Mathematical Journal of Okayama University

 Volume 29, Issue 1
 1987
 Article 14

 JANUARY 1987

On the complement class to the torsion theory

Kazuo Shigenaga*

*Ube Technical College

Copyright ©1987 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 29 (1987), 167-171

ON THE COMPLEMENT CLASS TO THE TORSION THEORY

Dedicated to Professor Hisao Tominaga on his 60th birthday

KAZUO SHIGENAGA

In this paper, we shall define the leftover class L for a torsion theory (T, F) to be the class of all modules, each of which does not belong to neither T nor F, and study some basic properties on this class.

It is shown that the torsion class T is splitting if and only if L is the class consisting of all modules of the form $M \oplus N$ with M a nonzero torsion module and N a nonzero torsionfree module (Theorem 5), that the torsion class T is hereditary if and only if each element of L has no nonzero torsionfree essential submodules (Theorem 8), and that the hereditary torsion class T is stable if and only if L is closed under essential submodules (Theorem 11).

Finally, for a 3-fold torsion theory (T_1, T_2, T_3) , let L_1 and L_2 be the leftover classes for (T_1, T_2) and (T_2, T_3) respectively. We shall show that T_1 is hereditary if and only if $L_1 \supseteq L_2$, or equivalently, $T_1 \cap L_2$ is empty.

1. Preliminaries. Throughout this paper, R is a ring with identity and modules are unitary left R-modules. R-mod denotes the category of all R-modules. Let (\mathbf{T}, \mathbf{F}) be a torsion theory for R-mod with the associated idempotent radical t. Define the *leftover class* \mathbf{L} of (\mathbf{T}, \mathbf{F}) to be the *class of all modules, each of which does not belong to neither* \mathbf{T} *nor* \mathbf{F} . Hence we have three classes of modules, namely

$$\mathbf{T} = |M| t(M) = M |,$$

$$\mathbf{F} = |M| t(M) = 0 | \text{ and}$$

$$\mathbf{L} = |M| 0 \neq t(M) \leq M |.$$

The modules in \mathbf{T} are said to be torsion modules, and those in \mathbf{F} are said to be torsionfree modules. We call the modules in \mathbf{L} *leftover modules*. We will retain these notations throughout this paper.

For example, when (\mathbf{T}, \mathbf{F}) is trivial, i.e. $(\mathbf{T}, \mathbf{F}) = (R \text{-} \mathbf{mod}, \mathbf{0})$ or $(\mathbf{0}, R \text{-} \mathbf{mod})$, L is empty. If (\mathbf{T}, \mathbf{F}) is a splitting torsion theory, every element of L is of the form of $M \oplus N$ with $0 \neq M \in \mathbf{T}$ and $0 \neq N \in \mathbf{F}$ (Theorem 5).

For all undefined notions about torsion theories we refer to Stenstoröm

K. SHIGENAGA

168

[2].

2. Some basic properties of the class L. We are assuming that t is an idempotent radical, but some of our results hold only assuming that t is a preradical or an idempotent preradical.

Proposition 1. The leftover class L is closed under group extensions, direct sums and direct products.

Proof. Let $0 \longrightarrow K \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ be an exact sequence with $K \in L$ and $N \in L$. Since $t(K) \neq 0$ and $f(t(K)) \leq t(M)$, t(M) must be nonzero. If t(M) = M then $N = g(M) = g(t(M)) \leq t(N)$; hence N = t(N), a contradiction. So $0 \neq t(M) \leq M$, namely, M is in L.

Next, we show that L is closed under direct sums and direct products. Let $\{M_{\alpha}\}$ be a family of modules in L. If $t(\oplus M_{\alpha}) = 0$ then $t(M_{\alpha}) = 0$. So, $t(\oplus M_{\alpha})$ must be nonzero. Since $t(\oplus M_{\alpha}) \leq \oplus t(M_{\alpha})$, we have $0 \neq t(\oplus M_{\alpha}) \leq \oplus M_{\alpha}$. Therefore $\oplus M_{\alpha}$ is in L. Similarly, $\prod M_{\alpha}$ is in L.

Proposition 2. A module K is in L if and only if K has a nonzero submodule in T and a nonzero factor module in F.

Proof. The "only if" part is trivial. Suppose that K has a nonzero submodule K' in T and a nonzero factor module K/K'' in F. Then, $K' \leq t(K)$ and hence $t(K) \neq 0$. Let $\pi: K \to K/K''$ be the natural homomorphism. Then $\pi(t(K)) \leq t(K/K'') = 0$. Hence $t(K) \leq K''$. Since $K/t(K) \to K/K'' \to 0$ is exact, it follows that $K/t(K) \neq 0$. Thus K is in L.

Corollary 3. For a submodule N of a module M, M/N is in L if and only if there is a proper submodule N' of M such that $N \leq N'$, N'/N is in T and M/N' is in F.

Corollary 4. If M is a nonzero torsion module and N is a nonzero torsionfree module, then $M \oplus N$ is a leftover module.

Proof. This is clear by Proposition 2.

Theorem 5. The following conditions are equivalent.

- (1) T is splitting.
- (2) L is the class consisting of all modules of the form $M \oplus N$ with

ON THE COMPLEMENT CLASS TO THE TORSION THEORY

169

M a nonzero torsion module and N a nonzero torsionfree module.

Proof. (1) \Rightarrow (2). By Corollary 4 the module of the form $M \oplus N$, where M is nonzero torsion and N is nonzero torsionfree, is leftover. Conversely, let K be any element of L. Since T is splitting, t(K) is a direct summand of K. There is a submodule N of K such that $K = t(K) \oplus N$. Since $N \cong K/t(K) \neq 0$, it follows that N is nonzero torsionfree. (2) \Rightarrow (1). If K is in T or F, then t(K) is trivially a direct summand of K. Otherwise K is in L and $K = M \oplus N$ for some $M(\neq 0)$ in T and $N(\neq 0)$ in F. Then t(K) must be equal to M and hence is a direct summand of K.

Proposition 6. The following conditions are equivalent.

(1) If N is a submodule of a torsion module M such that $t(N) \neq 0$, then N is a torsion module.

(2) L is closed under extensions. (i.e., if N is in L and $N \leq M$, then M is in L.)

Proof. (1) \Rightarrow (2). Let N be a leftover module containd in a module M. Since $0 \neq t(N) \leq t(M)$, $t(M) \neq 0$. If t(M) = M then by (1) N is torsion, a contradiction. (2) \Rightarrow (1). Let M be a torsion module and N a submodule of M with $t(N) \neq 0$. If N is not torsion, then by (2) M is in L, a contradiction. So N is torsion.

Corollary 7. If T is hereditary, then L is closed under extensions.

Theorem 8. The following conditions are equivalent.

(1) T is hereditary.

(2) Each element of L has no nonzero torsionfree essential submodule.

Proof. $(1) \Rightarrow (2)$. This follows from the fact that **F** is closed under essential extensions. $(2) \Rightarrow (1)$. Let *M* be a nonzero element of **F** and E(M) its injective hull. Since *M* is a nonzero torsionfree essential submodule of E(M), E(M) is not in **L**. If E(M) is in **T**, then $M \oplus E(M)$ is in **L** by Corollary 4. But this is impossible because $M \oplus M$ is a nonzero torsionfree essential submodule of $M \oplus E(M)$. Thus, E(M) must be in **F**, that is **T** is hereditary.

Lemma 9. If L is closed under essential submodules, then T is stable. Proof. Let M be any nonzero torsion module and N an essential ex-

K. SHIGENAGA

tension of *M*. Since $t(N) \neq 0$, *N* is not torsionfree. Since $t(N) \leq_e N$ and t(N) can not be in **L**, *N* is not in **L** by assumption. Thus *N* is in **T** and **T** is stable.

Lemma 10. If T is hereditary and stable, then L is closed under essential submodules.

Proof. Trivial.

170

Theorem 11. If T is hereditary, then the following conditions are equivalent.

- (1) **T** is stable.
- (2) L is closed under essential submodules.

Proof. This follows from Lemmas 9 and 10.

3. Leftover class for 3-fold torsion theory. Let (T_1, T_2, T_3) be a 3-fold torsion theory. By L_1 and L_2 we denote the leftover classes for (T_1, T_2) and (T_2, T_3) , respectively.

Proposition 12. The following conditions are equivalent.

- (1) \mathbf{T}_1 is hereditary.
- (2) $T_1 \subseteq T_3$.
- $(3) \quad \mathbf{L}_1 \supseteq \mathbf{L}_2.$
- (4) $\mathbf{T}_1 \cap \mathbf{L}_2 = \emptyset$.
- (5) Each element of L_1 has no nonzero torsionfree essential submodules.
- (6) L_2 is closed under essential submodules.

Proof. (1) \Leftrightarrow (2) is well-known. (2) \Leftrightarrow (3) is clear since $\mathbf{T}_1 \subseteq \mathbf{T}_3$ means that $(R \operatorname{-mod} - (\mathbf{T}_1 \cup \mathbf{T}_2)) \supseteq (R \operatorname{-mod} - (\mathbf{T}_2 \cup \mathbf{T}_3))$. (3) \Rightarrow (4) is clear. (4) \Rightarrow (3). Since $\mathbf{L}_2 \subseteq (R \operatorname{-mod} - \mathbf{T}_1)$, $\mathbf{L}_2 \subseteq (R \operatorname{-mod} - \mathbf{T}_1) \cap (R \operatorname{-mod} - \mathbf{T}_2) =$ \mathbf{L}_1 . (1) \Leftrightarrow (5) and (1) \Leftrightarrow (6) follow from Theorems 8 and 11, respectively.

Corollary 13. A 3-fold torsion theory (T_1, T_2, T_3) has length 2 if and only if $L_1 = L_2$.

References

 Y. KURATA: On an n-Fold Torsion Theory in the Category _RM, J. Algebra 22 (1972), 559-572.

ON THE COMPLEMENT CLASS TO THE TORSION THEORY 171

[2] B. STENSTROM : Rings of Quotients, Springer Verlag, Berlin-Heidelberg-New York, 1975.

UBE TECHNICAL COLLEGE UBE, 755 JAPAN

(Received February 4, 1986)