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QUATERNIONIC LINE BUNDLES OVER QUATERNIONIC
PROJECTIVE SPACES

Daciberg L. GONÇALVES and Mauro SPREAFICO

1. Introduction

Let ξ be an F-line bundle over a space X, the field F = R, C or H. A
natural question is to enumerate the set LineF(X) of such bundles ξ for given
classes of space. As it is well known, classical bundle theory of characteristic
classes gives a complete answer for the real and complex case, where

LineR(X) = H1(X; Z/2), LineC(X) = H2(X; Z),

the bijection is given by the first Stiefel Withney and Chern classes, respec-
tively. So far, the complete answer for the quaternionic case is still unknown,
and as we will see in Section 2, a full general answer is unlikely. Ultimately,
an answer to this problem would depend at least on the knowledge of the
homotopy groups of the 3−sphere. In this paper we deal with the case
X = HPn. Thus, counting quaternionic line bundles over X is equivalent to
count the element in the set [HPn, HPn]0, of the based homotopy classes of
self maps of the quaternionic projective n-space. We give a short review on
what is known on this problem in Section 2. Our results give a complete an-
swer for the low dimensional cases n ≤ 3 and some indication on the general
case. Here the subscript +/− denotes the even/odd subset of a subset of
integer numbers and P (2), P (3), Q(2), Q(3) are sets of cardinalities 1, 2, 2, 4,
respectively.

Theorem 1. [HP 2, BS3] = LineH(HP 2) = R2,+×P (2)∪R2,−×Q(2), where
R2 = {n ∈ Z, n = 0, 1, 9, 16(mod24)}.

An explicit description of the maps is given in Proposition 6.

Theorem 2. LineH(HP 3) = R3,+ × P (3) ∪ R3,− × Q(3), where R3 = {n ∈
Z, n = 0, 1, 9, 16, 25, 40, 49, 64, 81, 121, 136, 144, 145, 160, 169, 184, 216, 225,
241, 256, 265, 280, 289, 304(mod360)}.

Theorem 3. The number of non-equivalent line bundles in LineH(HPn)
with fixed first quaternionic characteristic class λ, only depends on the parity
of λ.

A direct consequence of the above result is:
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88 D. L. GONÇALVES AND M. SPREAFICO

LineH(HPn) = Rn,+×P (n)∪Rn,−×Q(n), where Rn is defined in Section
2, and P (n) and Q(n) are finite sets whose cardinalities depend on n.

Also the above result together with the Feder and Gitler conjecture men-
tioned in Section 2, prompts the following conjecture (where one inclusion
is proved).

Conjecture 1. LineH(HPn) = FGn,+ ×P (n)∪FGn,−×Q(n), where FGn

is defined in Section 2, and P (n) and Q(n) are finite sets whose cardinalities
depend on n.

As a by-product of the techniques used we also compute [KP 2, KP 2] where
KP 2 stands for the Cayley projective space or the cone of the Hopf map
h : S15 → S8.

As mentioned in Section 2, further investigations using the methods of
[12] or [8] would probably allow to extend the classification to dimension
4 and 5, but for the general problem the indications given in Theorem 3
appears to be the best general result we are likely to get, that is to say, it
is unlikely to find out a general formula for the numbers P (n) and Q(n)
appearing in the Conjecture 1.

The work is organized as follows. In the following section, we give a
summary on the state of the art on the subject. In Section 3, we consider
the quaternionic projective space and we give a proof of Theorem 2 by
classical methods, to be superseded by the techniques introduced in Section
4, where we deal with the general case and with the proofs of Theorems 2
and 3. In Section 5 we compute the set of homotopy classes of self maps of
the Cayley projective space.

Acknowledgments We would like to thank Gustavo Granja for helpful
discussion and for having point out to us the references [8] and [9] and the
referee for pointing out a problem in the proof of the result for HP 3 and for
providing the examples given at the beginning of Section 5 and in Remark 1.

2. Self maps of quaternionic projective spaces

Let f : FPn → FPn be a self map of the projective space over the field
F = R, C or H. In the complex and quaternionic cases we can identify
free and based homotopy classes, since all the spaces involved are simple
(thus we will omit the subscript 0 in the notation of [X,Y ]0, whenever Y is
simple); furthermore, connectivity and dimension imply that [FPn, FPn] =
[FPn, FP∞]. Thus, in the complex case we get

[CPn, CPn] = H2(CPn; Z) = Z.

The real case is a little bit more complicate. Using Theorems IIa and
IIIa of P. Olum [14], we can state the following. Call [RPn, RPn]00 the set of

2
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QUATERNIONIC LINE BUNDLES OVER QUATERNIONIC PROJECTIVE SPACES 89

pointed homotopy classes of maps which induce the zero homomorphism on
the fundamental group, [RPn, RPn]10 the set of pointed homotopy classes of
maps which induce the identity homomorphism on the fundamental group
and Z̃ the local orientation system over RPn. Then we have

[RPn, RPn]00 =
{

2Z n odd,
Z/2 n even,

[RPn, RPn]10 = 1 + 2Z,

with the same notation for free classes we have

[RPn, RPn]0 =
{

2Z n odd,
Z/2 n even,

[RPn, RPn]1 =
{

1 + 2Z n odd,
1 + 2N n even.

Turning to the quaternionic case, since H∗(HPn; Z) = Z[x]/xn+1, where
x is a generator in dimension 4, we can associate to each self map an integer
λ = λ(f) defined by f∗x = λ(f)x, and call it the degree of f . Note that
λ(f) corresponds to the usual degree of the induced self map of ΩHP∞ in
the infinite case. Note also that the degree of f is the class, in π4(HPn), of
the restriction of f on the 4-skeleton [13].

Definition 1. An integer λ is called n-realizable if there is a self map of
HPn with degree λ.

Let Rn be the subset of integers that are n-realizable, i.e. the image of
the function λ : [HPn, BS3] → Z. For n ≥ 1, consider the congruences

Cn(λ) = 0 :
n−1∏
i=0

(λ − i2) = 0mod
{

(2n)! n even
(2n)!

2 n odd,

and the set FGn = {λ ∈ Z | Ci(λ) = 0, 1 ≤ i ≤ n}. For n < ∞, the first
congruences are:

C1(λ) = 0 : λ = 0(mod1),
C2(λ) = 0 : λ(λ − 1) = 0(mod24),

C3(λ) = 0 : λ(λ − 1)(λ − 4) = 0(mod360).
In general, the allowed degrees in dimension n are not known, but Feder

and Gitler proved in [6], using complex and quaternionic K-theory, that
Rn ⊂ FGn and they conjectured that the condition is also sufficient. This
conjecture has been verified for n = 1, 2, 3, 4, 5, in [2], [11], [8] and n = ∞ in
[6] using the results of [18].

R1 = FG1 = Z, R2 = FG2 = {0, 1, 9, 16}(mod24).

R3 = FG3 = {0, 1, 9, 16, 25, 40, 49, 64, 81, 121, 136, 144, 145, 160, 169, 184
216, 225, 241, 256, 265, 280, 289, 304}(mod360),

3
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90 D. L. GONÇALVES AND M. SPREAFICO

R∞ = FG∞ = {0, (2n + 1)2, n ∈ Z}.
The other face of the problem is determining if two self maps with the

same degree are in fact homotopic. Marcum and Randall [13] answered this
question in the negative providing essential self maps with trivial degree for
n = 3, 4, 5, and they conjectured that this is the general situation. They
also showed that if a map has degree zero in HP 2 then it is homotopic to
the constant map.

Further results exist for the maps of degree 1, namely the group of self
homotopy equivalence E(HPn). In fact, facing the problem under this point
of view, we can state the general natural question of determining the group
E(FPn) of all invertible elements in the set [FPn, FPn]0 with monoid struc-
ture given by composition. Again, a complete answer for the real and com-
plex cases easily follows from classical methods in homotopy theory [5] and
[9].

E(RPn) = Z/2, E(CPn) = Z/2,

The quaternionic case was considered by Iwase, Maruyama and Oka in
[9], where they use an unstable homotopy spectral sequence and homotopy
operations to get

E(HP 2) = Z/2, E(HP 3) = Z/2 × Z/2,

E(HP 4) = 0 or Z/2,

and conjecture the first alternative for the last group.
Eventually, the complete answer for the infinite case was given by Mislin

in [12], that using a generalization of the Sullivan conjecture of H. Miller
and a theorem of Dwyer on finite p-groups, got the classification theorem

Theorem 4. (Mislin) Self maps of HP∞ are classified by their degree.

3. Quaternionic projective plane

Let j : S4 → BS3 be the inclusion of the 4-skeleton. The following result
generalizes the known fact that each map from a sphere to BS3 factors
through S4.

Lemma 5. Let G be a topological group, and X a space. Then, any map
from ΣX in BG factors up to homotopy through the inclusion i : ΣG → BG.

Proof. Recall that the composition (Ωi)s : G → ΩBG is an homotopy equiv-
alence, where s is the natural inclusion (the adjoint of the identity) and
i : ΣG → BG is the inclusion given by the construction of BG. Call σ the
homotopy inverse and consider the diagram

4
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ΩBG
σ // G

s||yyyyyyyy

ΩΣG

Ωi
ddIIIIIIIII

For each f : ΣX → BG, define

f ′ = coad(sσad(f));

then,

if ′ = icoad(sσad(f)) = coad((Ωi)sσad(f)) ∼ coad(ad(f)) = f.

¤
This provides a right inverse φ in homotopy to j∗ : πn(S4) → πn(BS3).

The explicit form of φ is the composite of the suspension homomorphism Σ
with the boundary ∂ appearing in the homotopy sequence associated to the
universal fibration of BS3.

We now consider the problem of counting the elements of [HP 2, HP 2]. Let
λ ∈ R2 be a 2-realizable degree, and consider the decomposition of HP 2 =
S4 ∪h1 e8, where h1 : S7 → S4 is the Hopf map. Then, if uλ : S4 → BS3 has
degree λ, it extends to a map û : HP 2 → BS3, and different extensions are
given via the Hilton coaction by elements α ∈ π8(BS3) and denoted as ûα.
Consider the right end of the Puppe sequence associated to the Hopf map
h1

. . . // [HP 2, BS3]
i∗1 // Z

h∗
1 // Z/12,

where i1 = j is the inclusion of S4 in HP 2. Then, by classical properties
of Hilton coaction [17] VII.1, [HP 2, BS3] is the union of the inverse images
(i∗1)

−1([uλ]) of the classes of the maps uλ : S4 → BS3, and for each fixed
uλ, (i∗1)

−1([uλ]) contains as many different elements as there are non homo-
topic extensions ûα

λ . A construction of Barcus and Barratt [3], defines an
homomorphism

νuλ
: π1(m0(S4, BS3; uλ)) → π8(BS3),

such that ûλ ∼ ûα
λ if and only if α ∈ Imνuλ

. In the present case, since the
4-skeleton S4 is a co-H-space, we can get the explicit form of this homomor-
phism. We use the commutative diagram

π1(m0(S4, BS3;uλ))
νuλ //

(uλ)\

²²

π8(BS3)

π5(BS3)(= π1(m0(S4, BS3; u0)))
ψuλ

44jjjjjjjjjjjjjjjjj

where (uλ)\ is the isomorphism defined in 2.5, 2.6 of [3]. Using the compo-
sition Theorem 4.6 of [3], we get, for any ζ ∈ π5(BS3) = Z/2,

5
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ψuλ
(ζ) = νuλ

(uλ)−1
\ (ζ) = ζ ◦ Σν4 + [(uλ)∗(ι4), ζ] ◦ ΣH(ν4),

where ν4 is the class of the Hopf map and ΣH(ν4) = 1. Here we are using the
notation of Toda, and observe that u1 = j. Now let’s use the factorization
given by Lemma 5, to reduce the computation in the homotopy groups of
S4. Then, let ζ = j∗(χ) for some χ ∈ π5(S4) = Z/2[η4], where η4 = Σ2η2,
η2 is the class of the Hopf map h : S3 → S2 and observe that u1 = j. By
naturality of the Whitehead product and linearity of the composition with
suspensions, the unique non trivial case is

[(uλ)∗(ι4), j∗(η4)] = λ(mod2)j∗[ι4, η4] = λ(mod2)j∗[ι4, ι4] ◦ η7 =

= λ(mod2)j∗((2ν4 ± Σν ′) ◦ η7) = λ(mod2)j∗(Σν ′ ◦ η7),
where Σν ′ ◦η7 is precisely the generator of π8(S4) that is not in the kernel of
j∗, we used [20] X.8.18, [19] 5.8, and ν ′ is the element of order 4 in π6(S3).
This gives

ψuλ
(j∗(η4)) = (λ + 1)(mod2)j∗(Σν ′ ◦ η7).

Proposition 6. Let vλ : HP 2 → BS3 be of 2-realizable degree λ, and
α = j∗(Σν ′ ◦ η7) the generator of π8(BS3) = Z/2[α]. Then, vλ and vα

λ
are homotopic if and only if λ is even.

Note that the above approach also allows to easily prove the Feder Gitler
conjecture for n = 2, namely to find out the set R2 of the 2-realizable integer
(see [2] for the original proof). In fact, considering the Puppe sequence
above, we see that R2 = kerh∗

1. Reducing the problem in S4, we have

h∗
1(λj∗(ι4)) = j∗

(
λ2ν4 +

λ(λ − 1)
2

Σν ′
)

=
λ(λ − 1)

2
Σν ′,

by [4] III.1.9, that gives for the kernel the condition λ(λ − 1) = 0(mod24).

4. HP 3 and the general case

The above technique allows to deal only with the self maps of odd degree
on HP 3. Although, we can use the following quite general method. The
natural inclusion in−1 : HPn−1 → HPn induces a fibration

(in−1)] : m0(HPn, BS3) → m0(HPn−1, BS3).

Now we will define a subspace of m0(HPn, BS3) (the space of pointed
maps from HPn to BS3), denoted by Mn(fλ), which is suitable to study
our problem. Then we will consider the fibration having Mn(fλ) as total
space, the fibre map the restriction of (in−1)] and as base Mn−1(fλ) (the
projection is not surjective in general).

Let fλ be of degree λ, mn(fλ) = m0(HPn, BS3; fλ) denotes the com-
ponent of fλ and Mn(fλ) =

∪
g mn(g), where g runs over all maps in

6
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QUATERNIONIC LINE BUNDLES OVER QUATERNIONIC PROJECTIVE SPACES 93

m0(HPn, BS3) of degree λ. We take fλ as base point of Mn(fλ). If pn

is the restriction of (in−1)] to Mn(fλ) then its fibre Fn(fλ) over fλin−1, with
base point fλ, has the type of Ω4nBS3, and we have the exact sequence

(1)
. . .

∂n,q+1

// πq(Fn(fλ))
jn,q

// πq(Mn(fλ))
pn,q

// πq(Mn−1(fλin−1))
∂n,q

// . . .

The sequences with index n − 1 and n can be ’ composed’ as follows:
. . .

²²
πq(Fn−1(fλin−1))

jn−1,q

²² dn,q ))RRRRRRRRRRRRR

. . .
jn,q

// πq(Mn(fλ))
pn,q

// πq(Mn−1(fλin−1))

²²

∂n,q

// πq−1(Fn(fλ)) // . . .

. . .
where an explicit description of the homomorphism dn,q = ∂n,qjn−1,q can be
obtained using a construction of James [10] as in [9]

dn,q : πq(Fn−1(fλin−1)) = π4n+q−4(BS3) → πq−1(Fn(fλ)) = π4n+q−1(BS3),

(2) dn,q : ζ 7→ ±(n − 1)ζ ◦ ν4n+q−4 ± λ[γ, ζ],

where γ = [j] denotes the class of the inclusion j : S4 → BS3. Notice in
particular that the homomorphism

j1,q : πq(F1(fλ) = πq+4(BS3) → πq(M1(fλ)),

is always an isomorphism, since the two spaces have the same type. We
can now apply this construction to determinate the number of connected
components of the space M3(fλ), for each λ. We will use Lemma 5 to
reduce computation to homotopy groups of S4. With n = 2, we get the
sequence

. . . // Z/2[j∗(η2
4)] ∂2,2

//

∂2,2

// Z/2[j∗(Σν ′ ◦ η2
7)] j2,1

// π1(M2(fλ)) p2,1

// Z/2[j∗(η4)]
∂2,1

//

∂2,1

// Z/2[j∗(Σν ′ ◦ η7)]
j2,0

// π0(M2(fλ)) p2,0

// 0 // π7(BS3).

with connecting homomorphisms

d2,1 = ∂2,1 : Z/2[j∗(η4)] → Z/2[j∗(Σν ′ ◦ η7)]

7
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94 D. L. GONÇALVES AND M. SPREAFICO

∂2,1(ζ) = ζ ◦ ν5 + λ[j∗(ι4), ζ],
that coincides with the homomorphism ψuλ

of Section 3, and

d2,2 = ∂2,2 : Z/2[j∗(η2
4)] → Z/2[j∗(Σν ′ ◦ η2

7)]

∂2,2(ζ) = ζ ◦ ν6 + λ[j∗(ι4), ζ].
Using η2

4 ◦ ν6 = η4 ◦ η5 ◦ ν6 = 0 [19] 5.9, this gives

∂2,2(j∗(η2
4)) = λj∗(Σν ′ ◦ η2

7).

We can state the following facts:
(1) λ even

(1a) then ∂2,1 is injective and thus is iso; hence kerj2,0 = im∂2,1 =
Z/2, and since j2,0 is onto, because p2,0 is trivial, this means that
π0(M2(fλ)) = 0;
(1b) then ∂2,1 is injective, so ker∂2,1 = 0 = imp2,1, and hence p2,1

is trivial and π1(M2(fλ)) = kerp2,1 = imj2,1; with λ even, ∂2,2 is
trivial, and hence kerj2,1 = 0 and π1(M2(fλ)) = imj2,1 = Z/2.

(2) λ odd
(2a) then ∂2,1 is trivial and hence kerj2,0 = 0, thus j2,0 is injec-
tive and imj2,0 = kerp2,0 = Z/2; since p2,0 is trivial, this implies
π0(M2(fλ)) = Z/2
(2b) then ∂2,1 is trivial so ker∂2,1 = Z/2 = imp2,1; on the other side,
∂2,2 is injective so kerj2,1 = Z/2 = im∂2,2, and this implies that j2,1

is trivial, kerp2,1 = imj2,1 = 0, hence π1(M2(fλ)) = imp2,1/kerp2,1 =
Z/2.

When n = 3, using the results of the case n = 2, we have the sequence
. . . // π2(M2(fλi2))

∂3,2

// Z/2 ⊕ Z/2
j3,1

// π1(M3(fλ))p3,1

//

(3)

p3,1

// π1(M2(fλi2))
∂3,1

// Z/2
j3,0

// π0(M3(fλ)) p3,0

// π0(M2(fλi2)) // Z/15.

(where recall that π1(M2(fλi2)) = Z/2) with the connecting homomor-
phisms

d3,1 : π9(BS3) = Z/2[j∗(Σν ′ ◦ η2
7)] → π12(BS3) = Z/2[ε4],

d3,1(ζ) = ±2ζ ◦ ν9 ± λ[j∗(ι4), ζ],
and

d3,2 : π10(BS3) = Z/3 → π13(BS3) = Z/2 ⊕ Z/2,

that is clearly trivial. Let’s compute d3,1, on the generator. By [19] 5.9

j∗(Σν ′ ◦ η2
7) ◦ ν9 = j∗(Σν ′ ◦ η7 ◦ η8 ◦ ν9) = 0.

8
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QUATERNIONIC LINE BUNDLES OVER QUATERNIONIC PROJECTIVE SPACES 95

[j∗(ι4), j∗(Σν ′ ◦ η2
7)] = j∗((2ν4 ± Σν ′) ◦ Σ4(ν ′ ◦ η6 ◦ η7)) = 0,

since Σ4(ν ′ ◦ η6 ◦ η7) = η7 ◦ ν8 ◦ η11 = 0, and hence d3,1 is always trivial. In
order to proceed, we need to distinguish even and odd λ.

When λ is even, by point (1) above, j2,1 is onto, and since ∂3,1j2,1 = d3,1 =
0, it follows that ∂3,1 is trivial in this case. Hence, kerj3,0 = im∂3,1 = 0, and
we have the exact sequence

0
∂3,1

// Z/2
j3,0

// π0(M3(fλ)) p3,0

// π0(M2(fλi2))
∂3,0

// Z/15.

Since when λ is even, by the computations with n = 2, π0(M2(fλi2)) = 0,
we infer that j3,0 is a bijection and π0(M3(fλ)) = Z/2 in this case.

The case λ odd is different since j2,1 is trivial now (by point (2) above).
However, by exactness of the sequence in (3) and since p3,1 is surjective by
point (4) of Proposition 2.5 of [9] (notice that Mn(fλ) corresponds to Cfn

in the notation of [9]), we infer that ∂3,1 is trivial as well. Next, since when
λ is odd, π0(M2(fλi2)) = Z/2, we can consider the commutative diagram

0

²²
π0(F2(fλi2)) = Z/2

j2,0

²² d3,0 ))TTTTTTTTTTTTTTT

. . .
j3,0

// π0(M3(fλ)) p3,0

// π0(M2(fλi2)) = Z/2

²²

∂3,0

// π11(BS3) = Z/15

0
and the function ∂3,0 can be identified with the homomorphism d3,0 that is
clearly trivial. Observing that the function p3,0 is an homomorphism with
respect to the group structure induced by composition in the case of maps
of degree 1, we see that π0(M3(fλ)) has four elements. This concludes the
proof of Theorem 2.

For the general case we prove the following proposition.

Proposition 7. The number of non-homotopic classes of maps of given
degree λ in [HPn, HPn], only depends on the parity of λ.

Proof. From sequence (1), we get (for n > 2)
π4n−4(BS3)

jn,0

// π0(Mn(fλ)) pn,0

// π0(Mn−1(fλin−1))
∂n,0

// π4n−1(BS3),

where it is clear that jn,0 and pn,0 do not depend on the degree. We proceed
by induction on n, and assume in dimension n− 1 the number of connected
components of the space Mn−1(fλin−1) only depends on the parity of λ. In
order to prove that the number of the connected components of the space

9
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96 D. L. GONÇALVES AND M. SPREAFICO

Mn(fλ) only depends on the parity of λ, it is enough to show that the
boundary homomorphism ∂n,q only depends on this parity for at least q = 0
and 1 (in fact this happens to be true for all q). Now, λ only appears in
the second term λ[γ, ζ] in the given formula (2) for ∂n,q. We can use the
following facts:

(1) for the odd components of the homotopy groups of S4, we have the
Serre isomorphism [16] (p odd)

πq−1(S3; p) ⊕ πq(S7; p) → πq(S4; p)

(α, β) 7→ Σα + [ι4, ι4] ◦ β;
(2) the maximum order of the elements of the 2−component of the ho-

motopy groups of S4 is 4 [15].
By Lemma 5, all elements ζ ∈ π4n−4(BS3) can be written as ζ = j∗(y),

for some y = φ(x) = Σ∂(x) in π4n−4(S4). Thus,

[γ, x] = [j∗(ι4), j∗(y)] = j∗([ι4, y]),

by naturality of the Whitehead product and since y is a suspension

[ι4, y] = [ι4, Σz] = [ι4, ι4] ◦ Σ4z,

with Σ4
∗z ∈ π4n−1(S7). In the odd components, the element [ι4, ι4] ◦ Σ4z

belongs to the kernel of j∗ by the Serre isomorphisms, and hence [γ, ζ] is
trivial. Thus, we can restrict computation to the 2-component. But in
the 2-component λx = λ(mod2)x, for all x, since the realizable integers
λ, according to the lists given in Section 2 are divisible by 4, or the same
happens for λ − 1. This proves that the unique term depending on the
degree actually depends only on the parity of the degree, and thus gives the
thesis. ¤

5. The Cayley projective plane

In this section we consider the case of the Cayley projective plane that
we denote by KP 2. We compute the realizable degrees for self maps on the
Cayley projective plane and the cardinality of the set [KP 2, KP 2] for each
realizable number λ. For degree 1 we compute the group structure. One
should ask if Lemma 5 generalizes to the present case, i.e. if given a homo-
topy class ΣX → KP 2, does there exist a map which factors through S8?
The following example proves that this is not the case. An easy computation
shows that [ΣX,S8] → [ΣX, KP 2] is onto if X = Sn for n < 22. However,
π23(S8) → π23(KP 2) is not onto, since the first group is finite while the
second is infinite. However, certainly we can say that given a homotopy
class ΣX → KP 2 there exists a map which factors through S8 if X = Sn

and n < 15.

10

Mathematical Journal of Okayama University, Vol. 48 [2006], Iss. 1, Art. 10

http://escholarship.lib.okayama-u.ac.jp/mjou/vol48/iss1/10



QUATERNIONIC LINE BUNDLES OVER QUATERNIONIC PROJECTIVE SPACES 97

Proposition 8. The set R2 of integers which are 2-realizable, i.e. the image
of the function λ : [KP 2, KP 2] → Z is given by the integers λ which satisfy
the congruence

C2(λ) = 0 : λ(λ − 1)/2 = 0(mod120),

λ = 0, 1, 16, 81, 96, 145, 160, 225(mod240).

Proof. The proof follows the line of the argument described below Propo-
sition 6, in order to determinate the set of 2-realizable integer for HP 2

and uses the observation above to reduce the problem to computations in
the homotopy groups of S8 and the fact that the suspension Σσ′ has order
120. ¤

Now we will show:

Theorem 9. [KP 2, KP 2] = R2,+ × {1, 2, ..., 4} ∪ R2,− × {1, 2, ..., 8} where
R2 = {n ∈ Z, n = 0, 1, 16, 81, 96, 145, 160, 225(mod240)}.

Proof. We will follow the same steps as in the quaternionic case. Using the
composition Theorem 4.6 of [3], we get, for any ζ ∈ π9(KP 2) = Z/2,

ψuλ
(ζ) = νuλ

(uλ)−1
\ (ζ) = ζ ◦ Σσ8 + [(uλ)∗(ι8), ζ] ◦ ΣH(σ8),

where σ8 is the class of the Hopf map (S15 → S8) and ΣH(σ8) = 1. Given
a homotopy class ΣX → KP 2 there exists a map which factors through
S8 if X = Sn and n < 15. So we can reduce our problem to a problem
of homotopy groups of spheres and we can perform a similar calculation as
the one done before Proposition 6. Namely, by naturality of the Whitehead
product, linearity of the composition with suspensions (see [20] X.8.18), and
the fact that the group π16(S8) is 2-elementary, the only possible non trivial
case is

[(uλ)∗(ι8), j∗(η8)] = λ(mod2)j∗([ι8, η8]) = λ(mod2)j∗([ι8, ι8] ◦ η15) =

= λ(mod2)j∗((2σ8 ± Σσ′) ◦ η15) = λ(mod2)j∗(Σσ′ ◦ η15),
where Σσ′ ◦ η15 is a generator of π16(S8) that is not in the kernel of j∗ (see
[19] VII.7.1), and σ′ is the element of order 120 in π14(S7). This yields

ψuλ
(j∗(η8)) = (λ + 1)(mod2)j∗(Σσ′ ◦ η15).

Therefore for λ odd the image is trivial and for λ even the image is
isomorphic to Z/2 and the result follows. ¤

Now we consider the group structure for the case λ = 1. So we show some
result about the coaction which arises from the Barratt-Puppe sequence
associated to some cell complexes.

In general for A and B spaces and f : A → B a continuous map we have:

11
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98 D. L. GONÇALVES AND M. SPREAFICO

Lemma 10. The following diagram is commutative

A ∨ A
f∨f //

∇
²²

B ∨ B

∇
²²

A
f

// B

Let L be (n − 1) connected, with n > 2. Let K = L th em, S = ∂em =
Sm−1, m > dim(L). From the Lemma above we obtain:

Corollary 11. The following diagram is commutative

K ∨ K
θ∨θ //

∇
²²

K ∨ ΣS ∨ K ∨ ΣS

∇
²²

K
θ

// K ∨ ΣS

Lemma 12. Let L be (n − 1) connected, with n > 2. Let K = L th em,
S = ∂em = Sm−1. Then, the following diagram is homotopy commutative

K
θ //

θ
²²

K ∨ ΣS

1∨ν
²²

K ∨ ΣS
θ∨1

// K ∨ ΣS ∨ ΣS

where ν : Sm → Sm ∨ Sm is the coproduct and θ : K → K ∨ S the pinching
map.

Proposition 13. Let L be (n−1) connected, with n > 2. Let K = Lth em,
S = ∂em = Sm−1. Let f = 1α, with α ∈ πm(K). Then,

f ◦ f ∼ 12α+α◦q∗(α),

where q : K → K/L = ΣS is the natural projection.

Proof. By definition
f = ∇ ◦ (1 ∨ a) ◦ θ,

where α = [a]. Using Corollary 11, Lemma 10 and some diagram chasing,
we can transform the following diagram

K
θ

// K ∨ ΣS
1∨a

// K ∨ K ∇
// K

θ
// K ∨ ΣS

1∨a
// K ∨ K ∇

// K,

into the diagram

K
θ

// K ∨ ΣS
1∨a

// K ∨ K
θ∨θ

// (K ∨ ΣS) ∨ (K ∨ ΣS)
(1∨a)∨(1∨a)

//

(1∨a)∨(1∨a)
// (K ∨ K) ∨ (K ∨ K)

∇∨∇
// K ∨ K ∇

// K.
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Now consider the map g = θa : Sm → K∨Sm, where Sm = ΣS = ΣSm−1.
The class [g] is in πm(K ∨ Sm), and hence decomposes as

[g] = j1∗q1∗([g]) + j2∗q2∗([g]) + ∂β,

where ji : Xi → X1∨X2 are the inclusions and qi : X1∨X2 → Xi the projec-
tions, β ∈ πm+1(K × Sm,K ∨ Sm), and ∂ is the boundary of the homotopy
exact sequence of the pair. Projecting on the summands, q1∗([g]) = [a] and
q2∗([g]) = [qa], where q : K → K/L = Sm is the natural projection. Now,
by [20] XI.11.7, ∂ is trivial whenever m < m + n − 1, i.e. whenever n > 1.
Thus,

g ∼ (j1a ∨ j2qa)ν,

and by Lemma 12, we have got the thesis.
¤

Remark One can show a similar formula in a more general situation.
Namely given f1, f2 two self homotopy equivalences and α1, α2 ∈ πm(K),
then one can show that

(fα2
2 ) ◦ (fα1

1 ) = (f2 ◦ f1)α2+f2#(α1)+α2◦q◦(α1).

Lemma 14. Let KP 2 = S8 th e16 be the Cayley projective plane. Then,
q∗(α) = 0 for all α ∈ π16(KP 2).

Proof. The projection q : KP 2 → KP 2/S8 = S16 induces the homomor-
phism q∗ : π16(KP 2) → π16(S16) = Z, thus to prove that q∗ is trivial, it is
enough to prove that |π16(KP 2)| < ∞. For, consider the sequence of the
pair

// H16(S8) = 0 // H16(KP 2) // H16(KP 2, S8) // H15(S8) = 0 //

This and the relative Hurewicz isomorphism imply that

π16(KP 2, S8) = H16(KP 2, S8) = Z.

Next, consider the homotopy sequence
π16(S8) = (Z/2)4

φ
// π16(KP 2)

ψ
//

ψ
// π16(KP 2, S8) = Z µ

// π15(S8) = Z ⊕ Z/120.

This shows that µ is multiplication by some integer k, and kerµ = Z/k =
Imψ. Hence,

π16(KP 2)/kerψ = Imψ,

shows that |π16(KP 2)| = |Imψ||Imφ| < ∞.
¤

Corollary 15. Given [f1], [f2] ∈ [KP 2, KP 2] where fi = 1αi, the composite
f1 ◦ f2 satisfies [f1 ◦ f2] = [1α1+α2 ].
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100 D. L. GONÇALVES AND M. SPREAFICO

Theorem 16. The group of the self-homotopy equivalences of KP 2 is iso-
morphic to Z/2 × Z/2 × Z/2.

Proof. From the previous corollary we have that [f ] ◦ [f ] is the class of the
identity [1] for every f . So the group is isomorphic to a sum of Z/2 and the
result follow. ¤

Remarks 1- If W is an H−space, as a result of Lemma 5 we have the
following natural question: let P 2W be the projective space constructed
from the H structure of W . Given a homotopy class ΣX → P 2W does the
map factors through ΣW? The following example shows that the answer is
negative in general, even when W is a topological group: just consider the
projection p : S11 → S11/Sp1 = HP 2. This map can not factor through S4.

2- We observe that it is known that [ιn, ηn] = 0 if and only if n = 3
mod(4) or n=2,6. This information is not enough to study the case above
because the group π16(S8) is bigger than Z2. This is why we need to make
some extra calculation which does not appear in the case of the sphere S4.

References

[1] J. F. Adams, J. H. Gunawardena and H. Miller, The Segal conjecture for elementary
abelian p-groups, Topology 24 (1985) 435-460;

[2] M. Arkowitz and C.R. Curjel, On the maps of H-spaces, Topology 6 (1967) 137-148;
[3] W. D. Barcus and M. G. Barratt, On the homotopy classification of the extension of

a fixed map, Trans. Amer. Math. Soc. 88 (1958) 57-74;
[4] H.J. Baues, Commutator Calculus and Groups of Homotopy Classes, LNM 50 (1981);
[5] J.C. Becker and D.H. Gottlieb, Coverings of fibrations, Comp. Math. 26 (1973) 119-

128;
[6] S. Feder and S. Gitler, Mappings of quaternionic projective space, Bol. Soc. Mat. Mex.

18 (1973) 33-37;
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