Mathematical Journal of Okayama University

On Central Gap Numbers of Symmetric Groups

Hirotaka kikyo*

*Kobe University

Copyright © 2008 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

On Central Gap Numbers of Symmetric Groups

Hirotaka kikyo

Abstract

$g(G)$ denotes the central gap number of a group G. We show that for $n \geq 8, g(S n) \geq n$ and $g(A n) \geq n-2$. We give exact values of $g(S n)$ and $g(A n)$ for small n's. In particular, $g(S 9)=9$ and $g(A 9)=7$. Therefore, for any positive integer $n \neq 1,3,5$ there is a group G such that $n=g(G) . G$ can be finite or infinite.

KEYWORDS: central gap number, symmetric group, alternating group

Math. J. Okayama Univ. 50 (2008), 63-84

ON CENTRAL GAP NUMBERS OF SYMMETRIC GROUPS

Hirotaka KIKYO

Abstract

G)\) denotes the central gap number of a group G. We show that for $n \geq 8, g\left(S_{n}\right) \geq n$ and $g\left(A_{n}\right) \geq n-2$. We give exact values of $g\left(S_{n}\right)$ and $g\left(A_{n}\right)$ for small n 's. In particular, $g\left(S_{9}\right)=9$ and $g\left(A_{9}\right)=7$. Therefore, for any positive integer $n \neq 1,3,5$ there is a group G such that $n=g(G) . G$ can be finite or infinite.

1. Introduction

K. Tanaka and others introduced the notion of ladder index of a group related to stability of the logical formula expressing the commutativity of a group [2]. The ladder index of a group is essentially the same as the central gap number introduced by Lennox and Roseblade [3]. K. Tanaka proved that the central gap number of a group cannot be 1 , or 3 . They are trying to prove that this number cannot be 5, but it seems that they are not successful. K. Tanaka conjectured that the central gap number of a group cannot be odd, and asked what is the central gap number of S_{7} in a meeting at RIMS, Kyoto University in March, 2003.

With an aid of a computer, the author found that the central gap number of S_{7} is 6 . By improving computer programs, the author managed to find that the central gap numbers of S_{8}, S_{9}, S_{10}, and S_{11} are $8,9,10$, and 11 respectively, and those of A_{8}, A_{9}, A_{10}, and A_{11} are $6,7,8$, and 9 respectively.

By looking at logs of computer calculations, the author realized that the central gap number of S_{n} is at least n for $n \geq 8$, and that of A_{n} is at least $n-2$ for $n \geq 8$.

In this paper, we prove this fact and calculate the central gap numbers of S_{n} and A_{n} for $n \leq 9$. The author has no readable proof for the exact values of the central gap numbers of S_{10}, S_{11}, A_{10}, and A_{11}.

We can see that the central gap number of a direct product of groups is the sum of those of direct components. Since $g\left(S_{3}\right)=2$ and $g\left(A_{9}\right)=7$, for any positive integer $n \neq 1,3,5$ there is a group with the central gap number n. The groups can be finite or infinite.

2. Preliminaries

Let G be a group. For a subset X of G, we write $C_{G}(X)$ for the centralizer of X in G. If $X=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, we also write $C_{G}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for

Mathematics Subject Classification. Primary 20B35; Secondary 20F14, 03C45.
Key words and phrases. central gap number, symmetric group, alternating group.
$C_{G}(X)$. If G is known from the context, we just write C for C_{G}. For a subgroup H of G, we also write $C_{H}(X)$ for $H \cap C_{G}(X)$ even if X is not a subset of H.

The following definition is due to Lennox and Roseblade [3].
Definition 2.1. We say that a group G has a finite central gap number, or merely a finite gap number, if there is a non-negative integer h such that in any chain

$$
C_{G}\left(H_{1}\right) \leq C_{G}\left(H_{2}\right) \leq \cdots \leq C_{G}\left(H_{n}\right) \leq \cdots
$$

of centralizers of subgroups $H_{1}, H_{2}, \ldots, H_{n}, \ldots$ of G, there are at most h strict inclusions. $g(G)$ denotes the least such h. We call $g(G)$ the central gap number of G.

Definition 2.2. Let G be a group. A sequence ($a_{1}, a_{2}, \ldots, a_{n}$) of elements of G is called a gap sequence in G if there is a sequence $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of elements in G such that for each $i \leq n, b_{i}$ commutes with a_{j} for every $j<i$ but not with a_{i}. We call $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ a witness for the gap sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. We often display them in a vertical way as follows:

sequence		witness
a_{1}	$;$	b_{1}
a_{2}	$;$	b_{2}
\vdots		\vdots
a_{n}	$;$	b_{n}

It is easy to see that $g(G)$ is the length of the longest gap sequence in G.
Definition 2.3. For a natural number n, the height of n is k, written $\operatorname{ht}(n)=k$, if $n=p_{1} p_{2} \cdots p_{k}$ where each p_{i} is a prime number.

For a finite group G, the order of a subgroup of G is a divisor of the order of G. Therefore, we have the following:
Lemma 2.4. If $\operatorname{ht}\left(\left|C_{G}\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right|\right)=m$ then the length of a gap sequence in G beginning with $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is at most $k+m$.

Now, we turn to our notation about permutations.
Let I be a set. $S(I)$ is the symmetric group consisting of all bijections from I to itself using composition as the multiplication. We multiply permutations from right to left. $A(I)$ is the alternating group consisting of all even permutations on I. If $I=\{1,2, \ldots, n\}$ then $S(I)$ will be written S_{n} and $A(I)$ will be written A_{n}. If $\sigma \in S(I)$ and $x \in I, \sigma(x)$ is the image of x by σ. If $J \subset I$ then $\sigma(J)=\{\sigma(x): x \in J\}$. If $\tau \in S(I), \sigma^{\tau}=\tau \sigma \tau^{-1}$. We say that σ is conjugate to σ^{\prime} over π by τ if (1) $\pi^{\tau}=\pi$, and (2) $\sigma=\sigma^{\prime \tau}$ or $\sigma^{\tau}=\sigma^{\prime}$.

Definition 2.5. For a permutation $\sigma \in S_{n}$, the type (cycle type) of σ is

$$
\left(n^{m_{n}}, \ldots, 2^{m_{2}}, 1^{m_{1}}\right)
$$

where m_{k} is the number of k-cycles in the cycle decomposition of σ. We usually omit $k^{m_{k}}$ if $m_{k}=0$. We often omit $1^{m_{1}}$ also. For example, if $\sigma=(12)(34)(567)(8)(9) \in S_{9}$ then the type of σ is $\left(3^{1}, 2^{2}, 1^{2}\right)$, or $\left(3^{1}, 2^{2}\right)$. We call a cycle in the cycle decomposition of σ a cycle component of σ.

Let U be a subset of $S(I)$. Then we define the support and the set of fixed points of U by

$$
\operatorname{supp}_{I}(U)=\{x \in I: \sigma(x) \neq x \text { for some } \sigma \in U\}
$$

and

$$
\operatorname{fix}_{I}(U)=\{x \in I: \sigma(x)=x \text { for all } \sigma \in U\}
$$

The following lemma is an easy fact but useful for checking if two permutations are commuting.

Lemma 2.6. (1) Two permutations σ and τ are commuting if and only if $\sigma^{\tau}=\sigma$. In particular, if σ and τ are commuting and θ is a cycle component of σ then so is θ^{τ}.
(2) Suppose two permutations σ and τ act on a set Ω and $\sigma \tau=\tau \sigma$. If $I \subset \Omega$ is σ-invariant then so is $\tau(I)$. In particular, fix $_{\Omega}(\sigma)$ and $\operatorname{supp}_{\Omega}(\sigma)$ are τ-invariant.

Lemma 2.7. If $X \subset S(J)$ and $I=\operatorname{supp}_{J}(X)$ then

$$
C_{S(J)}(X)=C_{S(I)}(X) \times S(J-I)
$$

Proof. It is clear that the right hand side is a subset of the left hand side.
Suppose $\tau \in C_{S(J)}(X)$. Then $I=\operatorname{supp}_{J}(X)$ is τ-invariant by Lemma 2.6
(2) and $J-I$ is also τ-invariant. Therefore, $\tau \in S(I) \times S(J-I)$ and hence $\tau \in C_{S(I)}(X) \times S(J-I)$.

The following fact is useful for analysis of A_{n}.
Lemma 2.8. If G is a subgroup of S_{n} containing an odd permutation then $\left(G: G \cap A_{n}\right)=2$.

3. Lower Bounds

In this section, we show that $n \leq g\left(S_{n}\right)$ and $n-2 \leq g\left(A_{n}\right)$ for any $n \geq 8$. We calculate the exact values of $g\left(S_{n}\right)$ and $g\left(A_{n}\right)$ for small n in later sections. Note that $g\left(S_{n}\right)$ and $g\left(A_{n}\right)$ are less than $n \log _{2} n$.

Theorem 3.1. (1) $g\left(S_{3}\right) \geq 2$.
(2) $g\left(S_{5}\right) \geq g\left(S_{4}\right) \geq 4$.
(3) $g\left(S_{7}\right) \geq g\left(S_{6}\right) \geq 6$.
(4) $g\left(S_{n}\right) \geq n$ for $n \geq 8$.

Proof. The following tables of gap sequences show the theorem:
(1)

sequence	witness	
$\left(\begin{array}{ll}1 & 2)\end{array}\right.$	$;$	$\left(\begin{array}{c}123\end{array}\right)$
$\left(\begin{array}{ll}1 & 2\end{array}\right)$	$;$	(12)

(2)

sequence	witness
(1 2)(3 4)	(2 3)
(12)	(13)(2 4)
(1 3)(2 4)	(12)
(23)	$(12)(34)$

(3)

sequence		witness
(12)	$;$	(23)
$\left(\begin{array}{ll}3 & 4\end{array}\right)(56)$	$;$	(45)
(34)	$;$	$(35)(46)$
$(13)(24)$	$;$	(12)
(23)	$;$	$(12)(34)$
(45)	$;$	(56)

(4)

sequence		witness
$\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$	$;$	(13)
(12)	$;$	$(13)(24)$
$(13)(24)$	$;$	(12)
(23)	$;$	$\binom{5}{2}(34)$
(45)	(67)	
(56)	$;$	$(n-4 n-3)$
\vdots	$;$	$(n-2 n-1)$
$(n-5 n-4)$	$;$	$(n-3 n-1)(n-2 n)$
$(n-3 n-2)(n-1 n)$	$;$	$(n-3 n-2)$
$(n-3 n-2)$	$;$	$n-3 n-2)(n-1 n)$

Theorem 3.2. (1) $g\left(A_{5}\right) \geq g\left(A_{4}\right) \geq 2$.
(2) $g\left(A_{7}\right) \geq g\left(A_{6}\right) \geq 4$.
(3) $g\left(A_{n}\right) \geq n-2$ for $n \geq 8$.

Proof. The following tables of gap sequences show the theorem:
(1)

sequence	witness
$\left(\begin{array}{c}12)(34) \\ (123)\end{array}\right.$	$;\left(\begin{array}{ll}1 & 23\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$

(2)

sequence	witness
(1 2)(3 4)	(123)
$(13)(24)$	(1 2)(56)
$(12)(56)$	(13)(2 4)
(123)	$(12)(34)$

(3)

sequence	witness
(1 2)(3 4)	(13 2)
(13)(2 4)	$(12)(56)$
(132)	$(12)(34)$
$(12)(45)$	(576)
$(12)(56)$	(687)
$(12)(n-5 n-4)$	$(n-4 n-2 n-3)$
$(n-3 n-2)(n-1 n)$; ($n-3 n-1 n-2)$
$(12)(n-3 n-2)$; ($n-3 n-1$) $(n-2 n)$
$(12)(n-4 n-3)$; $(n-3 n-2)(n-1 n)$

4. Exact Values

We begin with an evaluation of upper bounds of $g\left(S_{n}\right)$. The following lemma is well-known.

Lemma 4.1. If $\sigma \in S_{n}$ has type $\left(1^{m_{1}}, 2^{m_{2}}, \ldots n^{m_{n}}\right)$ then

$$
\left|C_{S_{n}}(\sigma)\right|=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots n^{m_{n}} m_{n}!.
$$

The following lemma is due to K. Tanaka [2]. We give a proof for convenience.

Lemma 4.2 (K. Tanaka). $g(G) \neq 3$ for any group G.

Proof. Suppose $g(G) \geq 3$. Let $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ respectively be a gap sequence and its witness in G.

If a_{1} and a_{2} are commuting then $\left(a_{1}, a_{2}, b_{2}, b_{1}\right)$ is a gap sequence in G with witness $\left(b_{1}, b_{2}, a_{2}, a_{1}\right)$.

If a_{1} and a_{2} are not commuting then $\left(b_{3}, a_{1}, a_{2}, a_{3}\right)$ is a gap sequence in G with witness $\left(a_{3}, a_{2}, a_{1}, b_{3}\right)$.

Therefore, $g(G) \geq 4$ in both cases.
Proposition 4.3. $g\left(S_{3}\right)=2$ and $g\left(A_{3}\right)=0$.
Proof. We work in S_{3}. Any nontrivial element of S_{3} is conjugate to (12) or (12 3). By Lemma 4.1, $\left|C\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)\right|=2$ and $\left|C\left(\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right)\right|=3$. Since both orders have height $1, g\left(S_{3}\right) \leq 2$ by Lemma 2.4. $g\left(S_{3}\right) \geq 2$ by Theorem 3.1 (1).
$g\left(A_{3}\right)=0$ since A_{3} is abelian.
Proposition 4.4. $g\left(S_{4}\right)=g\left(S_{5}\right)=4$ and $g\left(A_{4}\right)=g\left(A_{5}\right)=2$.
Proof. We work in S_{5}. For any non-trivial element σ of S_{5}, Table 1 obtained by Lemma 4.1 shows that $\operatorname{ht}(|C(\sigma)|) \leq 3$.

Table 1. Orders of centralizers in S_{5}

type of σ	$\|C(\sigma)\|$	$\operatorname{ht}(\|C(\sigma)\|)$
$\left(2^{1}, 1^{3}\right)$	$2^{2} \cdot 3$	3
$\left(2^{2}, 1^{1}\right)$	2^{3}	3
$\left(3^{1}, 1^{2}\right)$	$2 \cdot 3$	2
$\left(3^{1}, 2^{1}\right)$	$2 \cdot 3$	2
$\left(4^{1}, 1^{1}\right)$	2^{2}	2

$\left(5^{1}\right) \quad 5 \quad 1$
We have $g\left(S_{4}\right)=g\left(S_{5}\right)=4$ by Lemma 2.4 and Theorem 3.1 (2).
By Lemma 2.8, Table 1 shows that $\mathrm{ht}\left(\left|C_{A_{5}}(\sigma)\right|\right) \leq 2$ for any non-trivial element σ in A_{5}. Hence, $g\left(A_{5}\right) \leq 3$ by Lemma 2.4. We have $g\left(A_{5}\right) \neq 3$ by Lemma 4.2. Therefore, $g\left(A_{4}\right)=g\left(A_{5}\right)=2$ by Theorem 3.2 (1).
Proposition 4.5. $g\left(S_{6}\right)=g\left(S_{7}\right)=6$.
Proof. We work in S_{7}. We have Table 2 for S_{7} by Lemma 4.1.
Let $\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a gap sequence in S_{7}. We show that $\operatorname{ht}\left(\left|C\left(\sigma_{1}\right)\right|\right) \leq 5$ or $\operatorname{ht}\left(\left|C\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4$. Then we have $g\left(S_{6}\right)=g\left(S_{7}\right)=6$ by Lemma 2.4 and Theorem 3.1 (3).

Suppose $\mathrm{ht}\left(\left|C\left(\sigma_{1}\right)\right|\right)>5$. Table 2 shows that σ_{1} has type $\left(2^{1}\right)$. If σ_{2} has a type other than $\left(2^{1}\right),\left(2^{2}\right),\left(2^{3}\right)$, and $\left(3^{1}\right)$, then we have $\mathrm{ht}\left(\left|C\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4$. If σ_{2} has type $\left(2^{2}\right),\left(2^{3}\right)$, or $\left(3^{1}\right)$, we can find $\tau \in S_{7}$ such that τ commutes

Table 2. Orders of centralizers in S_{7}

| type of σ | $\|C(\sigma)\|$ | $\operatorname{ht}(\|C(\sigma)\|)$ | | type of σ | $\|C(\sigma)\|$ | $\mathrm{ht}(\|C(\sigma)\|)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(2^{1}, 1^{5}\right)$ | $2^{4} \cdot 3 \cdot 5$ | 6 | | $\left(4^{1}, 1^{3}\right)$ | $2^{3} \cdot 3$ | 4 |
| $\left(2^{2}, 1^{3}\right)$ | $2^{4} \cdot 3$ | 5 | | $\left(4^{1}, 2^{1}, 1^{1}\right)$ | 2^{3} | 3 |
| $\left(2^{3}, 1^{1}\right)$ | $2^{4} \cdot 3$ | 5 | | $\left(4^{1}, 3^{1}\right)$ | $2^{2} \cdot 3$ | 3 |
| $\left(3^{1}, 1^{4}\right)$ | $2^{3} \cdot 3^{2}$ | 5 | | $\left(5^{1}, 1^{2}\right)$ | $2 \cdot 5$ | 2 |
| $\left(3^{1}, 2^{1}, 1^{2}\right)$ | $2^{2} \cdot 3$ | 3 | | $\left(5^{1}, 2^{1}\right)$ | $2 \cdot 5$ | 2 |
| $\left(3^{1}, 2^{2}\right)$ | $2^{3} \cdot 3$ | 4 | | $\left(6^{1}, 1^{1}\right)$ | $2 \cdot 3$ | 2 |
| $\left(3^{2}, 1^{1}\right)$ | $2 \cdot 3^{2}$ | 3 | | $\left(7^{1}\right)$ | 7^{1} | 1 |

with σ_{2} but not with σ_{1}. This means that in these cases, $C\left(\sigma_{1}, \sigma_{2}\right)$ is a proper subgroup of $C\left(\sigma_{2}\right)$ and thus its order has a height at most 4. Hence σ_{2} must have type $\left(2^{1}\right)$. So, the pair $\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $((12),(23))$ or ((1 2), (3 4)).

By Lemma 2.7, $C((12),(23))=S(\{4,5,6,7\})$, and it has order 24 with $\operatorname{ht}(24)=4$. Again by Lemma 2.7,

$$
C((12),(34))=S(\{1,2\}) \times S(\{3,4\}) \times S(\{5,6,7\})
$$

and it has order 24 with $\operatorname{ht}(24)=4$.
Proposition 4.6. $g\left(S_{9}\right)=9$.
Proof. We work in S_{9}. We have Table 3 for S_{9} by Lemma 4.1.
Let $\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a gap sequence in S_{9}. We show that $h t\left(\left|C\left(\sigma_{1}\right)\right|\right) \leq 8$ or $\operatorname{ht}\left(\left|C\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 7$. Then we have the statement by Lemma 2.4 and Theorem 3.1 (4).

If $h t\left(\left|C\left(\sigma_{1}\right)\right|\right)>8$ then σ_{1} has type $\left(2^{1}\right)$. If σ_{2} has a type other than $\left(2^{1}\right)$, $\left(2^{2}\right),\left(2^{4}\right)$, and $\left(3^{1}\right)$, then $\operatorname{ht}\left(\left|C\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 7$.

If σ_{1} has type $\left(2^{1}\right)$ and σ_{2} has type $\left(2^{2}\right),\left(2^{4}\right)$ or $\left(3^{1}\right)$, we can find $\tau \in S_{9}$ such that $\tau \in C\left(\sigma_{2}\right)$ but $\tau \notin C\left(\sigma_{1}\right)$. Hence $C\left(\sigma_{1}, \sigma_{2}\right)$ is a proper subgroup of $C\left(\sigma_{2}\right)$ and thus the height of its order is strictly less than 8 .

If σ_{1} and σ_{2} have the same type $\left(2^{1}\right)$, then the pair $\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $((12),(23))$ or $((12),(34)) . C_{S_{9}}((12),(23))=S(\{4, \ldots, 9\})$ has order 6 ! with ht $(6!)=7$.

$$
C_{S_{9}}((12),(34))=S(\{1,2\}) \times S(\{3,4\}) \times S(\{5, \ldots, 9\})
$$

has order $2 \cdot 2 \cdot 5$! with $\operatorname{ht}(2 \cdot 2 \cdot 5!)=7$.
5. Gap numbers of $S_{8}, A_{6}, A_{7}, A_{8}$ and A_{9}

We calculate $g\left(S_{8}\right), g\left(A_{9}\right), g\left(A_{6}\right), g\left(A_{7}\right)$, and $g\left(A_{8}\right)$ in this order.

Table 3. Orders of centralizers in S_{9}

| type of σ | $\|C(\sigma)\|$ | ht $(\|C(\sigma)\|)$ | | type of σ | $\|C(\sigma)\|$ | $\operatorname{ht}(\|C(\sigma)\|)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(2^{1}, 1^{7}\right)$ | $2^{5} \cdot 3^{2} \cdot 5 \cdot 7$ | 9 | | $\left(4^{1}, 3^{1}, 2^{1}\right)$ | $2^{3} \cdot 3$ | 4 |
| $\left(2^{2}, 1^{5}\right)$ | $2^{6} \cdot 3 \cdot 5$ | 8 | | $\left(4^{2}, 1^{1}\right)$ | 2^{5} | 5 |
| $\left(2^{3}, 1^{3}\right)$ | $2^{5} \cdot 3^{2}$ | 7 | | $\left(5^{1}, 1^{4}\right)$ | $2^{3} \cdot 3 \cdot 5$ | 5 |
| $\left(2^{4}, 1^{1}\right)$ | $2^{7} \cdot 3$ | 8 | | $\left(5^{1}, 2^{1}, 1^{2}\right)$ | $2^{2} \cdot 5$ | 3 |
| $\left(3^{1}, 1^{6}\right)$ | $2^{4} \cdot 3^{3} \cdot 5$ | 8 | | $\left(5^{1}, 2^{2}\right)$ | $2^{3} \cdot 5$ | 4 |
| $\left(3^{1}, 2^{1}, 1^{4}\right)$ | $2^{4} \cdot 3^{2}$ | 6 | | $\left(5^{1}, 3^{1}, 1^{1}\right)$ | $3 \cdot 5$ | 2 |
| $\left(3^{1}, 2^{2}, 1^{2}\right)$ | $2^{4} \cdot 3$ | 5 | | $\left(5^{1}, 4^{1}\right)$ | $2^{2} \cdot 5$ | 3 |
| $\left(3^{1}, 2^{3}\right)$ | $2^{4} \cdot 3^{2}$ | 6 | | $\left(6^{1}, 1^{3}\right)$ | $2^{2} \cdot 3^{2}$ | 4 |
| $\left(3^{2}, 1^{3}\right)$ | $2^{2} \cdot 3^{3}$ | 5 | | $\left(6^{1}, 2^{1}, 1^{1}\right)$ | $2^{2} \cdot 3$ | 3 |
| $\left(3^{2}, 2^{1}, 1^{1}\right)$ | $2^{2} \cdot 3^{2}$ | 4 | | $\left(6^{1}, 3^{1}\right)$ | $2 \cdot 3^{2}$ | 3 |
| $\left(3^{3}\right)$ | $2^{1} 3^{4}$ | 5 | | $\left(7^{1}, 1^{2}\right)$ | $2 \cdot 7$ | 2 |
| $\left(4^{1}, 1^{5}\right)$ | $2^{5} \cdot 3 \cdot 5$ | 7 | | $\left(7^{1}, 2^{1}\right)$ | $2 \cdot 7$ | 2 |
| $\left(4^{1}, 2^{1}, 1^{3}\right)$ | $2^{4} \cdot 3$ | 5 | | $\left(8^{1}, 1^{1}\right)$ | 2^{3} | 3 |
| $\left(4^{1}, 2^{2}, 1^{1}\right)$ | 2^{5} | 5 | | $\left(9^{1}\right)$ | 3^{2} | 2 |
| $\left(4^{1}, 3^{1}, 1^{2}\right)$ | $2^{3} \cdot 3$ | 4 | | | | |

Lemma 5.1. Let $G_{8}=C_{S_{4}}\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right) . \quad\left|G_{8}\right|=8$ and consists of the identity, (1 2), (3 4) (type (2 2^{1}), ($\left.\begin{array}{l}1 \\ 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right),\left(\begin{array}{lll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right),\left(\begin{array}{ll}1 & 4\end{array}\right)(23)$ (type (2^{2})), (1324) and (1 423) (type (4^{1})).

Let G_{4} be the subgroup of G_{8} consists of the identity, and the three elements of type $\left(2^{2}\right)$. Then $G_{4}=G_{8} \cap A_{4}$ and $G_{4}=C_{S_{4}}\left(\sigma, \sigma^{\prime}\right)$ for any two distinct elements of type $\left(2^{2}\right)$ in S_{4}.

Lemma 5.2. Suppose $\sigma, \sigma^{\prime} \in S_{8}$ have the same type (2^{4}) and $\sigma \neq \sigma^{\prime}$.
(1) The pair $\left(\sigma, \sigma^{\prime}\right)$ is conjugate to a pair of $(12)(34)(56)(78)$ and one of the following:
(i) $(13)(24)(56)(78)$;
(ii) $(13)(25)(46)(78)$;
(iii) $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right)\binom{5}{7}\binom{6}{8}$;
(iv) $(13)(27)(45)(68)$.
(2) The order of $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ is 32, 12, 32, and 8 respectively for cases (i), (ii), (iii) and (iv) in (1).
(3) Let G_{8} and G_{4} be as in Lemma 5.1 and G_{8}^{\prime} and G_{4}^{\prime} respectively be their conjugates by $(15)(26)(37)(48)\left(G_{8}^{\prime}\right.$ and G_{4}^{\prime} are subgroups of $S(\{5,6,7,8\}))$.

In case (i) in (1), $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)=G_{4} \times G_{8}^{\prime}$.
In case (iii) in (1), $G_{4} \times G_{4}^{\prime}$ is a normal subgroup of $G_{32}=$ $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ of index 2.

Proof. (1) Up to conjugacy, we can assume that $\sigma=(12)(34)(56)(78)$. If σ and σ^{\prime} have 3 or more cycle components in common then $\sigma=\sigma^{\prime}$.

Assume that σ and σ^{\prime} have exactly 2 cycle components in common. Up to conjugacy over σ, we can assume (56) and (78) are the common cycle components. Then $\sigma^{\prime}=(1 a)(2 b)(56)(78)$. Since σ is fixed under conjugation by $(34)=(a b), \sigma^{\prime}$ is conjugate to $(13)(24)(56)(78)$ over σ. This is (i).

Suppose σ and σ^{\prime} have exactly one cycle component in common. Up to conjugacy over σ, we can assume that (78) is the common cycle component of σ and σ^{\prime}. Then $\sigma^{\prime}=(1 a)(2 b)(c d)(78)$ and $\{c, d\} \neq\{3,4\}$. Since σ is fixed under the conjugation by (34), we can assume that a or b is 3 , and since σ is also fixed under the conjugation by (12), we can assume that $\sigma^{\prime}=(13)(2 b)(c d)(78)$. Since $\{c, d\} \neq\{5,6\}, b$ must be 5 or 6 . Also, σ is fixed under the conjugation by (56). Therefore, σ^{\prime} is conjugate to $(13)(25)(46)(78)$ over σ.

Suppose σ and σ^{\prime} have no cycle components in common. Since (12) is not a cycle component of $\sigma^{\prime}, \sigma^{\prime}$ is $(1 a)(2 b)(* *)(* *)$. Since σ has 3 orbits other than $\{1,2\}$, there is an orbit $\{c, d\}$ of σ such that $a, b \notin\{c, d\}$. Since $\left(\begin{array}{ll}c & d\end{array}\right)$ is not a cycle component of $\sigma^{\prime}, \sigma^{\prime}=(1 *)(2 *)(c *)(d *)$. Hence, σ^{\prime} is conjugate to $(1 *)(2 *)(5 *)(6 *)$ over σ. Consider how 3 and 4 occur. σ^{\prime} is conjugate to $(13)(24)(5 *)(6 *)$ or $(13)(2 *)(54)(6 *)$ over σ. Therefore, σ^{\prime} is conjugate to

$$
(13)(24)(57)(68) \text { or }(13)(27)(45)(68)
$$

over σ. These are (iii) and (iv).
(2) Recall G_{4} and G_{8} in Lemma 5.1. Let G_{8}^{\prime} and G_{4}^{\prime} be conjugates of G_{8} and G_{4} by $(15)(26)(37)(48)$. So, $G_{8}^{\prime}=C_{S(\{5,6,7,8\})}((56)(78))$ and $G_{4}^{\prime}=C_{S(\{5,6,7,8\})}((56)(78),(57)(68))$.

Let $\sigma=(12)(34)(56)(78)$.
Case (i). $\sigma^{\prime}=(13)(24)(56)(78)$. If τ commutes with both σ and σ^{\prime} then $(56)^{\tau}$ and $(78)^{\tau}$ are cycle components of both σ and σ^{\prime}. Hence, $\{5, \ldots, 8\}$ is τ-invariant and thus $\tau \in S_{4} \times S(\{5, \ldots, 8\})$. Therefore,

$$
C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)=C_{S_{4} \times S(\{5, \ldots, 8\})}\left(\sigma, \sigma^{\prime}\right)=G_{4} \times G_{8}^{\prime}
$$

Case (ii). $\sigma^{\prime}=(13)(25)(46)(78)$. Let $\tau \in S_{8}$ be an element commuting with both σ and σ^{\prime}. Then $(78)^{\tau}$ is a cycle component of both σ and σ^{\prime}, and thus $(78)^{\tau}=(78)$. Hence, $\{1, \ldots, 6\}$ and $\{7,8\}$ are τ-invariant.

Suppose $\tau(1)=1$. (12 $)^{\tau}=(1 \tau(2))$ is a cycle component of σ and thus $\tau(2)=2$. $\quad(25)^{\tau}=(2 \tau(5))$ is a cycle component of σ^{\prime} and thus $\tau(5)=5 .(56)^{\tau}=(5 \tau(6))$ is a cycle component of σ and thus $\tau(6)=6$. $(46)^{\tau}=(\tau(4) 6)$ is a cycle component of σ^{\prime} and thus $\tau(4)=4$. Similarly, if
$\tau(1) \in\{1, \ldots, 6\}$ then τ on $\{1, \ldots, 6\}$ is uniquely determined depending on the value of $\tau(1)$. Hence there are 6 possibilities for τ on $\{1, \ldots, 6\}$.

We conclude that $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ has exactly 12 elements and contains (78).
Case (iii). $\sigma^{\prime}=(13)(24)(57)(68)$. Let $\tau \in S_{8}$ be an element commuting with both σ and σ^{\prime}.

Suppose $\tau(1)=3$. (12 $)^{\tau}=(3 \tau(2))$ is a cycle component of σ and $(13)^{\tau}=(3 \tau(3))$ is a cycle component of σ^{\prime}. Thus, $\tau(2)=4$ and $\tau(3)=1$. $(34)^{\tau}=(1 \tau(4))$ is a cycle component of σ. Thus, $\tau(4)=2$. Hence, $\tau=(13)(24) \tau^{\prime}$ for some $\tau^{\prime} \in S(\{5,6,7,8\})$. This τ^{\prime} must commute with $(56)(78)$ and $(57)(68)$, and thus $\tau^{\prime} \in G_{4}^{\prime}$.

With similar arguments, we can see that if $\tau(1) \in\{1,2,3,4\}$ then $\tau \in$ $G_{4} \times G_{4}^{\prime}$. There are 16 elements of this form.

If $\tau(1) \in\{5,6,7,8\}$, we can see that τ on $\{1,2,3,4\}$ is represented by

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
6 & 5 & 8 & 7
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
7 & 8 & 5 & 6
\end{array}\right), \quad \text { or }\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
8 & 7 & 6 & 5
\end{array}\right),
$$

and τ on $\{5,6,7,8\}$ is represented by

$$
\left(\begin{array}{llll}
5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4
\end{array}\right), \quad\left(\begin{array}{llll}
5 & 6 & 7 & 8 \\
2 & 1 & 4 & 3
\end{array}\right), \quad\left(\begin{array}{llll}
5 & 6 & 7 & 8 \\
3 & 4 & 1 & 2
\end{array}\right), \quad \text { or }\left(\begin{array}{llll}
5 & 6 & 7 & 8 \\
4 & 3 & 2 & 1
\end{array}\right) .
$$

Hence, $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ has an order at most 32 . Since $G_{4} \times G_{4}^{\prime}$ is a subgroup of $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ and $(15)(26)(37)(48) \in C_{S_{8}}\left(\sigma, \sigma^{\prime}\right), C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ has order 32.
$G_{4} \times G_{4}^{\prime}$ has exactly two cosets in $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$, namely, a coset including $(15)(26)(37)(48)$ and itself. Since $G_{4} \times G_{4}^{\prime}$ is invariant under conjugation by $(15)(26)(37)(48), G_{4} \times G_{4}^{\prime}$ is a normal subgroup of $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$.

Case (iv). $\sigma^{\prime}=(13)(24)(57)(68)$. Let $\tau \in S_{8}$ be an element commuting with both σ and σ^{\prime}. We can see then $\tau \in S_{8}$ is uniquely determined depending on the value of $\tau(1) \in\{1, \ldots, 8\}$ by considering conjugates of cycle components of σ and σ^{\prime} by τ. Therefore, $C_{S_{8}}\left(\sigma, \sigma^{\prime}\right)$ has order 8 .

With Lemma 5.2, we can calculate $g\left(S_{8}\right)$.
Proposition 5.3. $g\left(S_{8}\right)=8$.
Proof. We have Table 4 below by Lemma 4.1.
For any gap sequence $\left(\sigma_{1}, \sigma_{2}, \ldots\right)$, we show that $\operatorname{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}\right)\right|\right) \leq 7$ or $\operatorname{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 6$. Then we have the statement by Lemma 2.4.

Suppose ht $\left(\left|C_{S_{8}}\left(\sigma_{1}\right)\right|\right)>7$. Then the type of σ_{1} is $\left(2^{1}\right)$ or $\left(2^{4}\right)$. If the type of σ_{2} is neither $\left(2^{1}\right),\left(2^{4}\right)$, nor $\left(2^{2}\right)$ then $h t\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 6$.

If σ_{2} has type $\left(2^{2}\right)$ then it is easy to see that $C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is a proper subgroup of $C_{S_{8}}\left(\sigma_{2}\right)$. Hence, $\operatorname{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 6$ in this case. Therefore, the types of σ_{1} and σ_{2} are among $\left(2^{1}\right)$ and $\left(2^{4}\right)$.

Now, we have only three cases to consider.

Table 4. Orders of centralizers in S_{8}

| type of σ | $\|C(\sigma)\|$ | ht $(\|C(\sigma)\|)$ | | type of σ | $\|C(\sigma)\|$ | ht $(\|C(\sigma)\|)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(2^{1}, 1^{6}\right)$ | $2^{5} \cdot 3^{2} \cdot 5$ | 8 | | $\left(4^{1}, 2^{2}\right)$ | 2^{5} | 5 |
| $\left(2^{2}, 1^{4}\right)$ | $2^{6} \cdot 3$ | 7 | | $\left(4^{1}, 3^{1}, 1^{1}\right)$ | $2^{2} \cdot 3$ | 3 |
| $\left(2^{3}, 1^{2}\right)$ | $2^{5} \cdot 3$ | 6 | | $\left(4^{2}\right)$ | 2^{5} | 5 |
| $\left(2^{4}\right)$ | $2^{7} \cdot 3$ | 8 | | $\left(5^{1}, 1^{3}\right)$ | $2^{1} \cdot 3 \cdot 5$ | 3 |
| $\left(3^{1}, 1^{5}\right)$ | $2^{3} \cdot 3^{2} \cdot 5$ | 6 | | $\left(5^{1}, 2^{1}, 1^{1}\right)$ | $2 \cdot 5$ | 2 |
| $\left(3^{1}, 2^{1}, 1^{3}\right)$ | $2^{2} \cdot 3^{2}$ | 4 | | $\left(5^{1}, 3^{1}\right)$ | $3 \cdot 5$ | 2 |
| $\left(3^{1}, 2^{2}, 1^{1}\right)$ | $2^{3} \cdot 3$ | 4 | | $\left(6^{1}, 1^{2}\right)$ | $2^{2} \cdot 3$ | 3 |
| $\left(3^{2}, 1^{2}\right)$ | $2^{2} \cdot 3^{2}$ | 4 | | $\left(6^{1}, 2^{1}\right)$ | $2^{2} \cdot 3$ | 3 |
| $\left(3^{2}, 2^{1}\right)$ | $2^{2} \cdot 3^{2}$ | 4 | | $\left(7^{1}, 1^{1}\right)$ | 7 | 1 |
| $\left(4^{1}, 1^{4}\right)$ | $2^{5} \cdot 3$ | 6 | | $\left(8^{1}\right)$ | 2^{3} | 3 |
| $\left(4^{1}, 2^{1}, 1^{2}\right)$ | 2^{4} | 4 | | | | |

Case 1. σ_{1} and σ_{2} have type $\left(2^{1}\right)$. If $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=3$ then $C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right) \cong$ S_{5}. Hence, $\operatorname{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right)=5$. If $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=4$ then $C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right) \cong$ $S_{2} \times S_{2} \times S_{4}$. Hence, $h t\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right)=6$.

Case 2. σ_{1} and σ_{2} have type $\left(2^{4}\right)$. In this case, $\mathrm{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5$ by Lemma 5.2.

Case 3. σ_{1} has type (2^{1}) and σ_{2} has type (2^{4}), or vice versa. The order of $C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is a common divisor of $2^{5} \cdot 3^{2} \cdot 5$ and $2^{7} \cdot 3$, hence a divisor of $2^{5} \cdot 3$. Therefore, $\operatorname{ht}\left(\left|C_{S_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 6$.

Lemma 5.4. Suppose permutations $\sigma, \sigma^{\prime} \in S_{9}$ have the same type (2^{4}) and $\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)=\{1, \ldots, 9\}$. Then ht $\left(\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 5$.

Proof. Up to conjugacy, we can assume that $\sigma=(12)(34)(56)(78)$, and (19) is a cycle component of σ^{\prime}.

Let τ be an element of S_{9} commuting with both σ and σ^{\prime}. Since 9 is the only fixed point of $\sigma, \tau(9)=9$. Since $(19)^{\tau}=(\tau(1), 9)$ is a cycle component of σ^{\prime}, we have $\tau(1)=1$. Since $(12)^{\tau}=(1, \tau(2))$ is a cycle component of σ, we have $\tau(2)=2$. Thus, $\tau \in S(\{3, \ldots, 8\})$ and τ commutes with (34)(56)(78). Hence, $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)$ is isomorphic to a subgroup of $C_{S_{6}}((12)(34)(56))$, which has order $2^{4} \cdot 3$. Therefore, $\mathrm{ht}\left(\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 5$.

Lemma 5.5. Suppose two permutations σ and σ^{\prime} have the same type $\left(3^{1}\right)$. Let $I=\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)$. If $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=3$ then $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)=C_{S(I)}(\sigma)$, if $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=4$ or 5 then $\left|C_{S(I)}\left(\sigma, \sigma^{\prime}\right)\right|=1$, and if $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=6$ then $\left|C_{S(I)}\left(\sigma, \sigma^{\prime}\right)\right|=9$.

Proof. Easy.

Lemma 5.6. Suppose two permutations σ and σ^{\prime} have the same type $\left(2^{2}\right)$ and $\sigma \neq \sigma^{\prime}$.
(1) The pair $\left(\sigma, \sigma^{\prime}\right)$ is conjugate to a pair of $(12)(34)$ and one of the following: (i) (13)(2 4); (ii) (15)(3 4); (iii) (15)(2 3); (iv) (1 2)(5 6); (v) $(13)(56)$; (vi) $(15)(26)$; (vii) $(15)(36)$; (viii) $(17)(56)$; and (ix) $(56)(78)$.
(2) Let $I=\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)$. Then $\left|C_{S(I)}\left(\sigma, \sigma^{\prime}\right)\right|$ and the size of $\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)$ are given as follows according to cases in (1): (i) 4 (|supp|=4), (ii) $2(|\operatorname{supp}|=5)$, (iii) 1 ($|\operatorname{supp}|=5$), (iv) 8 ($|\operatorname{supp}|=6$), (v) 4 (|supp| = 6), (vi) 4 (\mid supp| $=6$), (vii) $2(|\operatorname{supp}|=6)$, (viii) 4 (\mid supp $\mid=7$), and (ix) 64 (\mid supp| $=8$).

Proof. (1) Up to conjugacy, we can assume that $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$. Suppose $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=4$. Then σ^{\prime} belong to S_{4}. Since $\sigma^{\prime} \neq \sigma, \sigma^{\prime}=(1 a)(2 b)$ where $\{a, b\}=\{3,4\}$. Since σ is fixed under the conjugation by (34), σ is conjugate to $(13)(24)$ over $(12)(34)$. This is (i).

Suppose $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=5$. We can assume that $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=\{1, \ldots, 5\}$. Since 5 is moved by $\sigma^{\prime}, \sigma^{\prime}$ is conjugate to $(15)(a b)$ over σ where a and b belong to $\{2,3,4\}$. If $(15)(a b)$ fixes 2 then it is $(15)(34)$. This is (ii). If it moves 2 , then it is conjugate to $(15)(23)$ over σ. This is (iii).

Suppose $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=6$. We can assume that $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=\{1, \ldots, 6\}$. Then 5 and 6 are moved by σ^{\prime}. Therefore, $\sigma^{\prime}=(a b)(56)$ or $\sigma^{\prime}=(a 5)(b 6)$ for some a and b in $\{1,2,3,4\}$. If $\sigma^{\prime}=(a b)(56)$ then it is conjugate to $(12)(56)$ or $(13)(56)$ over σ. These are (iv) and (v). If $\sigma^{\prime}=(a 5)(b 6)$ then it is conjugate to $(15)(26)$ or $(15)(36)$ over σ. These are (vi) and (vii).

Suppose $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=7$. We can assume that $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=\{1, \ldots, 7\}$. Then $\operatorname{supp}\left(\sigma^{\prime}\right)=\{a, 5,6,7\}$ where a is $1,2,3$ or 4 . Therefore σ^{\prime} is conjugate to (17)(56) over σ. This is (viii).

If $\left|\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)\right|=8, \operatorname{supp}(\sigma)$ and $\operatorname{supp}\left(\sigma^{\prime}\right)$ are disjoint. Therefore, σ^{\prime} is conjugate to $(56)(78)$ over σ. This is (ix).
(2) Let G_{4}, G_{8}, and G_{8}^{\prime} be as in Lemma 5.2. $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)$ is isomorphic to G_{4} in case (i), and to $G_{8} \times G_{8}^{\prime}$ in case (ix).

Case (ii). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $\sigma^{\prime}=\left(\begin{array}{ll}1 & 5\end{array}\right)(34)$. Let τ be an element of S_{5} commuting with both σ and σ^{\prime}. Since 5 is the only fixed point of σ in $\{1, \ldots, 5\}, \tau(5)=5$. Since $(15)^{\tau}=(\tau(1) 5)$ is a cycle component of σ^{\prime}, $\tau(1)=1$. Since $(12)^{\tau}=(1 \tau(2))$ is a cycle component of $\sigma, \tau(2)=2$. Hence, $\tau \in S(\{3,4\})$. Therefore, $C_{S_{5}}\left(\sigma, \sigma^{\prime}\right)=S(\{3,4\})$.

Case (iii). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $\sigma^{\prime}=\left(\begin{array}{l}1\end{array}\right)(23)$. Let τ be an element of S_{5} commuting with both σ and σ^{\prime}. As in case (ii), starting from $\tau(5)=5$, we get $\tau(i)=i$ for $i=1, \ldots, 5$.

Case (iv). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $\sigma^{\prime}=\left(\begin{array}{ll}1 & 2\end{array}\right)(56)$. Let τ be an element of S_{6} commuting with both σ and σ^{\prime}. On $\{1, \ldots, 6\}$, fix $(\sigma)=\{5,6\}$, fix $\left(\sigma^{\prime}\right)=$ $\{3,4\}$ and they are τ-invariant. Thus, $\{1,2\}$ is also τ-invariant. Therefore,

$$
C_{S_{6}}\left(\sigma, \sigma^{\prime}\right)=S_{2} \times S(\{3,4\}) \times S(\{5,6\})
$$

Case (v). $\sigma=(12)(34)$ and $\sigma^{\prime}=(13)(56)$. Let τ be an element of S_{6} commuting with both σ and $\sigma^{\prime} \cdot \operatorname{supp}(\sigma) \cap \operatorname{supp}\left(\sigma^{\prime}\right)=\{1,3\}$ is τ-invariant. If $\tau(1)=1$, considering conjugates by τ of cycle components of σ and σ^{\prime}, we have $\tau(i)=i$ for $i=1, \ldots, 4$ and $\{5,6\}$ is τ-invariant. If $\tau(1)=3$, we have $\tau=(13)(24) \tau^{\prime}$ with $\tau^{\prime} \in S(\{5,6\})$. Therefore, $C_{S_{6}}\left(\sigma, \sigma^{\prime}\right)$ has order 4 .

Case (vi). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$ and $\sigma^{\prime}=\left(\begin{array}{l}15\end{array}\right)(26)$. Let τ be an element of S_{6} commuting with both σ and σ^{\prime}. fix $(\sigma)=\{5,6\}$ and fix $\left(\sigma^{\prime}\right)=\{3,4\}$ are τ-invariant. Since (15) ${ }^{\tau}$ and (26) ${ }^{\tau}$ are cycle components of σ^{\prime}, τ on $\{1,2\}$ is uniquely determined by τ on $\{5,6\}$. Therefore, $C_{S_{6}}\left(\sigma, \sigma^{\prime}\right)$ has order 4.

Case (vii). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $\sigma^{\prime}=\left(\begin{array}{ll}1 & 5\end{array}\right)(36)$. Let τ be an element of S_{6} commuting with both σ and $\sigma^{\prime} . \operatorname{supp}(\sigma) \cap \operatorname{supp}\left(\sigma^{\prime}\right)=\{1,3\}$ is τ invariant. If $\tau(1)=1$ then τ is the identity on $\{1, \ldots, 6\}$. If $\tau(1)=3$ then $\tau=(13)(24)(56)$. Therefore, $C_{S_{6}}\left(\sigma, \sigma^{\prime}\right)$ has order 2.

Case (viii). $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $\sigma^{\prime}=(17)(56)$. Let τ be an element of S_{6} commuting with both σ and $\sigma^{\prime} . \operatorname{supp}(\sigma) \cap \operatorname{supp}\left(\sigma^{\prime}\right)=\{1\}$ is τ-invariant. Thus, $\tau(1)=1$. Then we can show that $\tau(2)=2$ and $\tau(7)=7$. Therefore, $C_{S_{7}}\left(\sigma, \sigma^{\prime}\right)=S(\{3,4\}) \times S(\{5,6\})$.
Lemma 5.7. If $\sigma, \sigma^{\prime} \in S_{9}$ have types $\left(2^{4}\right)$ and $\left(2^{2}\right)$ respectively then

$$
\operatorname{ht}\left(\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 6 ; \quad \operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 5
$$

In particular, if $\sigma, \sigma^{\prime} \in A_{8}$ then $\mathrm{ht}\left(\left|C_{A_{8}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 4$ or $C_{A_{8}}\left(\sigma, \sigma^{\prime}\right)$ is conjugate to $\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}$. Here, G_{8} and G_{8}^{\prime} are as in Lemma 5.2.

Proof. Up to conjugacy, we can assume that $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)(5)(78)$.
Suppose 9 is not a fixed point of σ^{\prime}. Up to conjugacy, we can also assume that (19) is a cycle component of σ^{\prime}. By the same argument as that for Lemma 5.4, $\mathrm{ht}\left(\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 5$ in this case.

Now, suppose 9 is a fixed point of σ^{\prime}. Then we can easily see that σ^{\prime} is conjugate to one of the following over σ : (i) $(12)(34)$; (ii) (13)(24); (iii) $(12)(35)$; (iv) $(13)(25)$; and (v) (13)(57).

Case (i). $\sigma^{\prime}=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$. In this case, $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)=G_{8} \times G_{8}^{\prime}$, and thus $\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|=2^{6}$. Since $G_{8} \times G_{8}^{\prime}$ contains a transposition, $C_{A_{9}}\left(\sigma, \sigma^{\prime}\right)=$ $\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}$ has order 2^{5}.

Case (ii). $\sigma^{\prime}=(13)(24)$. In this case, $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)=G_{4} \times G_{8}^{\prime}$ has order 2^{5}.

Case (iii). $\sigma^{\prime}=\left(\begin{array}{ll}1 & 2\end{array}\right)(35)$. Let τ be an element of $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)$. Since (12) is the only cycle component common to σ and $\sigma^{\prime},\left(\begin{array}{l}1\end{array}\right)^{\tau}=\left(\begin{array}{l}1\end{array}\right)$.

Then $(35)^{\tau}=(35)$ by $\sigma^{\prime \tau}=\sigma^{\prime}$. Since $\{3,5\}$ is τ-invariant and $(34)^{\tau}$ and $(56)^{\tau}$ are cycle components of $\sigma,\{46\}$ is also τ-invariant. Hence $\{7,8\}$ is τ-invariant. Therefore,

$$
C_{S_{9}}\left(\sigma, \sigma^{\prime}\right) \subset S_{2} \times S(\{3,5\}) \times S(\{4,6\}) \times S(\{7,8\})
$$

and in fact, both sides are equal for Case (iii).
Case (iv). $\sigma^{\prime}=(13)(25)$. Let τ be an element of $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)$.
If $\tau(3)=1$ then $\tau(4)=2$ since $\sigma^{\tau}=\sigma$. But in this case, 4 is a fixed point of σ^{\prime} but $\tau(4)=2$ is not. Hence, τ and σ^{\prime} are not commuting.

If $\tau(3)=2$ then $\tau(1)=5$ and $\tau(2)=6$ since $\sigma^{\prime \tau}=\sigma^{\prime}$ and $\sigma^{\tau}=\sigma$. But in this case, $\tau(2)=6$ is a fixed point of σ^{\prime} but $2=\tau^{-1}(6)$ is not. Hence, τ and σ^{\prime} are not commuting.

If $\tau(3)=3$ then $\tau(1)=1, \tau(2)=2, \tau(4)=4, \tau(5)=5$, and $\tau(6)=6$. Hence $\tau \in C_{S(\{7,8\})}((78))$ in this case. There are 2 such τ 's.

If $\tau(3)=5$ then $\tau(1)=2, \tau(2)=1, \tau(4)=6, \tau(5)=3$, and $\tau(6)=4$. Hence $\left.\tau\right|_{\{7,8\}}$ belongs to $C_{S(\{7,8\})}((78))$ in this case. There are 2 such τ 's.

Therefore, $\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|=2^{2}$ for Case (iv).
Case (v). $\sigma^{\prime}=\left(\begin{array}{ll}1 & 3\end{array}\right)\binom{5}{7}$. Let τ be an element of $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)$. Then $\{1,3,5,7\}$ is τ-invariant and there are 8 possibilities for τ on $\{1,3,5,7\}$ corresponding to the elements of G_{8}. Since $\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}5 & 6\end{array}\right)\left(\begin{array}{ll}7 & 8\end{array}\right)$, τ on $\{2,4,6,8\}$ is uniquely determined by τ on $\{1,3,5,7\}$. Therefore, $C_{S_{9}}\left(\sigma, \sigma^{\prime}\right) \cong G_{8}$ for Case (v).
Lemma 5.8. If $\sigma, \sigma^{\prime} \in A_{9}$ have types $\left(2^{4}\right)$ and $\left(3^{1}\right)$ respectively then

$$
\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma, \sigma^{\prime}\right)\right|\right) \leq 4
$$

Proof. By Lemma 4.1, $\left|C_{S_{9}}(\sigma)\right|=2^{7} \cdot 3$ and $\left|C_{S_{9}}\left(\sigma^{\prime}\right)\right|=2^{4} \cdot 3^{3} \cdot 5$. Therefore, $\left|C_{S_{9}}\left(\sigma, \sigma^{\prime}\right)\right|$ is a divisor of $2^{4} \cdot 3$. Since $\left|\operatorname{supp}\left(\sigma^{\prime}\right)\right|=3$, there is a cycle component $(a b)$ of σ such that $a, b \notin \operatorname{supp}\left(\sigma^{\prime}\right)$. Therefore, $\left|C_{A_{9}}\left(\sigma, \sigma^{\prime}\right)\right|$ is a divisor of $2^{3} \cdot 3$.

Lemma 5.9. Suppose two permutations σ and σ^{\prime} have types $\left(2^{2}\right)$ and $\left(3^{1}\right)$ respectively, and let $I=\operatorname{supp}\left(\sigma, \sigma^{\prime}\right)$. Then $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)$ has order 1 if $|I|=4$, at most 2 if $|I|=5$ or 6 , and 24 if $|I|=7$.
Proof. Suppose $|I|=4$. $C_{S(I)}(\sigma) \cong G_{8}$ has order 8 and $C_{S(I)}\left(\sigma^{\prime}\right) \cong A_{3}$ has order 3. Therefore, $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)$ has order 1.

Suppose $|I|=5$. $C_{S(I)}(\sigma) \cong G_{8}$ has order 8 and $C_{S(I)}\left(\sigma^{\prime}\right) \cong A_{3} \times S_{2}$ has order $3 \cdot 2$. Therefore, $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)$ has order at most 2 .

Suppose $|I|=6 . C_{S(I)}(\sigma) \cong G_{8} \times S_{2}$ has order $8 \cdot 2$ and $C_{S(I)}\left(\sigma^{\prime}\right) \cong A_{3} \times S_{3}$ has order $3 \cdot 3$!. Therefore, $C_{S(I)}\left(\sigma, \sigma^{\prime}\right)$ has order at most 2 .

Suppose $|I|=7$. Then $\operatorname{supp}(\sigma)$ and $\operatorname{supp}\left(\sigma^{\prime}\right)$ have an empty intersection. Therefore, $C_{S(I)}\left(\sigma, \sigma^{\prime}\right) \cong G_{8} \times A_{3}$ and it has order 24 .

Lemma 5.10. Suppose $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a gap sequence in A_{9}, σ_{1} and σ_{2} belong to S_{4} and have the same type $\left(2^{2}\right)$. If $\sigma_{3} \in S_{9}$ has type $\left(2^{2}\right)$, $\left(3^{1}\right)$, or $\left(2^{4}\right)$ then $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 4$.

Proof. We have $C_{S_{4}}\left(\sigma_{1}, \sigma_{2}\right)=G_{4}$ where G is as in Lemma 5.1. We consider two cases.

Case 1. σ_{3} has type $\left(2^{2}\right)$ or $\left(3^{1}\right)$.
Suppose the size of $\operatorname{supp}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is k. Note that $4 \leq k \leq 9$. Up to conjugacy, we can assume that $\operatorname{supp}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=\{1, \ldots, k\}$. Then

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \subset C_{S_{k}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \times S(\{k+1, \ldots, 9\})
$$

and

$$
C_{S_{k}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \subset G_{4} \times S(\{5, \ldots, k\})
$$

Hence,

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \subset G_{4} \times S(\{5, \ldots, k\}) \times S(\{k+1, \ldots, 9\})
$$

Suppose $k=4$. If σ_{3} has type $\left(2^{2}\right)$ then $\sigma_{3} \in G_{4}$. Hence, $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is not a gap sequence in S_{9}. Thus, σ_{3} must have type (3^{1}). In this case, σ_{3} commutes with no elements in G_{4} other than the identity. Hence

$$
C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=A(\{5, \ldots, 9\})
$$

and it has order $5!/ 2$ with $\operatorname{ht}(5!/ 2)=4$.
If $k=5$ then σ_{3} commutes with no non-trivial elements in G_{4}. Therefore, $C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is $A(\{6, \ldots, 9\})$ which has oder $4!/ 2$ with ht $(4!/ 2)=3$.

If $k=6$ then

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \subset G_{4} \times S(\{5,6\}) \times S(\{7,8,9\})
$$

and If $k=7$ then

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \subset G_{4} \times S(\{5,6,7\}) \times S(\{8,9\})
$$

In either case, $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ contains an odd permutation, and therefore $C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has an order dividing $4 \cdot 3!\cdot 2 / 2$. Thus the height of the order is at most 4 .

Suppose $k=8$. Then σ_{3} has type $\left(2^{2}\right)$.

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=G_{4} \times G_{8}^{\prime}
$$

and thus

$$
C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=G_{4} \times G_{4}^{\prime}
$$

which has order 16 with $\operatorname{ht}(16)=4$.
Case 2. σ_{3} has type $\left(2^{4}\right)$. $\operatorname{supp}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has 8 or 9 elements.
Suppose it has 9 elements. Then σ_{3} has a unique fixed point $i \in\{1, \ldots, 4\}$. Let

$$
\tau \in C_{S_{9}}\left(\sigma_{1}, \sigma_{2}\right)=G_{4} \times S(\{5, \ldots, 9\})
$$

If $\left.\tau\right|_{\{1, \ldots, 4\}} \in G_{4}$ is not identity then τ and σ_{3} are not commuting because i is a fixed point of σ_{3} while $\tau(i)$ is not. Hence, $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a subgroup of $S(\{5, \ldots, 9\})$. Thus $C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a proper subgroup of $S(\{5, \ldots, 9\})$. Therefore, $C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has an order of height at most 4.

Finally, suppose $\operatorname{supp}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has 8 elements. Up to conjugacy, we can assume that this support is $\{1, \ldots, 8\}$. Then $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a subgroup of $G_{4} \times S(\{5, \ldots, 8\})$. Since σ_{3} has type $\left(2^{4}\right)$, it has a cycle component $(a b)$ belonging to $S(\{5, \ldots, 8\})$. Choose $c \in\{5, \ldots, 8\}-\{a, b\}$. Then $(a c) \in$ $S(\{5, \ldots, 8\})$ but (ac) does not commute with σ_{3}. Hence, $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a proper subgroup of $G_{4} \times S(\{5, \ldots, 8\})$. Also, $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ contains (a, b). Thus, $C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a proper subgroup of $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$. Since $G_{4} \times S(\{5, \ldots, 8\})$ has an order of height $6, C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has an order of height at most 4 .
Proposition 5.11. $g\left(A_{9}\right)=7$.
Proof. Let $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)$ be a gap sequence in A_{9}. We show that

$$
\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}\right)\right|\right) \leq 6, \operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5, \text { or } \operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 4
$$

holds. Then we have the statement by Lemma 2.4 and Theorem 3.2 (3).
By Table 3 in the proof of Proposition 4.6, for non-trivial element $\sigma \in A_{9}$, $\operatorname{ht}\left(\left|C_{A_{9}}(\sigma)\right|\right)=7$ if σ has type $\left(2^{2}\right),\left(3^{1}\right)$, or $\left(2^{4}\right)$, and $h t\left(\left|C_{A_{9}}(\sigma)\right|\right) \leq 4$ otherwise. Therefore, if σ_{1}, σ_{2}, or σ_{3} has a type other than $\left(2^{2}\right),\left(3^{1}\right)$, and $\left(2^{4}\right)$ then $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 4$.

We can assume that the types of σ_{1}, σ_{2}, and σ_{3} are among $\left(2^{2}\right),\left(3^{1}\right)$, and $\left(2^{4}\right)$. We consider cases according to the types of σ_{1} and σ_{2}.

Case 1. σ_{1} and σ_{2} have type $\left(2^{4}\right)$. In this case, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5$ by Lemmas 5.2 and 5.4.

Case 2. σ_{1} and σ_{2} have type $\left(3^{1}\right)$. Let $I=\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)$. By Lemma 5.5, $3<|I| \leq 6$. Let $J=\{1, \ldots, 9\}-I$. If $|I|=4$ then

$$
C_{S_{9}}\left(\sigma_{1}, \sigma_{2}\right)=C_{S(I)}\left(\sigma_{1}, \sigma_{2}\right) \times S(J)=S(J) \cong S_{5}
$$

by Lemma 5.5. Therefore, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right)=\operatorname{ht}(5!/ 2)=4$.
Similarly, if $|I|=5$ then $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}\right)=S(J) \cong S_{4}$ and hence

$$
\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right)=\operatorname{ht}(4!/ 2)=3
$$

If $|I|=6$ then $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to

$$
A_{3} \times A(\{4,5,6\}) \times S(\{7,8,9\})
$$

and hence $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right)=\operatorname{ht}(9 \cdot 3!/ 2)=3$.
Case 3. σ_{1} has type $\left(2^{4}\right)$ and σ_{2} has type $\left(2^{2}\right)$, or vice versa. In this case, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5$ by Lemma 5.7.

Case 4. σ_{1} has type $\left(2^{4}\right)$ and σ_{2} has type $\left(3^{1}\right)$, or vice versa. In this case, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4$ by Lemma 5.8.

Case 5. σ_{1} has type $\left(2^{2}\right)$ and σ_{2} has type (3^{1}), or vice versa. By Lemma 5.9, if $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=4$ then $\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|=5$!, if $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=5$ then $\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|=2 \cdot 4$!, if $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=6$ then $\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|=2 \cdot 3$!, and if $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=7$ then $\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|=24 \cdot 2$. Hence, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5$.

Case 6. σ_{1} and σ_{2} have type $\left(2^{2}\right)$. Let $I=\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)$. If $|I|=5$ then $C_{S_{9}}\left(\sigma_{1}, \sigma_{2}\right) \cong C_{S(I)}\left(\sigma_{1}, \sigma_{2}\right) \times S_{4}$. Hence, $\operatorname{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4$ by Lemma 5.6. Similarly, if $|I|>6$ then ht $\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 5$.

If $|I|=4$ then $\mathrm{ht}\left(\left|C_{A_{9}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 4$ by Lemma 5.10.
Proposition 5.12. $g\left(A_{6}\right)=g\left(A_{7}\right)=4$.
Proof. Let G_{4} and G_{8} be as in Lemma 5.1.
Let $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)$ be a gap sequence in A_{7}. We show that

$$
\operatorname{ht}\left(\left|C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 2, \text { or } \operatorname{ht}\left(\left|C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 1
$$

Then we have the statement by Lemma 2.4 and Theorem 3.2 (2).
Claim 1. $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ has an order of height at most 2 , or, is conjugate to $G_{4} \times A(\{5,6,7\})$.

By looking at the types of even permutations in Table 2 in the proof of Proposition 4.5, $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ has an order of height at most 2 if the type of σ_{1} or σ_{2} is neither $\left(2^{2}\right)$ nor $\left(3^{1}\right)$. We have 3 cases to consider.

Case 1. σ_{1} has type $\left(2^{2}\right)$ and σ_{2} has type $\left(3^{1}\right)$, or vice versa. Let $I=$ $\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)$. Then $C_{S_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ is isomorphic to

$$
C_{S(I)}\left(\sigma_{1}, \sigma_{2}\right) \times S_{7-|I|}
$$

If $|I|<7$, then we can show that the latter group has an order of height at most 2 by Lemma 5.9.

Suppose $|I|=7$. Then σ_{1} and σ_{2} have disjoint supports. Hence $C_{S_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $G_{8} \times A(\{5,6,7\})$. Therefore, $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $G_{4} \times A(\{5,6,7\})$.

Case 2. σ_{1} and σ_{2} have type $\left(3^{1}\right)$. Let $I=\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)$. If the supports of σ_{1} and σ_{2} are the same then $\left(\sigma_{1}, \sigma_{2}\right)$ cannot be a gap sequence. So, $|I|$ is 4,5 , or 6 . Considering the cases according to $|I|$, we can easily check that $\operatorname{ht}\left(\left|C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 2$.

Case 3. σ_{1} and σ_{2} have type $\left(2^{2}\right)$. Let $I=\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)$. If $|I|=4$ then $C_{S_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $G_{4} \times S(\{5,6,7\})$. Since G_{4} consists of even permutations, $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $G_{4} \times A(\{5,6,7\})$. If $|I|>4$, we can check that $\operatorname{ht}\left(\left|C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 2$ using Lemma 5.6. Claim 1 is proved.

Claim 2. Suppose ($\sigma_{1}, \sigma_{2}, \sigma_{3}$) is a gap sequence in A_{7} and $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}\right)=$ $G_{4} \times A(\{5,6,7\})$. Then $\operatorname{ht}\left(\left|C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)\right|\right) \leq 1$.

If $\sigma_{3} \notin S_{4} \times S(\{5,6,7\})$, we can easily check that $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is a trivial group.

Suppose $\sigma_{3}=\tau \tau^{\prime}$ where $\tau \in S_{4}$ and $\tau^{\prime} \in S(\{5,6,7\})$. Then

$$
C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=C_{G_{4}}(\tau) \times C_{A(\{5,6,7\})}\left(\tau^{\prime}\right)
$$

Since $\sigma_{3} \in A_{7}, \tau$ and τ^{\prime} are both even, or both odd.
If τ and τ^{\prime} are odd, then $C_{A(\{5,6,7\})}\left(\tau^{\prime}\right)$ is trivial, and $C_{G_{4}}(\tau)$ is trivial or has order 2 . Hence, $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is trivial or a group of order 2.

If τ and τ^{\prime} are even, then $C_{A(\{5,6,7\})}\left(\tau^{\prime}\right)$ is $A(\{5,6,7\})$, and $C_{G_{4}}(\tau)$ is G_{4} or trivial. Hence, $C_{A_{7}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ is $A(\{5,6,7\})$, which has order 3 .

Lemma 5.13. Suppose H is a subgroup of a direct product $G \times G^{\prime}$ and $H_{0}=H \cap G^{\prime}$. Then for any $g_{1}, g_{2} \in G, g_{1} g_{1}^{\prime} H_{0}=g_{2} g_{2}^{\prime} H_{0}$ for some $g_{1}^{\prime}, g_{2}^{\prime} \in G^{\prime}$ implies $g_{1}=g_{2}$. Therefore, if H is finite then

$$
|H|=\left|H_{0}\right| \cdot \mid\left\{g \in G: g g^{\prime} \in H \text { for some } g^{\prime} \in G^{\prime}\right\} \mid .
$$

Proof. Suppose $g_{1}, g_{2} \in G, g_{1} g_{1}^{\prime} H_{0}=g_{2} g_{2}^{\prime} H_{0}$ for some $g_{1}^{\prime}, g_{2}^{\prime} \in G^{\prime}$. Then $g_{1}{ }^{-1} g_{2} g_{1}^{\prime-1} g_{2}^{\prime} \in H_{0} \subset G^{\prime}$. Hence $g_{1}{ }^{-1} g_{2} \in G^{\prime}$, and thus $g_{1}{ }^{-1} g_{2} \in G \cap G^{\prime}$. Therefore, $g_{1}{ }^{-1} g_{2}$ is the identity.

Proposition 5.14. $g\left(A_{8}\right)=6$.
Proof. Let $G_{4}, G_{4}^{\prime}, G_{8}, G_{8}^{\prime}$, and G_{32} be as in Lemma 5.2.
Suppose ($\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \ldots$) is a gap sequence in A_{8}.
We prove the statement by a sequence of claims. Here is an outline of the proof. In Claim 1, we prove that $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ has an order of height at most 4 or is conjugate to one of few groups. If $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is one of these groups, we show that $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ has an order of height at most 3 or it is conjugate to $G_{4} \times G_{4}^{\prime}$ in Claims 3 to 5 . Finally, if $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=G_{4} \times G_{4}^{\prime}$ then $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right)$ has an order of height at most 2 by Claim 2.

We show Claim 2 before Claim 3 because we need it also in the proof of Claim 3.

Claim 1. $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ has an order of height at most 4, or, is conjugate to $\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}, G_{32}$, or $G_{4} \times A(\{5, \ldots, 8\})$.

If the type of $\sigma \in S_{8}$ is not $\left(7^{1}\right)$, we can easily check that $C_{S_{8}}(\sigma)$ contains an odd permutation. Therefore, by Table 4 in the proof of Proposition 5.3, if the type of σ_{1} is neither $\left(2^{2}\right)$ nor $\left(2^{4}\right)$ then $C_{A_{8}}\left(\sigma_{1}\right)$ has an order of height at most 5 , and hence $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ has an order of height at most 4 .

Suppose that the type of σ_{1} is $\left(2^{2}\right)$ or $\left(2^{4}\right)$. If the type of σ_{2} is neither $\left(2^{2}\right),\left(2^{4}\right)$ nor $\left(3^{1}\right)$ then $\operatorname{ht}\left(\left|C_{A_{8}}\left(\sigma_{2}\right)\right|\right) \leq 4$ by Table 4. Again by Table 4, $\left|C_{A_{8}}\left(\sigma_{1}\right)\right|=2^{i} \cdot 3$ with $i=5$ or 6 , if σ_{2} has type $\left(3^{1}\right)$ then

$$
\left|C_{A_{8}}\left(\sigma_{2}\right)\right|=2^{2} \cdot 3^{2} \cdot 5
$$

and hence $\left|C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|$ is a divisor of $2^{2} \cdot 3$.
Now, we can assume that the types of σ_{1} and σ_{2} are among $\left(2^{2}\right)$ and $\left(2^{4}\right)$.

Suppose that the types of σ_{1} and σ_{2} are $\left(2^{2}\right)$ and $\left(2^{4}\right)$ respectively, or vice versa. By Lemma 5.7, $\operatorname{ht}\left(\left|C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4$ or $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}$.

Suppose that the types of σ_{1} and σ_{2} are $\left(2^{4}\right)$. By Lemma 5.2,

$$
\operatorname{ht}\left(\left|C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 4
$$

or $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to G_{32}.
Suppose that the types of σ_{1} and σ_{2} are $\left(2^{2}\right)$. If $5 \leq\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right| \leq$ 7 then $\mathrm{ht}\left(\left|C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)\right|\right) \leq 3$ by Lemma 5.6. If $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=4$ then $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $G_{4} \times A(\{5,6,7,8\})$. If $\left|\operatorname{supp}\left(\sigma_{1}, \sigma_{2}\right)\right|=8$ then $C_{A_{8}}\left(\sigma_{1}, \sigma_{2}\right)$ is conjugate to $\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}$. Claim 1 is proved.

Claim 2. Let $\sigma_{4} \in A_{8}$. If $C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)$ is a proper subgroup of $G_{4} \times G_{4}^{\prime}$ then $\operatorname{ht}\left(\left|C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)\right|\right) \leq 2$.

Assume that $\sigma_{4} \notin S_{4} \times S(\{5,6,7,8\})$. Then $C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{3}\right) \cap G_{4}^{\prime}$ is trivial. By Lemma 5.13, $\left|C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)\right|$ is at most $\left|G_{4}\right| \cdot 1=4$. Therefore, $\operatorname{ht}\left(\left|C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)\right|\right) \leq 2$.

Assume that $\sigma_{4} \in S_{4} \times S(\{5,6,7,8\})$. Let $\sigma_{4}=\tau \tau^{\prime}$ with $\tau \in S_{4}$ and $\tau^{\prime} \in S(\{5,6,7,8\})$. Then $C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)=C_{G_{4}}(\tau) \times C_{G_{4}^{\prime}}\left(\tau^{\prime}\right)$. Since σ_{4} is an even permutation, τ and τ^{\prime} are both even, or both odd. Suppose that τ and τ^{\prime} are odd. Then $C_{G_{4}}(\tau)$ is a proper subgroup of G_{4} and $C_{G_{4}^{\prime}}\left(\tau^{\prime}\right)$ is a proper subgroup of G_{4}^{\prime}. Therefore, $\operatorname{ht}\left(\left|C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)\right|\right) \leq 2$.

Suppose τ and τ^{\prime} are even. Then $C_{G_{4}}(\tau)$ is G_{4} or trivial and $C_{G_{4}^{\prime}}\left(\tau^{\prime}\right)$ is G_{4}^{\prime} or trivial. Therefore, If $C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)$ is a proper subgroup of $G_{4} \times G_{4}^{\prime}$ then $\operatorname{ht}\left(\left|C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{4}\right)\right|\right) \leq 2$. Claim 2 is proved.

Claim 3. Let $\sigma_{3} \in A_{8}$. If $C_{G_{32}}\left(\sigma_{3}\right)$ is a proper subgroup of G_{32} then $\operatorname{ht}\left(\left|C_{G_{32}}\left(\sigma_{3}\right)\right|\right) \leq 3$ or $C_{G_{32}}\left(\sigma_{3}\right)=G_{4} \times G_{4}^{\prime}$.
$G_{4} \times G_{4}^{\prime} \subset S_{4} \times S(\{5,6,7,8\})$ is a normal subgroup of G_{32} of index 2 by Lemma 5.2 (3). Hence, the product of any two elements in $G_{32}-\left(G_{4} \times G_{4}^{\prime}\right)$ belongs to $G_{4} \times G_{4}^{\prime}$. Therefore $C_{G_{32}}\left(\sigma_{3}\right) \cap\left(G_{4} \times G_{4}^{\prime}\right)$ has an index at most 2 in $C_{G_{32}}\left(\sigma_{3}\right)$. Since $C_{G_{32}}\left(\sigma_{3}\right) \cap\left(G_{4} \times G_{4}^{\prime}\right)=C_{G_{4} \times G_{4}^{\prime}}\left(\sigma_{3}\right)$, it is $G_{4} \times G_{4}^{\prime}$ or has an order of height at most 2 by Claim 2. Therefore, if $C_{G_{32}}\left(\sigma_{3}\right)$ is a proper subgroup of G_{32} then it is $G_{4} \times G_{4}^{\prime}$ or it has an order of height at most 3. Claim 3 is proved.

Claim 4. Let $H=\left(G_{8} \times G_{8}^{\prime}\right) \cap A_{8}$, and $\sigma_{3} \in A_{8}$. If $C_{H}\left(\sigma_{3}\right)$ is a proper subgroup of H then $\operatorname{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right) \leq 3$ or $C_{H}\left(\sigma_{3}\right)=G_{4} \times G_{4}^{\prime}$.

We consider $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$.

Case 1. $\sigma_{3} \notin S_{4} \times S(\{5,6,7,8\}) . C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right) \cap G_{8}^{\prime}$ is trivial or consists of the identity and one 2-cycle since G_{8}^{\prime} consists of the identity, two 2-cycles (5 6), (78), and five permutations with support $\{5, \ldots, 8\}$.

We count the number of $\tau_{1} \in G_{8}$ such that $\tau_{1} \tau_{2} \in C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ for some $\tau_{2} \in G_{8}^{\prime}$ and then use Lemma 5.13.

Up to conjugacy, we can also assume that $\sigma_{3}(1)=5$.
Subcase 1a. σ_{3} maps $\{1,2,3,4\}$ to $\{5,6,7,8\}$. In this case, $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right) \cap$ G_{8}^{\prime} is trivial and therefore $\left|C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)\right| \leq\left|G_{8}\right|=8$ by Lemma 5.13.

Subcase 1b. σ_{3} commutes with (1324) τ^{\prime} or (1423) τ^{\prime} for some τ^{\prime} in G_{8}^{\prime}.

Suppose σ_{3} commutes with (1324) τ^{\prime} for some $\tau^{\prime} \in G_{8}^{\prime}$. Then

$$
\left(\begin{array}{llll}
1 & 3 & 2
\end{array}\right)^{\sigma_{3}} \tau^{\prime \sigma_{3}}=\left(\begin{array}{llll}
1 & 3 & 2
\end{array}\right) \tau^{\prime}
$$

Since $\sigma_{3}(1)=5,\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)^{\sigma_{3}}$ is a cycle component of τ^{\prime}, and hence σ_{3} maps $\{1, \ldots, 4\}$ to $\{5, \ldots, 8\}$. This is Subcase 1a.

If σ_{3} commutes with $\left(\begin{array}{llll}1 & 4 & 2 & 3\end{array}\right) \tau^{\prime}$ for some $\tau^{\prime} \in G_{8}^{\prime}$, the same argument reduces the situation to Subcase 1a.

Subcase 1c. σ_{3} commutes with $\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 4\end{array}\right) \tau^{\prime}$ or $\left(\begin{array}{ll}1 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \tau^{\prime}$ for some $\tau^{\prime} \in G_{8}^{\prime}$.

Suppose σ_{3} commutes with $(13)(24) \tau^{\prime}$ for some $\tau^{\prime} \in G_{8}^{\prime}$. In this case, $(13)^{\sigma_{3}}=\left(5 \sigma_{3}(3)\right)$ is a cycle component of τ^{\prime}. Hence, $\sigma_{3}(\{1,3\}) \subset$ $\{5, \ldots, 8\}$. By Subcase 1a, we can assume that $\sigma_{3}(\{2,4\}) \not \subset\{5, \ldots, 8\}$. Since $(24)^{\sigma_{3}}$ is a cycle component of $(13)(24) \tau^{\prime}$, we have $\sigma_{3}(\{2,4\}) \subset\{1, \ldots, 4\}$. Therefore, if $\tau_{1} \tau_{2} \in C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ with $\tau_{1} \in G_{8}$ and $\tau_{2} \in G_{8}^{\prime}$ then 2-cycles (1 2), (3 4), and (14) cannot be a cycle component of τ_{1}. Hence, τ_{1} can be the identity or $(13)(24)$. By Lemma $5.13, C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ has order 2 or $4=2^{2}$.

If σ_{3} commutes with $(14)(23) \tau^{\prime}$ for some $\tau^{\prime} \in G_{8}^{\prime}$, a similar argument shows that the same statement holds.

Subcase 1d. None of the subcases above hold. In this case, there are at most 4 possibilities for $\tau_{1} \in G_{8}$ such that $\tau_{1} \tau_{2} \in C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ for some $\tau_{2} \in G_{8}^{\prime}$. Therefore, $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ has an order at most $8=2^{3}$.

Case 2. $\sigma_{3} \in S_{4} \times S(\{5,6,7,8\})$. Let $\sigma_{3}=\tau \tau^{\prime}$ with $\tau \in S_{4}$ and $\tau^{\prime} \in$ $S(\{5,6,7,8\})$. Then $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)=C_{G_{8}}(\tau) \times C_{G_{8}^{\prime}}\left(\tau^{\prime}\right)$. Since σ_{3} is an even permutation, τ and τ^{\prime} are both even, or both odd.

Suppose τ and τ^{\prime} are odd. Then $C_{G_{8}}(\tau)$ is a proper subgroup of G_{8} containing an odd permutation and $C_{G_{8}^{\prime}}\left(\tau^{\prime}\right)$ is a proper subgroup of G_{8}^{\prime} containing an odd permutation. Therefore, $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ contains an odd permutation and its order is a divisor of 16. Therefore, $C_{H}\left(\sigma_{3}\right)=C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right) \cap A_{8}$ has an order dividing 8 .

Suppose τ and τ^{\prime} are even. Then $C_{G_{8}}(\tau)$ is G_{8}, G_{4} or trivial, and $C_{G_{8}^{\prime}}\left(\tau^{\prime}\right)$ is $G_{8}^{\prime}, G_{4}^{\prime}$ or trivial. Therefore, if $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ is a proper subset of $G_{8} \times G_{8}^{\prime}$ then $C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right)$ has an order dividing 8 or it is $G_{8} \times G_{4}^{\prime}, G_{4} \times G_{8}^{\prime}$, or $G_{4} \times G_{4}^{\prime}$. Therefore, $\operatorname{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right) \leq 3$ or $C_{H}\left(\sigma_{3}\right)=C_{G_{8} \times G_{8}^{\prime}}\left(\sigma_{3}\right) \cap A_{8}=G_{4} \times G_{4}^{\prime}$. Claim 4 is proved.

Claim 5. Let $H=G_{4} \times A(\{5,6,7,8\}) \subset A_{8}$ and $\sigma_{3} \in A_{8}$. If $C_{H}\left(\sigma_{3}\right)$ is a proper subgroup of H then $\mathrm{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right) \leq 3$ or $C_{H}\left(\sigma_{3}\right)=G_{4} \times G_{4}^{\prime}$.

Assume that $\sigma_{3} \notin S_{4} \times S(\{5,6,7,8\})$. Then $C_{H}\left(\sigma_{3}\right) \cap A(\{5,6,7,8\})$ is isomorphic to A_{3} or trivial. By Lemma 5.13, $\left|C_{H}\left(\sigma_{3}\right)\right|$ is at most $\left|G_{4}\right| \cdot\left|A_{3}\right|=$ 12. Therefore, $\operatorname{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right) \leq 3$.

Assume that $\sigma_{3} \in S_{4} \times S(\{5,6,7,8\})$. Let $\sigma_{3}=\tau \tau^{\prime}$ with $\tau \in S_{4}$ and $\tau^{\prime} \in S(\{5,6,7,8\})$. Then $C_{H}\left(\sigma_{3}\right)=C_{G_{4}}(\tau) \times C_{A(\{5, \ldots, 8\})}\left(\tau^{\prime}\right)$. Since σ_{3} is an even permutation, τ and τ^{\prime} are both even, or both odd.

Suppose τ and τ^{\prime} are odd. Then $C_{G_{4}}(\tau)$ is a proper subgroup of G_{4} and $C_{A(\{5, \ldots, 8\})}\left(\tau^{\prime}\right)$ is a proper subgroup of $A(\{5, \ldots, 8\})$. Therefore, $\operatorname{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right)$ ≤ 3.

Suppose τ and τ^{\prime} are even. Then $C_{G_{4}}(\tau)$ is G_{4} or trivial; $C_{A(\{5, \ldots, 8\})}\left(\tau^{\prime}\right)$ is $A(\{5, \ldots, 8\}), G_{4}^{\prime}$, or a subgroup of $A(\{5, \ldots, 8\})$ conjugate to A_{3}. Therefore, $\operatorname{ht}\left(\left|C_{H}\left(\sigma_{3}\right)\right|\right) \leq 3$ or $C_{H}\left(\sigma_{3}\right)=G_{4} \times G_{4}^{\prime}$. Claim 5 is proved.

6. Possible Gap Numbers

Lemma 6.1. $g\left(G \times G^{\prime}\right)=g(G)+g\left(G^{\prime}\right)$.
Proof. It is straight forward to show that $g\left(G \times G^{\prime}\right) \geq g(G)+g\left(G^{\prime}\right)$.
We show that $g\left(G \times G^{\prime}\right) \leq g(G)+g\left(G^{\prime}\right)$. For any $a, b \in G$ and $a^{\prime}, b^{\prime} \in G^{\prime}$, $a a^{\prime}$ and $b b^{\prime}$ are commuting if and only if a and b are commuting and a^{\prime} and b^{\prime} are commuting.

Suppose $\left(a_{1} a_{1}^{\prime}, \ldots a_{k} a_{k}^{\prime}\right)$ is a gap sequence in $G \times G^{\prime}$ with a witness $\left(b_{1} b_{1}^{\prime}, \ldots b_{k} b_{k}^{\prime}\right)$ in $G \times G^{\prime}$, where the a_{i} 's and b_{i} 's are in G and the a_{i}^{\prime} 's and the b_{i}^{\prime} 's are in G^{\prime}.

Let $\left\{i: a_{i} b_{i} \neq b_{i} a_{i}\right\}=\left\{i_{1}, \ldots, i_{l}\right\}$ where $i_{1}<\cdots<i_{l}$ and let $\{1, \ldots, k\}-$ $\left\{i_{1}, \ldots, i_{l}\right\}=\left\{j_{1}, \ldots, j_{m}\right\}$ where $j_{1}<\cdots<j_{m}$. Then $\left(a_{i_{1}}, \ldots, a_{i_{l}}\right)$ is a gap sequence for G with a witness $\left(b_{i_{1}}, \ldots, b_{i_{l}}\right)$ in G and $\left(a_{j_{1}}^{\prime}, \ldots, a_{j_{m}}^{\prime}\right)$ is a gap sequence for G^{\prime} with a witness $\left(b_{j_{1}}^{\prime}, \ldots, b_{j_{m}}^{\prime}\right)$ in G^{\prime}. Therefore, $k=l+m \leq$ $g(G)+g\left(G^{\prime}\right)$.

As a corollary, we get the following theorem:
Theorem 6.2. For any natural number $n \neq 1,3,5$ there is a group G such that $n=g(G) . G$ can be finite or infinite.

Proof. If H is an abelian group then $g(H)=0$. We have $g\left(S_{3}\right)=2$ and $g\left(A_{9}\right)=7$. Therefore we have the statement by Lemma 6.1.

We still do not know whether a group G with $g(G)=5$ exists.
Finally, we give some questions. Is it true that $g\left(S_{n}\right)=n$ for any $n \geq 8$? Is it true that $g\left(A_{n}\right)=n-2$ for any $n \geq 8$? Is it true that $g\left(A_{n}\right)=g\left(S_{n}\right)-2$ for any $n \geq 3$?

We can see that $g\left(S_{n+k}\right) \geq g\left(S_{n}\right)+k$ for $k=4$ and for any $k \geq 8$. Therefore, if we can find infinitely many n 's such that $g\left(S_{n}\right)=n$ then $g\left(S_{n}\right)=n$ for any $n \geq 8$.

7. Acknowledgments

This work has been partially supported by JSPS Grant-in-Aid for Scientific Research No. 16540117.

References

[1] J.D. Dixon and B. Mortimer, Permutation Groups, GTM 163 (Springer-Verlag, 1996).
[2] K. Ishikawa, H. Tanaka, and K. Tanaka, Ladder index of groups, Math. J. of Okayama Univ. 44 (2002) 37-41.
[3] J.C. Lennox and J.E. Roseblade, Centrality in finitely generated soluble groups, J. Algebra 16 (1970) 399-435.
[4] B.E. Sagan, The Symmetric Group, 2nd Ed., GTM 203 (Springer-Verlag, 2001).
Hirotaka Kikyo
Department of Computer and Systems Engineering
Kobe University
1-1 Rokkodai, Nada
Kobe 657-8501, JAPAN
e-mail address: kikyo@kobe-u.ac.jp
(Received July 16, 2006)

