduate School of Natural Science and Technology Okayama University Okayama, 700-8530 Japan

e-mail address: hirato@math.okayama-u.ac.jp

(Received November 6, 2002) (Revised December 16, 2002)