Mathematical Journal of Okayama University

Volume 14, Issue 1 1969 Article 1 NOVEMBER 1969

A note on nets

W. E. Pfeffer*

^{*}University of California, Berkeley

A NOTE ON NETS

W. F. PFEFFER

For an accumulation point of a topological space we define a class of directed sets which can be domains of non-constant nets having this point as a cluster point. For certain accumulation points we also study the existence of a convergent net with prescribed domain.

We adopt the terminology and notation used in [2]. Throughout, unless otherwise specified, P will denote a general topological space.

If x is an accumulation point of P, then there is a net $\{x_{\alpha}\}_{{\alpha}\in D}$ in P-(x) which converges to x (see [2], p. 66). However, the directed set D on which the net $\{x_{\alpha}\}_{{\alpha}\in D}$ is defined cannot be completely arbitrary. In this note we give a simple condition on D which is sufficient for the existence of a net $\{x_{\alpha}\}_{{\alpha}\in D}$ in P-(x) having x as a cluster point (see [2], p. 71). Loosely speaking, this condition requires that the set D must be "longer" than a local base at x (see [2], p. 50). In the special case when the point x has a nested local base (see [1], p. 90, def. 4. 12. 4 or later in this paper), we give also a sufficient condition for the existence of a net $\{x_{\alpha}\}_{{\alpha}\in D}$ in P-(x) converging to x.

We begin with three simple examples which will illustrate the problem.

- 1. Example. Let P be the set of all ordinals less than or equal to the first uncountable ordinal Ω and let D be a countable directed set. In the order topology Ω is an accumulation point of P. However, every net defined on D which is in $P-(\Omega)$ is already in P-U, where U is a neighborhood of Ω . Apparently, in this case, the set D was "too short."
- 2. Example. Let P = [0, 1] and let D be the well ordered set of all countable ordinals. Suppose $\{x_n\}_{n \in D}$ is a net in P (0) converging to 0. Then there are ordinals $\alpha_n \in D$, $n = 1, 2, \cdots$, such that $x_n < 1/n$ for all ordinals $\alpha \in D$ for which $\alpha > \alpha_n$. Choose an ordinal $\alpha_0 \in D$ larger than all α_n . It follows that $x_{\alpha_0} = 0$; a contradiction. Here the set D was "to long". However, we can still define a net $\{x_\alpha\}_{\alpha \in D}$ in P (0) which has 0 as its cluster point. Indeed, it suffices to let $x_n = 1/(n+1)$, where $\alpha \in D$ and n is the number of isolated ordinals between α and the largest limit ordinal less than or equal to α .

2 W. F. PFEFFER

- 3. Example. Let P and D be the same as in example 2 and let N be the well ordered set of all finite ordinals. The product directed set $D \times N$ (see [2], p. 68) is "quite long," e. g., it has no countable cofinal subset. Yet, letting $x_{(\alpha,n)}=1/(n+1)$ for all $(\alpha, n) \in D \times N$, we have defined a net in P-(0) which converges to 0.
- If (D, >) is a directed set and if $\alpha \in D$, we put $D_{\alpha} = \{\beta \in D : \beta > \alpha\}$. Obviously, D_{α} is a cofinal subset of D. We recall that every local base Γ at $x \in P$ is directed by the inclusion \subset .
- **4. Definition.** A directed set D is said to be *sufficiently long* for a point $x \in P$ if and only if for every $\alpha \in D$ there is a local base Γ_{α} at x which can be isotonically embedded into D_{α} .

Let x be an accumulation point of P which has a countable local base. Then a directed set D is sufficiently long for x if and only if D has no maximal element.

If x is an accumulation point of P, we denote by ψ_x a choice function which to every neighborhood U of x associates a point $\psi_x(U)$ from U-(x). If a directed set (D, >) is sufficiently long for x, let $\varphi_a: (\Gamma_a, \subset) \to (D_a, >)$, $\alpha \in D$, be isotonic embeddings whose existence is required by definition 4.

5. Theorem. Let x be an accumulation point of P and let (D, >) be a directed set which is sufficiently long for x. Then there is a net $\{x_{\alpha}, \alpha \in D, >\}$ in P-(x) having x as its cluster point.

Proof. By \mathfrak{M} we denote the family of graphs of all maps $f: D^f \to P - (x)$, $D^f \subset D$, which are frequently in every neighborhood U of x (this has meaning, for D^f is a partially ordered set). Since D is sufficiently long for x, we can take $\alpha \in D$ and define $D^0 = \varphi_\alpha(\Gamma_\alpha)$ and $g = \psi_x \varphi_\alpha^{-1} : D^0 \to P - (x)$. Given a neighborhood U of x and $\beta \in D^0$, there is $V \in \Gamma_\alpha$ such that $V \subset U \cap \varphi_\alpha^{-1}(\beta)$. Letting $\gamma = \varphi_\alpha(V)$ we obtain $\gamma > \beta$ and $g(\gamma) \in U$. Therefore, the graph of g belongs to \mathfrak{M} . It can be readily verified that the union of every non-empty nest $\mathfrak{M}_0 \subset \mathfrak{M}$ belongs to \mathfrak{M} . By [2], p. 33, thm. 25 (a) there is a maximal element ϕ in \mathfrak{M} . Let ϕ be the graph of the map $f: D^f \to P - (x)$.

Suppose there is an $\alpha \in D - D^f$. If $\alpha < \beta$ for some $\beta \in D^f$, we let $D^h = D^f \cup (\alpha)$, $h(\gamma) = f(\gamma)$ for $\gamma \in D^f$, and $h(\alpha) = f(\beta)$. Then the graph of h belongs to $\mathfrak M$ which contradicts the maximality of ϕ . Therefore, $D^f \cap D_\alpha = \emptyset$. Since D is sufficiently long for x, we can define $D^h = D^f \cup \varphi_\alpha(\Gamma_\alpha)$,

 $h(\beta) = f(\beta)$ for $\beta \in D^f$ and $h(\beta) = \psi_x[\varphi_x^{-1}(\beta)]$ for $\beta \in \varphi_x(\Gamma_a)$. As in the first part of the proof it can be shown that the graph of h belongs to \mathfrak{M} . This again contradicts the maximality of ϕ .

We conclude that $D^f = D$ and the proposition is proved; for it suffices to let $x_{\alpha} = f(\alpha)$ for all $\alpha \in D$.

6. Corollary. Let x be an accumulation point of P and let D be a directed set. Suppose that P is a T_1 -space and that x has a countable local base. Then a net $\{x_n\}_{n\in D}$ in P-(x) having x as its cluster point exists if and only if D has no maximal element.

The next example shows that, in general, a converse of theorem 5 is not correct.

7. Example.¹⁾ Let N be the set of all finite ordinals with the discrete topology and let $\beta(N)$ be the Stone-Čech compactification of N (see [2], p. 153). Choose $x \in \beta(N) - N$ and introduce the relative topology into $P = N \cup (x)$. Then P is a Tychonoff space (see [2], p. 117) and x is an accumulation point of P which has no countable local base. Therefore, naturally ordered, the set N is not sufficiently long for x. Yet, the net $\{n\}_{n \in N}$ is in P - (x) and has x as its cluster point.

A local base for a point $x \in P$ is called *nested* if it is completely ordered by inclusion. A point $x \in P$ is called nested whenever it has a nested local base. Obviously, every point which has a countable local base is nested. Some basic properties of nested points are discussed in [1], sec. 4.12.

8. **Definition.** A directed set (D, >) is said to be *suitably long* for a nested point $x \in P$ if and only if there is a nested local base Γ at x and an isotonic embedding $\varphi: (\Gamma, \subset) \to (D, >)$ such that $\varphi(\Gamma)$ has no upper bound in D.

Let x be an accumulation point of P which has a countable local base. Then a directed set D is suitably long for x if and only if it contains a countable unbounded chain (see [2], p. 32). In this case D is also sufficiently long for x. However, in general, a directed set which is suitably long for some point need not be sufficiently long for this point. We give an example.

9. Example. Let P be the same as in example 1 and let \mathcal{D} be the

¹⁾ This example was suggested by C. R. Borges.

W.F.PFEFFER

4

family of all finite subsets of $P-(\Omega)$. The symbol > is used to denote the ordering in P. For $A, B \in \mathcal{D}$ we set $A \succ B$ if and only if $B \subset A$ or $B=(\beta)$ is a singleton and $\beta < \alpha$ for some $\alpha \in A$. It is easy to see that \succ is a direction on \mathcal{D} . The family $\Gamma = \{P_\alpha : \alpha \in P-(\Omega)\}$ is a local base at Ω and the map $\varphi : (\Gamma, \subset) \to (\mathcal{D}, \succ)$, defined by the rule $\varphi(P_\alpha) = (\alpha)$ for all $\alpha \in P$, is an isotonic embedding. Since $\varphi(\Gamma)$ has no upper bound in \mathcal{D} , the directed set (\mathcal{D}, \succ) is suitably long for Ω . On the other hand, if $A \in \mathcal{D}$ is not a singleton, then \mathcal{D}_A contains only countable chains. Hence (\mathcal{D}, \succ) is not sufficiently long for Ω .

10. Proposition. Let x be a nested accumulation point of P and let (D, >) be a directed set which is suitably long for x. Then there is a net $\{x_a, \alpha \in D, >\}$ in P-(x) converging to x.

Proof. Let Γ and φ be as in definition 7. Since $\varphi(\Gamma)$ has no upper bound in D, the sets $\Gamma_a = \{U \in \Gamma : \alpha \notin D_{\varphi(U)}\}$ are non-empty for all $\alpha \in D$. Denote by f a choice function which to every $\alpha \in D$ associate an element $f(\alpha)$ from Γ_a and put $x_a = \psi_x[f(\alpha)]$ for all $\alpha \in D$. Given a neighborhood U of x, there is a $V \in \Gamma$ such that $V \subset U$. Let $\alpha \in D$ and $\alpha > \varphi(V)$. If $f(\alpha) \supset V$, then $\varphi[f(\alpha)] < \varphi(V) < \alpha$ which contradicts the definition of f. Therefore $f(\alpha) \subset V$ and hence $x_a \in U$.

11. Corollary. Let x be an accumulation point of P and let (D, >) be a directed set. Suppose that P is a T_1 -space and that x has a countable local base. Then a net $\{x_\alpha, \alpha \in D, >\}$ in P-(x) converging to x exists if and only if D contains a countable unbounded chain.

If f is a real-valued function of one real variable and if t is a real number then the set of all numbers $s=\lim_{n\to\infty} f(t_n)$ where $\lim_{n\to\infty} t_n=t$ is closed. The following generalizes this fact.

Let $f: P \rightarrow Q$ be a mapping of P into a topological space Q, let x be an accumulation point of P, and let Γ be a local base at x. We denote by Q^x the set of all cluster points of all nets $\{f(x_a)\}$ where $\{x_a\}$ is an arbitrary net in P converging to x. We denote by Q^r the set of all cluster points of all nets $\{f(x_v)\}_{v \in \Gamma}$ where $\{x_v\}_{v \in \Gamma}$ is a net in P defined on Γ and converging to x.

12. Proposition. The set Q^x is always closed. If Γ is sufficiently long for every $y \in Q$, then also the set Q^r is closed.

Proof. Let y be an accumulation point of Q^x and let Λ be a local base at y. Choose $U \in \Gamma$ and $V \in \Lambda$. Since $V \cap Q^x \neq \emptyset$, there is a net $\{x_\alpha\}$ in P which is eventually in U and such that $\{f(x_\alpha)\}$ is frequently in V. Hence for some α , $x_\alpha \in U$ and $f(x_\alpha) \in V$. We let $x_{(U,V)} = x_\alpha$ and denote by > the product ordering in $\Gamma \times \Lambda$ (see [2], p. 68). Then the nets $\{x_{(U,V)}, (U,V) \in \Gamma \times \Lambda, >\}$ and $\{f(x_{(U,V)}), (U,V) \in \Gamma \times \Lambda, >\}$ converge to x and y, respectively.

Let Γ be sufficiently long for every $y \in Q$ and let y be an accumulation point of Q^{Γ} . By the same method as in the proof of Theorem 5 we can construct a net $\{V_v, U \in \Gamma, \subset\}$ of neighborhoods of y which is frequently contained in every neighborhood of y. Choose $U \in \Gamma$. Since $Q^{\Gamma} \cap V_v \neq \emptyset$, there is a net $\{x_w\}_{w \in \Gamma}$ in P which is eventually in U and such that $\{f(x_w)\}_{w \in \Gamma}$ is frequently in V_v . Hence for some $W \in \Gamma$, $x_w \in U$ and $\{f(x_v)\}_{v \in \Gamma}$ lif we let $x_v = x_w$, then $\{x_v\}_{v \in \Gamma}$ converges to x and $\{f(x_v)\}_{v \in \Gamma}$ has y as its cluster point.

13. Corollary. If Q is first countable then Q^{Γ} is closed.

The next example shows that the assumption of the second part of proposition 12 cannot be omitted.

14. Example. Let N be the set of all finite ordinals, Q the set of all ordinals less than or equal to the first uncountable ordinal Ω , and let $Q' = Q - (\Omega)$. In Q we consider the order topology. In $P = (Q' \times N) \cup (\infty)$ the points from $Q' \times N$ are isolated and $\Gamma = \{(Q' \times N_n) \cup (\infty)\}_{n=0}^{\infty}$ is a local base at ∞ . Thus Γ is not sufficiently long for Ω . If we set $f(\alpha, n) = \alpha$ for every $(\alpha, n) \in Q' \times N$ and $f(\infty) = 0$, then $Q^r = Q'$ which is not closed.

REFERENCES

- [1] E. ČECH: Topologické prostory, ČSAV, Prague, 1959.
- [2] J.L. Kelley: General topology, Van Nostrand, New York, 1955.

University of California, Berkeley

(Received February 5, 1969)