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Nagahara and Tominaga: On Galois and locally Galois extensions of simple rings

ON GALOIS AND LOCALLY GALOIS EXTENSIONS
OF SIMPLE RINGS

TAxAast NAGAHARA and Hisao TOMINAGA

Let K be a division ring which is Galois and finite over L. On gene.
rating elements of K (and of an intermediate ring of K/L), one of the pre-
sent authors continued his considerations in [6; 7; 8; 9]", and obtained
a number of important results. Although one of those results has been
extended to simple rings by F. Kasch and another of the present authors
"217], it has been unsolved whether other of those can be extended to simple
rings or not. One of the purposes of this paper is to present the extensions
of several results cited in [6; 7; 8] to simple rings (§§ 2 and 3). More
precisely ; if a simple ring R is Galois” and finite over a simple subring S,
we can prove the following: (1) If either S is infinite over its center or
V&(S) is commutative, then for any intermediate ring T of R/ S there exists
an element ¢ such that 7 = S ¢ (Theorem 2.1 and Theorem 3.1). (2)If S
is not a division ring, then R=S[r] with some regular element » (Theorem
2.2). (3)If S is not commutative and Vx(S) is a division ring, then R =
STr] with some # (Theorem 3. 2).

On the other hand, since 1956, Galois theory of simple rings of infinite
dimension has been undertaken under some finiteness assumptions "10; 19;
20], and then the Galois extensions considered there became necessarily
locally Galois. In §§ 1 and 4, we shall deal mainly with locally Galois ex-
tensions. The principal theorem of § 1 is the next: Let R be a simple ring
which is locally Galois over a simple subring S. In order that every inter-
mediate ring of R/S is a simple ring, it is necessary and sufficient that
Vx(S) is a division ring (Theorem 1.1). And in § 4, we shall see that if
R/S is locally Galois and V,(S) is finite over the center of R then R/S is
Galois (Theorem 4. 1). Moreover, in case V(S) is a division ring, we shall
obtain a generalization of this fact which corresponds to the conditions
adopted in [20]. In § 5, our interest will be directed towards Galois exten-
sions of central simple algebras of finite rank. And for those extensions,
several results obtained in [9] will be generalized in part. In the last sec-
tion § 6, as appendices, we shall present an extension of [1, Satz] to simple

rings and another proof of "9, Theorem 1] in which [9, Lemma 2] is not
needed.

1) Numbers in brackets refer to the references cited at the end of this paper.

2) If there exists an automorphism group 9 of R such that S is the fixring of
and the centeralizer Vx(S) is a simple ring, then we say that R is Galois over S, and
9 is called a Galois group of R/S.
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Throughout the present paper, we use the following conventions :
R : asimple ring (with minimum condition), which is represented as
>V j=1De;; with matric units e;5's and a division ring
D= sz({eu’s})-
: a simple subring of R containing the identity element of R.
: the centralizer Vz(S) of Sin R.
: Va(V).
: the center of R.
: the center of S.
: the group of all (ring) automorphisms of R which leave invariant
every element of S.
: the group of all inner automorphisms of R which leave invariant
every element of S.
the restriction of the map ¢ onto the subset M, where ¢ is defined
on a set containing M. Similarly, for a set & of maps defined on a
fixed set containing M, &|M={s|M; sEE&}.
Finally, as to other notations and terminologies used in this paper, we
follow [10; 20].

L @ Noam<w

s
S

§ 1. To obtain our principal theorem of this section cited in the intro-
duction, several preliminary lemmas will be needed. They are related with
Galois extensions of finite dimension, and the first of them is the next:

Lemma 1. 1. Let R be Galois and finite over S. Then R is homogen-
eously completely reducible as an S-R-module, and the length of its compo-
sition series coincides with the capacity of the simple ring V. In particuler,
R is S-R-irreducible if and only if V is a division ring.

Proof. Since Homy, (R, R) = ®R,, the S-R-module R is completely re-
ducible by [13, Lemma 1.1]. Recalling here that Homs,.z (R, R) = V, and
that Vis simple, our assertion will be readily seen.

The next is well-known as the normality theorem, however we shall
prove it as a corollary of Lemma 1. 1.

Corollary 1. 1. Let R be outer Galois and finite over S. An inter-
mediate simple ring N of R[S is Snormal (&-invariant) if (and only if)
N/S is Galois.

Proof. Let o be an S-(ring) isomorphism of N into R, Since R, is
S,-R,-irreducible by Lemma 1.1, so is ¢R,, whence sR, is N,-R,-irreducible
of course. Now, noting that Homs (N, R) = G(N/S)R,, there exists some
rE@(N/S) such that «R, is N,-R,-isomorphic to +R,. If ¢a,< :(a5~0) under
this isomorphism, then, for each x&N, o(xs),a,=x.0a,<>x,~-. On the other
hand, se.(x-),©:(x-),=x,-. Hence, we have (x¢)a = a¢(x:). Since in partic-
ular sa =as for each s& S, we see that ¢ is contained in V =C. Conse-
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quently, it follows s=r-aa;'=-&(N/S).

Lemma 1. 2. Lef R be Galois and finite over S, and M an S-S-submo-
dule of R which possesses a linearly independent S-left basis.

(1) (Q|M)V, possesses a linearly independent V,.-right basis which is
at the same time a linearly independent R.-basis of (3| M)R,.

(11) [M' S]i = [(®| ]"I)Rr . Ier]r = [(@I M) Ve Vr: re

Proof. It suffices to prove (i) only. Let V=33 g eV, where ¢/s
are primitive idempotents which are orthogonal to each other. Then, as
R=>.,ge R, weobtain (8|M)R,=>,eq(rIM)(e;R),. Since (a|M) (e.R),
is S,-R,-homomorphic to (e;R), which is isomorphic to each other (e,R), and
S,-R,-irreducible by Lemma 1.1, (&|M)R, is homogeneously completely
reducible. Now, we set (8|M)R,=>)j.; g (75| M) (eij), and t="M:S],
=[(S|M)R.: R.].. Then R=33}"., ¢ e:K will show that s=tu. Consequently,
B=2>N1(a;|M)(es jV), possesses a linearly independent V,-right basis {e,,
e )t B=3Y_1 ¢ V.. Since ($| MR, =VR,=>%_, &R, and [(B | MR,: R.],
={, it is clear that {¢,, -+, &,} is also a linearly independent R,-right basis
of (8| M)R,. Finally, we shall prove B=(G!'M)V.. If ris in @, then o|M
= >V, aan(a;€R). Since, for each s& S we have >}.; e8¢ = s.0|M
={(g|M)s,=3%_, e;ays,, it follows that each «; is contained in V, whence
& | M CB. We obtain therefore our assertion (3| M)V,=%, which completes
the proof of our lemma,

Lemma 1. 3. Let R be Galois and finite over S, and T an intermedi-
ate ring of R]S. If V is a division ring, then there hold the following :

A {vy, +, vn) SV (:5=0) is linearly right-independent over Vi(T)
if and only if {0,|T, -, 0n|T} is linearly right-independent over R,,
where v=vw; ",

() If on, e are in ®, then (o.|T)R, is T-R.irreducible. And,
(1| T)R, is T.R,-isomorphic to (o3| T)R, if and only if o1|T=a2|T for
some non-zevo v E V.

(iil) If V=g oValT), then (@VITIR, = (Va| T)R, =i o
(301 TR, for each c€®. In particular, (ValT)R, : R.],=t.

Proof. (i) Suppose {#,|T, ++, 9,.| T} is linearly dependent. By Lemma
1.1, it will be easy to see that each (v, |T) R, is S-R,-irreducible. And so,
we may assume that 33 (v | T)R.=Xu o (vu! T) R, with some s>1. We
set here vy, | T =3y | Tay (a: € R). Then, for each = T, there holds
Doy | TYad), =" (o | TXta,)., whence we have e, Vi(T). This proves
evidently that {v,, --+, v.} is linearly dependent over V,(T). Conversely,
suppose that {#,|7, -+, 2, |T} is linearly independent. If {v, -, ..} is
linearly dependent over V(7)) : 3™ ,v:a4;=0 (a/s are contained in V,(7) and
not all zero), then >..(2¢] T)(»a:),=0, which is a contradiction.
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(ii) The T, R,-irreducibility is a consequence of Lemma 1.1, and the
rest of the proof will be completed by making use of the same method as in
the proof of Corollary 1. 1.

@) (Vo|T)R, = (V|T)Re = (i1 @ 3| TIRs = Siur o @i | T) R,
by ().

Lemma 1. 4. Let R be Galois and finite over S. If V is a division
ring, then each intermediate ring T of R|S is a simple ring.

Proof. Asiscited in Lemma 1. 3, the T,-R,-module (&|T)R, is com-
pletely reducible and its homogeneous component is of the form (170| TR, :

(S| T)R, =S¥ ¢ (Vo IT)R,  with some o= .

Since &(T) is evidently a regular group in Nakayama’s sense [13], 7'=
J(&(T), R) is a simple ring by [13, Theorem 1]. In what follows, we shall
prove that T'=7. Since, by Lemma 1.3 (ii}, for any r € & there exists
some ¢; and v € V such that | T=s2|T, thatis, =/, for some '€
&(T), we have | T'=0,3|T' € (Vas| T)R,. On the other hand, it is clear
that Vx(T) = Vx(T"), and so there holds [( ;ﬂ] TR,: R]v=[(Va| TOR.: R,
by Lemma 1. 3 (iii). Accordingly, it will be easy to see that [7': S], =
[(B|ITYR,: R]), <[(G|T)R,: R],=[T:S].. AsT'2DT of course, it
follows eventually T'=T.

Corollary 1. 2. Let R be Galois and finite over S. If either V=C
or VCS, then R= S[r] for some r E R.

Proof. By [5, Satz 9], R is &S,-isomorphic to 8S,=>Y_, ¢ :S.(:ES).
If 7 is the element of R corresponding to 1 € &S, under the above isomor-
phism, then {ray, -*-, 74,} is a linearly independent S-right basis of R. Now,
if c=>Y 105, E8(S[r]), then r-1=r-=>Y_,(ra))s; will yield at once r=1.
Since V is a field in either case, S[r] is simple by Lemma 1. 4. Hence, our
assertion is clear by the Galois correspondence established in [13] (or in
[191).

The proof of the next will proceed just as in that of [16, Theorem 4],
and the details may be left to readers.

Corollary 1. 3. Let R/S be abelian with respect to 9.° If R is of
characteristic p50, and D=1 X DX -+ X O, where each D, is of order p,
then there exist some x,, =+, x, such that: (1) x? —x,E S, (2) R=S[xy, **+, x.],
3) S[x 1M S[xy, *==, %1, -, x.]1 =S, and (4) STx./S is abelian with res-
pect to 9.

Now we shall prove our principal theorem of this section, which con-
tains the first half of [20, Theorem 3].

3) Cf. [16, p.16].
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Theorem 1. 1. Let R be locally Galois over S. Then the following
conditions are equivalent to each other :

(1) Every intermediate ring of R/ S is a simple ring.

(2) Visa division ring.

Proof. (1)=»(2).® Let v be an arbitrary non-zero element of V. Then
there exists a simple subring N such that ND S »], N/S is Galois, and
[N: S]<<co. Recalling here S[Vx(S)]=SX ;Vx(S), we see that [V,(S): Z]
oo, Accordingly, if V4(S) (EV) is not a -division ring, then V,(S)
contains a zero-divisor z5=0. It follows therefore that the center of the
simple ring S[z] contains a non-unit z, which is evidently a contradiction.
Hence, V,(S) is a division ring, and so » possesses an inverse in V.

(2)=(1). Let T be an arbitrary subring containing S. Since R/S is
locally Galois by our assumption, each subring finitely generated over S is
simple by Lemma 1.4. Then, in virtue of this fact, we have T=\US,

where S, runs over all the (simple) subrings of T finitely generated over S.
Now, it will be easy to see that T is two-sided simple, so that T is primi-
tive. Moreover, one will penetrate the fact that each non-zero right ideal
of T contains a non-zero idempotent element. Combining these with the
fact that T is of bounded index (of nilpotency) as a subring of the simple
ring R, we have eventually, by [14, (39.5)], that T is a simple ring.

As an easy consequence of Theorem 1.1, the following will be readily
seen. (Cf. [10; 19; 20].)

Corollary 1. 4. If R/S is Galois and & is l. f. d., then the conditions
cited in Theorem 1.1 are equivalent to each other. In particular, if R|S
is locally finite and outer Galois, then there exists a 1—1 dual correspon-
dence between closed subgroups of & and intermediate rings of R/S, in
the usual sense of Galois theory.

§ 2. Throughout this section, we assume that R is Galois and finite
over S.

Lemma 2.1. Let K be an intermmediate field of S|Z, N=> e 0.7
a Z-right submodule of R, and {a,, -+, a.} © R be linearly right indepndent
over Z. If Kisalgebraic and infinite over Z, and 23,1 @, K=201 g @u K,
then there exist an intermediate field K* of K/Z and an element k= K
such that RE K*, [K*: Z]<<oo, N+ 3V a kK*=N& 3%, a,kK*, and
{ay, +-, @} is contained in 3., a, K*.

4) Let S=J(9, R) with some automorphism group 9, and [R: S]i<eo. Under this
situation, to be easily seen, the proof of (1)=>(2) is still valid. And so, by Lemma
1.4, we see that the conditions cited in Theorem 1.1 are equivalent to each other.

Produced by The Berkeley Electronic Press, 1960



Mathematical Journal of Okayama University, Vol. 10 [1960], Iss. 2, Art. 5

148 Taxkast NAGAHARA and Hisao TOMINAGA

Proof. Weset ay=2%_ a. oy, with by, € K(i=s+1, -, 1). In case
NNSE L a. K ={0}, it will be easy to see that K*=Z{k.'s}] and an ar-
bitrary k€ K\K™ are our desired ones. In what follows, we shall consider
intently the case where NN\ >3, | ¢, K5~ {0}. Now let &= (S, ---, S,} be
the collection of all the (non-empty) subsets S,= {43, --+, 45’} of {x,, -+,
%} such that D3 ¥ ZN\ %, @, K 5= {0}. Then we have
(1) E’;f':l 220, =30_1 @.yn. with not all zero z,;€Z and y,,E K (h=1, -+,
¢). We set here K*=Z_{k. s}, {yw's}], and choose an element k € K\ K*.
Suppose NN\ D% @.kK" == {0}. Then, there exists some S, & & such
that 332 2” Z N D% akK* 5= {0}, that is,

2 Z?fl 22, =% _, akyh, with not all zero z,,€Z and v}, € K*.

If z,,,ﬁé 0, there exists some z &€ Z such that z, 5, = 22p;, Now, subtracting
(1) (for /1 =p) multiplied by z from (2), we obtain

3) UM xPzy; = 3. a, (kyi.—w,), where z,,€ Z and w,E K*,

Since % is not contained in K* we may remark here that the coefficients
kyy. —w, are not all zero, that is, S,,\{x(:°)} is some S,.. Secondly, we
repeat the same procedure with (3) and (1) (for 2Z=p'), and so on. Then
we arrive to a contradiction 0=>7., @k, with not all zero £, & K. Hence,
we have N+ 3%, a,kK*= N @ 30.; a.,kK*. The rest of the proof will
be almost evident.

Lemma 2. 2. Let R be Galois and finite over a division vring S, M
an S-S-submodule of R, and a an element of M. Then there hold :

(1) a@V, possesses a linearly independent (finite) V-right basis.

(i) If [M: S],=[a®V,: V], then M= SaS.

Proof. (i) Let « be an element of ®V,. If ax =0 then (SeS)a=
S(aa)S =0, and conversely. And so, by Lemma 1.2, we have [SzS: S],
=[(®|SaS)V,: V,],=[a@®V,: V],

(ii) Since (M: S1, =[a®V,: V], =[(®|SaS) V,: V.],=[SeS: S], by
our assumption and the fact cited at the end of the proof of (i), M=SazS is
evident.

Theorem 2. 1. Let M be an S-S-submodule of R. If [S:Z]=oco, then
M=SaS for some a € M.

Proof. Let S=2>3i= Efis, where fi.'s are matric units and E =
Vs({fu's}) is a division ring. Then, Vp(E) = 3.1 Vfu is simple, and R
is Galois and finite over E. If it has been shown that M = EeFE for some
ac= M, then M = SaS of course. So that, to our end, it suffices to prove
our theorem for the case where S is a division ring.

Now, let M=33; ¢ Sa™, and {¢,, -+, ¢} is a linearly independent V-
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basis of (B|M)V,: B MYV,=3, ¢ = V, (cf. Lemma 1.2). As our asser-
tion is clear for #'=1, in what follows, we shall prove the case n' >1. By
Lemma 2. 2, it suffices to show that A contains an element ¢ such that
[a®V,: V],=[M: S],. We distinguish here two cases: '

Case I: S contains an element x that is transcendental over Z. Set
M= a®®V,. Then, [V: Z] <o implies [M’': Z],<co. And then
the same argument as in the proof of [8, Lemma 3] applies to see that
there exists a positive integer % such that 3T, M/y' =37, o M'y' for y=2" If
a=3S, ¢, is a non-zero element of (&|M)V,, then 0= Ma=}",S(@Pq),
whence we have ¢"®« % 0 for some i;. We set here @ = SU%,a®), Then,
recalling that ¢Pa € M' and XinM'y' = 3o g M'y', we obtain aa=

v (@®Pa)y* £0. From this, we see that {ae, -+, @cqr} is a linearly in-
dependent V-right basis of ¢®V,, thatis, [a®V,:V],=[(G|M)V,: V,],=
[M:S..

Case II: S is algebraic over Z. Let K be a maximal subfield of S.
Then, [K: Z]= oo evidently. We set here ¢“GV,=3T%, o @uZ, and
Sty e K="t @ @K (i=2, -+, n'). Applying Lemma 2. 1 for N=a®@V,
and {@, -+, &} = {@u, -+, @x,}, We obtain an intermediate field K% of K/Z
and an element k& K\ K7 such that [K}: Z]<oo, aV®V,+ Shoey @k K =
aYOV, D S, tukKF, and a®BV, C 302, @, KF. Repeating the same
procedures for the module a® GV, @ ST, ek K7 and {ay, -, ax,}, and
so on, one will obtain eventually k,, -+, k... € K and intermediate fields
Kf, «., K¥%_, of K/Z such that k, €& K\K}, [K{:Z]<co and that

eV, + S SN arnk K =P8V, © Si'e Ik arakiKY,

@ISV, S5 @K (—i =1, -+, n'—1).

Setting here @ = a™® +~ 33 1'a“* Pk, by the same way as in Case I, it will
readily follow [a®V,: V],=n'

Corollary 2. 1. If[S:Z]= oo, then for each intermediate ring T
of R/S there exists an element t € T such that T=S[t].

In [21], it has been shown that R =S[r,»'] with some conjugate,
regular elements 7, 7. As an easy consequence of this fact, we obtain

- Theorem 2. 2. If S is not a division ring, then R=S[r] with some
regular element 7.

Proof. Let S=>Wi i Efax(m>1), where fi:'s are matric units and

E = Vy({fu's}) is a division ring. Then, as is well-.known, R'=V,({fu’'s})

is a simple ring and R = > ;-; R'fn.. Noting that R’ is Galois and finite

over E, by [21, Theorem 1], we obtain R' = E "x, y] with some regular

elements x, y. And then, to be easily verified, x+ fi;y is a regular element
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and R=8_x- fny].

Lemma 2. 3. If S is not conlained in C but in D, lhen R=S[r] with
some regular element r.»

Proof. By 7, Theorem 3, it suffices to prove the case where n>1.
Since R is Galois and finite over >3/ ;- Ses;, so is D over S. Hence, by (7,
Theorem 3], S&Z C= V,(D) vields D=S[x] with some regular element
x € D. Here, without loss of generality, we may assume that there exists
an element y &€ S such that xys~=yx. Now, we sct r =), e, + xe,.?
Then, we readily see that r* =3V, ey, -I- x™' e, €8[r]. Moreover, by
a brief computation, the next will be verified :

Srisr—tr—yry™) (rt—yry Hr -9
=(x—yxy™") (" —yx 'y ey, (i, j=1, -, n).

And so, (x—yxy™) (x'—yx~'y~!) = ¢ is contained in S[r]. Since xy 7 yx,
@ is a non-zero element of D, whence every e;; is contained in S[r].

Theorem 2. 3. If SN\D is not contained in C, then R=S[r]. If
moreover [S:Z] << oo then R =S[r] with some regular element r.

Proof. By Corollary 2. 1, it suffices to prove the latter assertion.
Evidently, Vi(SND)= 3%,..V.(SND)e,; and SND = J(9, R), where 9
is the automorphism group generated by & and all inner automorphisms
determined by regular elements of 3% ,.; Ce;;.. On the other hand, by [18,
Lemma], [S:Z]<<co and[R:S] < ooyield [R: C]<<oo, It follows there-
fore that U = Vx(SM\ D) is a simple ring which is finite over C. Moreover,
noting that (- U: D)< (B: V)< oo, we see that - U is a regular group
of R in Nakayama’s sense [13]. Hence, R is Galois and finite over J($- (7, R)
=SND. Accordingly, by Lemma 2.3, R=(SN\D){r]=S[r] with some
regular element 7.

Remark. As is shown in [7, Theorem 3], in case R is a division ring,
R = S[7] with some » when either SZ C or R is commutative (and conver-
sely). However, for a simple ring with [S: Z] <C oo, it will be considerably
difficult to extend the theorem to simple rings. (For the case [S:Z]=oo,
by Theorem 2.1, there is nothing to prove. Cf. also § 3 and [6, Lemma

7].)

5) In particular, the complete #X¢ matrix ring (K). over a non-commutative division
ring K can be written as K[r] with some regular element 7.

6) As is noted in the proof of [21, Lemmal, for u* = 3}, ei-1t and v*=33]_; e11—;
there holds eyy=wp¥i-ly#n—lptn—ly*j-1 (j j=1,.--,n). By making use of these equations,
one will readily see the following : Let A be a central division algebra of degree (or
index) # over a field K. If an algebraic extension field L of K is infinite over K and
splits A, then L contains a splitting field Lg that can be obtained by adjoining at
most 2x2 elements to K,
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§ 8. Throughout the present section, we assume that R is Galois and
finite over S. And we shall deal exclusively with the case where V is a
division ring. At first we shall prove the next:

Lemma 3. 1. If V is a division ring, and T, T, are subrings such
that RDT,\ 27,28, then [T,: Vy (2)]1 > [T:: Ve, (2)].

Proof. Since [V : V«(R),<<co and T, is simple by Lemma 1. 4, it will
be clear that o>V, (T)[Z': V,(T)|=[T:: V,(2Z)]. Thus, to our end,
it suffices to prove that |V, (TO[Z : Vi (T\), > V. (T} Z]: Vo (T.)].
Now wecan {ind a linearly independent Vr(T,)-basis {z, ---, z;} of
Vi (T)[Z] from Z. If {z, -+, z} is not linearly independent over Vx(T%)
then, without loss of generality, we may assume that {z, -+, 2} (s>1) is
linearly independent over Vi(7%.) and z, = >i_.z;0: (v; € Vi(T,)). Since for
each T.-(ring) automorphism « of R we have v;6€ V(T,) and z,=3..z:(vi7),
it follows 0 = 3i; zi(vic — v;), that is, vir =v;. Recalllng here that R/ T,
is Galois by [13], we see that each v, is contained in T, and hence, in
VT‘Z(TQ). But this is a contradiction. Hence, {z,, .-+, 2z} is still linearly
independent over Vi(T:). Now, noting that V,(T,) S V.(T.), one will
readily obtain our assertion.

Moreover, by the validity of Lemma 1. 4, the proof of the next can be
completed just as in that of [6, Lemma 6].

Lemma 3. 2. Let V be a division ring, and T a subring of R contain-
ing S. If vis a regular element of Vi(Z), then there exist some element
te T and some finite subset {zi, -+, zp} 0f Z such that T=-,6tz2,)VH{Z)
and that (¢2)v + (t2)ve+ -+ +(t2:)v,=1 with some v's in Vp(Z).

By the light of these lemmas, we can obtain the following, whose
proof proceeds just as in that of [6, Theorem 1], and may be left to
readers.

Lemma 3. 3. Let V be a division ving, and T an intermediate ring
of R/S.

(G) Ifvis a regular element of VA(Z), then there exists sometE T
such that S "t]3v and T = V(Z)[£].

(i) If Vo(Z)=S[v] with some regular element v, then T = S[t] for
some t.

Now, we can prove the next theorem that contains Corollary 1.2 as
a special case.

Theorem 3. 1. Let T be an arbitrary intermediate ring of R|S. If
V is commutative, then T=S[t] with some t.

Proof. By Theorem 2.1, it suffices to prove our theorem for the
case where [S: Z]<<oo. Since [R: C]<<co by [18, Lemma] and S[C] is
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simple by Theorem 1.1, R/S[C] is inner Galois, whence we have Vi(V)
= Va(Vx(S[C))) = S[C]. And then, noting that V C Vg(V)=S[C]=
Sx,Z[C], it follows V=Z[ C]. Hence, we have V(Z)=Vx(V)=SX,Z[C].
Accordingly, there holds V;(Z)=S X .Z' with some intermediate field Z’
of Z[ C]/Z. Since, as in the proof of [6, Lemma 3], we can easily see that
®|Z[C]=®&(Z[C1/Z) and &|C=&(C/ZNC) possess the same order, it
will be readily seen that Z[Cl=Z X ;~¢C, and that Z'=Z X z~.C' with
some intermediate field C’' of C/ZNC. Hence, it follows VH{(Z)=SX,
(Z X z~0C" =8 X z~¢C". Recalling here that C is Galois and finite over ZNC,
we have C'=(ZNC)[v] for some non-zero (regular) element ». Since Vi(Z)
=S[v] of course, our assertion is a direct consequence of Lemma 3. 3 (ii).
The next is clear by Theorem 3.1 and [11, Theorem 6].

Corollary 3. 1. If R is of characteristic p50, and R/S possesses a
DF-group” of order p° as a Galois group, then for any intermediate ring
T of R/S, there exists an element t such that T=S[t].

In general, if R/S is strictly Galois® with sespect to © (in particular,
if outer Galois), then R contains a £-normal basis element 7, thatis, {rs;
o9} is a linearly independent S-right basis of R [11, Theorem 4], and
To(r)=>,e9rc is evidently a regular element of S. Taking this fact into
our consideration, we can apply the argument in the proof of [ 6, Lemma 5]
to see the next:

Lemma 3. 4. Let V be a division ring. If Va(H)=C and S2Z, then
R=S[r] for some r.

Proof. As evidently V is Galois and finite over Z, V=Z[v, v,] with
some v;’s in V by [5, Satz 14] (or [21, Theorem 1]. Further, noting that
H is outer Galois over S[ C] (Lemma 1.4), there exists a &(H/S[ C])-nor-
mal basis element % by [11, Theorem 4]), and there holds H=S[C, /]
by the proof of Corollary 1. 2. Moreover, as is noted before our lemma,
Sregnisier, k- is a regular element of S[ C]. And so, from the beginning,
we may assume > eguiswey #-=1. In case Z, and so V is finite, by
Theorem 3. 1 (or Corollary 2. 1), our assertion is true without any restriction.
Thus, we may restrict our proof to the case where Z is infinite. And then,
the rest of the proof proceeds just as in that of [6, Lemma 5].

We insert here the following lemma which may be regarded as a slight
generalization of [4, Theorem 7.13.1 (1)] and [12, Lemma 2].

Lemma 3. 5. Let U be a ring with 1, and B3 1 a two-sided simple
subring of U. If AD1 is a division subring of U such that B is invariant
relative to all inner automorphisms determined by non-zero elements of A,

7) Cf. [11, Definition 5].
8) Cf. [11, Definition 6].
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then either ACB or ACV(B).

Proof. At first, we shall prove A=(ANBN\JV(B). Let ¢ be an ar-
bitrary element of A. If ¢ and 1 are linearly left-independent over B, then
(1—a)b'=b*(1—«) (b B) implies that b—b**a = b*—b*a where ab=0>0""a,
and then b =0*=5**, that is, ¢= V.(B). On the other hand, if ¢ and 1 are
linearly dependent : b, —b.=0 with non-zero b,E B, then, recalling that B
is two-sided simmple, we can easily see that & is contained in B.

In case ANBCV(B), A=(ANBNJV(B) yields at once AC Vy(B).
Thus, it remains only to show that if ANBZ V.(B) then ACB. Now, we
can find an element @,& AMB not contained in V,(B). Suppose, on the
contrary, A is not contained in B. Then there exists an element 2’€ A not
contained in ANMB, which is in V,(B) by the remark stated at the
beginning of the proof. Since, at the same time, a’+ 4, is not contained in
ANB, a'+a,is also in V(B). Hence, a,is in V,(B), which is a contradic-
tion.

By the validity of Lemma 3.4 and Lemma 3.5, one will readily see
that [6, Corollary 1] and [6, Corollary 2] are still valid in our present
stage:

Corollary 3. 2. Let V be a division ring, and T a &-normal (&-
invariant) intermediate ring of R|S. If Vy(H)=C and SR Z then T=S[t]
with some t.

Corollary 3. 3. If V is a division ring and SRZ, then Vy(Vy(H))=
S[r] with some r.

Lemma 3. 6. Let T be an intermediate ring of RIS, Z be infinite,
and [S:Z]<<oo. If T=S[t], then T=S[u] with some regular element u.

Proof. By [18, Lemma], it follows [R: C]<<oo. Combining this
with [C: CNS]<<oo, we obtain [R: Vs(R)]<<oo. Hence, A=V (R)t] is
a finite dimensional commutative algebra over the field K=V (R). If we
denote by N the radical of A, then A=A/N=K[F]=A,P---PA;, where
Ay's are fields over K and 7 is the residue class of £ modulo N, We set here
fT=a,+-+a, (a;€A)). Recalling that Z, and so K is infinite, we can find
some k€ K such that each A,-component of f— £ is non-zero. And then, it
will be clear that ¢—Fk is a regular element and T=S[¢—£k].

Now, in virtue of Corollary 2.1, Theorem 3.1 and Lemma 3.6, the
proof of [6, Corollary 3] is still efficient in proving the next

Corollary 3. 4. Let V be a division rving and T an intermediate ving
of RIS. If V.(H(=V.(V)=C[Z], S22Z, and Vi {(Z) is X-normal, then
T=S[t] for some tET.

Proof. 1If either [S: Z]=o0 or Z is finite, our assertion is clear by
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Corollary 2.1 and Theorem 3.1. Thus, in what follows, we may restrict
our attention to the case where [S: Z]<<cc and Z is infinite. Since N =
Vi(Z) is F-normal, NCH or NV by Lemma 3. 5. If NCH, then N=S5[«]
for some regular element » by Theorem 3. 1 and Lemma 3. 6. On the other
bhand, if N2V then V,(S)=V, whence the center of V,(S) is C[Z]. Since
C[Z]CVCN=V,(Z), we may easily see that C[Z]CV.{(N)C the center
of Vx(S)=C[Z], whence C[Z]=Vy(N). Moreover, recalling that [R: C]
<Coo by [18, Lemma], we have V(Z)=Vx(C[Z])=S[V]C T by V.(S[V])
= C[Z] and Theorem 1. 1, whence it follows that V(Z)= Vx(Z). And this
implies that N is G-normal, and so N/S is Galois.” Hence, by Lemma 3. 4
and Lemma 3. 6, there holds N=S[#«] for some regular element z. Since,
in either case, V,(Z)=S[«] with some regular element %, the rest of the
proof is clear by Lemma 3. 3 (ii).
And now, we shall prove the following theorem.

Theorem 3. 2. Let V be a division ring. If S2Z, and T a J-normal
intermediate ring of R|S, then T=S[t] with some t.

Proof. If [S: Z]= oo, then our assertion is true without any restriction
by Corollary 2.1. On the other hand, if [S: Z]<Cco then [R: C]<<oo by
[18, Lemma], whence it follows H= Vz(Vnx(S[C]))=S[C]CSx% .V by
Theorem 1. 1. And so, there holds V,(H)=C[Z]. Since Vx(Z) is S-normal
evidently, our assertion is a direct consequence of Corollary 3. 4.

Corollary 3. 5. If Vis a division ring, then R=S[r, vrv™"] for some
r&R and v&V.

Proof. 1f SRZ, by Theorem 3.2, there is nothing to prove. Thus,
it remains only to prove the case S=Z. Since the division ring V=Vi(Z)
is Galois and finite over S, by [21, Theorem 1], we obiain V=5S[x, vxv™"]
with some regular elements x, v € V. And then, by Lemma 3. 3 (i), there
exists an element » € R such that S[r] 3 x and R = V[»]. Recalling here
that vxo'€vS[7 Jo = S[vrv™], it will be clear that S[r, vro™*]=V[r]=R.

§ 4. In this section we shall deal exclusively with locally Galois exten-
sions, and show that in some important cases if R/S is locally Galois then
it becomes Galois.

Lemma 4. 1. Let R/S be locally Galois, N a simple subring of R
such that Vi(N) is a division ring, N[S is Galois, and [N:S]<<oo, Ifa
is in NNH and o in &N/S), then ac is contained in H.

Proof. If as is not contained in H, there exists some » €V such that
v Yaos)v+as. Now, choose a simple subring N' containing N[v] such that

9) Of course, Va(S) is a division ring.
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N'/S is Galois and [N': S]<<e~. Then, as is well-.known, ¢ can be exten-
ded to an automorphism o' € G(N'/S). As evidently zs''€V, we have
(va' ) 'a(vs'")=a, whence v™'(as)v=as. But this is a contradiction.

Lemma 4. 2. Jf R/S is locally Galois and V=C, then R/S is Galois.

Proof. Let N be an intermediate (simple) ring of R/S such that N,/S
is Galois and [N, : S]<Ceo, and put &,=®(N,/S). By Corollary 1. 1, if N2
Npg, then there holds ®,|Nz=®,. Now let &* be the inverse limit of the
system {®,; N, runs over all the subrings of R such that N,/S is Galois
and [N, : S]<<eo}. Then, @*(>1) may be regarded as an automorphism
group of R. Since each , is finite and there holds &, | Ng=; for N,DNj,
[2, Corollary 3. 9] yields at once &*| N,=@,, whence our assertion follows
directly.

Lemma 4. 3. If R/S is locally Galois, then V is a simple ring.

Proof. Let v be an arbitrary non-zero element of V. Now, let N be
a simple subring containing S[»] such that N/S is Galois and [N : S]<<oco.
Since V,(S) is a simple subring of V containing », there holds V,(S)oVA(S)
=V,(S)>1, whence we see that V is two-sided simple, and that each non-
zero right ideal of V contains a non-zero idempotent element. Since V is of
bounded index, our assertion is a consequence of [14, (39.5)].

Lemma 4. 4. If R/S is locally Galois and V is finite over the center
Zoof V, then there hold the following :

(i) His a simple ring and O(R/H) is . f. d.

(ii) H/S is Galois.

Proof. (i) Let {w,, -+, w:} be a linearly independent Z,-basis of V, and
set S"=S[{ei's}, {wys}], H'=VxVi(S")). Then, S" is evidently a sim-
ple ring. Moreover, [S/": S],<<oo yields [ V: Vx(S")],<<eo [10, Corollary 1].
Combining this with [V: Z,]J<{oe, we obtain[ Vx(S"):Z" ] <o by [18,
Lemma], where Z'" is the center of Vi(S'). Next, recalling that
Ve (H) =V, we readily see that [V,.(H): Vyo(H"] = [V: Z!"] =
[V:VuSN], [V(S"): Z"]<oo. Thus, V being simple by Lemma 4. 3,
H= V4.(V) is simple and [H": H];=[H": V. AVy..(H))], < oo. Since
R/S" is locally finite, by [15, Theorem 1], one will readily see that R/ H"
is locally finite too. Hence, so is R/H. And then, G(R/H) is 1.f.d. by
[Ve(H): Va(H)]=[V: Z,]<<eo [20].

(ii) Since H is simple, we can set H = 37, .., Fg,, with matric units
g»q's and a division ring F=V,({g,'s}). Then, S*=S[{e;’s}, {gs's}] and
H*=S*MH are simple, and Vx(S*) is a division ring. Let F be an arbi-
trary finite subset of H. Then we ca._ choose a simple subring N containing
S*[F] such that N/S is Galois and [V : S] <{ec. Now, by Lemma 4. 1, it
will be easy to see that NNH(2S[F]) is a simple subring of H which is
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Galois and finite over S. Hence, H/S is locally Galois, whence it is Galois
by Lemma 4. 2.

Theorem 4. 1. If R is locally Galois and V is finile over the center
of R, then R]S and R/S[{ei's)] are Galois.

Proof. Since R/S[{ei's}] is locally Galois necessarily, it suffices
to show that R/S is Galois (cf. also [18, Lemma]). Let {r, -:-, 7.} be a
linearly independent H-left basis of K. We choose here a simple subring M
containing S[ {es’s}, {#.’s}] such that M/S is Galois and [M : S]<Ceo. Then,
to be easily verified, R/M is outer Galois by Lemma 4. 2. And so, to our
end, it suffices to prove that &(M/S)CS G |M. Let p be an arbitrary auto-
morphism in &(M/S). For any intermediate simple ring M, of R/M such
that M,/S is Galois and [ M, : M]<ce, p can be extended to an automor-
phism in &(M,/S). Now, we denote by &, the totality of these extended
automorphisms of p, and by ¢ the inverse limit of the syetem {€.; M,
runs over all the intermediate simple rings of R/M such that M,/S is Galois
and [M,: M]<<co}, which may be regarded as a set of iscmorphisms of R
into R. Since &(M,/M) is a finite group, each &, is finite too. Hence,
is non-empty by [2, Theorem 3.6]. If ¢ is an arbitrary element cf & and
x an arbitrary element of H which is contained, say, in M,, then x¢ =
x(c| M.)E H by Lemma 4. 1. Thus, we see that HrC H. Further, recalling
that H/S is outer Galois by Lemma 4. 4 (ii), we have Hes=H [19]. Com-
bining this with R=H[M], we readily see that ¢ is in fact an automor-
phism of R.

As a direct consequence of Theorem 4. 1, one will see that the condi-
tions (1)—(4) intreduced in [20] (or those assumed in [10, Theorem 17)
are equivalent to the condition that R/S is locally Galois and [V ; C]<eo.
For the sake of completeness, we shall state this fact as a theorem.

Theorem 4. 2. Let R/S be locally Galois and [V : C]<co.

(i) For each intermediate regular subrings Ry, R, of R[S, every S-
(ring) isomorphism of R, onto R, can be extended to an automorphism of
R.

(ii) For each intermediate regular subring R' of R[S, R is Galois
and locally Galois over R'.

Moreover, in case V is a division ring, Theorem 4. 1 is still true under
a somewhat weakened assumption. To see this, we shall prove more
several preliminary lemmas.

Lemma 4. 5. Let R/S be locally finite, and T an arbitrary inter-
mediate ring of HJS. If &'(F,/S)|F,=08'(F,/S) for any subrings F, Fsof
R such that F\2F,2S and [F,:58],<co, then there holds T®'(T/S)C H,
where &'(T]S) signifies the set of all S-(ring) isomorphisms of T into R.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 10/iss2/5

14



Nagahara and Tominaga: On Galois and locally Galois extensions of simple rings
ON GALOIS AND LOCALLY GALOIS EXTENSIONS 157

Proof. 1t suffices to prove our lemma for the case where [T : S],<<oo.
Let o be in ®(T/S). If Te Z H, then there exist some 0s4v &V and t€T
such that (te)vs~uv(ts). Since o' €& (Te/S) = &'((To)v]/S)) Te by our
assumption, there holds ¢~ '=<| T for some - € &((Te)[v1/S). Then, v-
being evidently in V, #(v:)=(v:-){, whence ({- Yo =o(t:""), thatis, ({e)r=
2(t¢). Bat this is a contradiction.

By Theorem 1.1 and [13, Theorem 6], the next will be almost clear.

Corollary 4. 1. Let R/S be locally Galois, eand T an intermediate
ring of H/S. If V is a division ring, then T&'(T/S)C H.

Remark. In fact, Corollary 4.1 is an easy consequence of Lemma
4.1. However, we believe Lemma 4. 5 may be of use in investigating local
theory of division ring extensions. (Cf., for instance, [17].)

Lemma 4. 6. If R/S is locally Galois, and V a division ring which
is finite over its center Z,, then, for any finite subset F of R, there exists
a (simple) subring H* such that H*'DH[ {e;;’s}, F], [H*: H],<<co, H*/S and
H*]S[{ei/s}] are Galois, and [ Vys(S) : Vax(H*)]<oo,

Proof. Let S* be a subring such that S* 2D S"[F], [S*: ST,<< oo,
and S*/S is Galois, where S" is the subring considered in the proof of
Lemma 4.4 (i). Setting here H* = V4(Vx(S*)) (which is simple by Theorem
1.1), the same argument as in the proof of Lemma 4.4 will yield
[ Vax(H): Vis(H™)]<0o, Vs Vas(H))=H and Vu(H[S*])= V,+(H)*. Hence,
by the fundamental theorem of simple rings, we see that H*= H[ S*]. Since,
again as in the proof of Lemma 4. 4, one readily sees that V,(S") is finite over
its center, H*/S* is outer Galois by Lemma 4. 4 (ii). Now let p be an arbitrary
antomorphism in &(S*/S). For any &(H"/S*)-normal intermediate ring M
of H*/S* such that [M;:S];<<c, p can be extended to an element of
&'(Mz/S) by our assumption. Here, we denote by & the totality of these
extended isomorphisms of p, and by ¢~ the inverse limit of the system
{@%; M} runs over all the intermediate rings of H*/S* such that [MZ: S.]
< oo}, which may be regarded as a set of isomorphisms of H* into R.1? If
o and - are in G, then ¢ '=y|Ma: with some y € &'(M:-)[Mis]/S) by
our assumption. Hence, we have oy =: with some e€®'(M;/S*). Since
®&'(M?%/S*) coincides with the finite group &(MZ:/S*) by Corollary 4.1, we
readily see that =< and that G; is finite. Consequently, ¢*is non-empty
by [2, Theorem 3.6]. If p* is an arbitrary element of &% then, recalling
that H* = H[S*], Corollary 4.1 will show that p* is an automorphism
of H*. Hence, it will be easy to see that H*/S and H*/S[{e,’s}] are
Galois. The rest of the proof will be almost evident.

10) By {20], there holds H*=wv M*qa.
@
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Theorem 4. 3. If R/S is locally Galois, V a division ring which is
finite over its center Zo, and [R: H],<R. then R|S is Galois.

Proof. In virtue of Lemma 4.6, we can apply the same method as in
the proof of [10, Lemma 5] to see that 8(H/S)C G| H. Our assertion is an
easy consequence of this fact.

The next is an easy consequence of [18, Lemma] and Theorem 4. 2.

Corollary 4. 2. If R/S is locally Galois, V finite over its center Z,,
and [R: H], <R, then R/S[{eys}] is Galois.

As an easy consequence of Corollary 4.2, we see that the conditions
(1)—(4) introduced in [10] are equivalent to the condition that ‘R/S is Ga-
lois and locally Galois, V is finite over its center Z, and [R: H] <R
Consequently, we obtain

Theorem 4. 4. Let R/S be Galois and locally Galois, [V : Z,]<<oo
and [R: H],<Ro And let B' be an intermediate regular subring of R/S
with [V: V(RN ],<<oe,

(1) If pis an S-(ring) isomorphism of R' into R and R'p is a regular
subring with [V: V(R'p)],<<oo, then p is contained in Q| R,

(ii) R is Galois and locally Galois over R,

§ 5. R is called left algebraic over S if for each a€R the ring S[a]
is left finite over S. If morever [S]a[ : S7,<m for all ¢=R with some
fixed integer m, then we shall say that R is left algebraic and of bounded
degree over S. In this section, we shall restrict our attention to left algeb-
raic Galois extensions of a central simple algebra S of finite rank. At first
we shall prove the next:

Theorem 5. 1. Let S be a central simple algebra of finite vank. If
[V:Cl<oo, and R is Galois and left algebraic over S, then R is left
locally finite over S.

Proof. 1t is well-known that S[V]=SxX,V is a simple ring. Since
[S[V]:C]l=[S[V]:V]-[V:C]=[S:Z]-[V: C]<oo, a fundamental
theorem of simple rings yields S[V]= Vg(Vi(S[V])2V(V)=H. Accord-
ingly, [R:S[V]]<[R:H]=[V: C]<<oo, whence it follows [R: C]=
[R:S[V]],-[S[V]: C]<oe. On the other hand, noting that S[ V] is left
algebraic over S and Z[ C] is contained in the center of V, one will readily
see that the field Z[ C] is @-normal (whence Z[ C]/Z is Galois) and locally
finite over Z. And then, for any finite subset F' of C, a similar argument
as in the proof of Theorem 3.1 enables us to see that Z[F®] =
Z Xz ZNO)[ F®], whence it followsZ[ C]=Z X ~¢C. There holds there-
fore S[C]=8%X,Z[C]=SXA(ZXz~:C)=8SXz~:C, whence we have
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[S:ZNC]=[S[C]: CI<[R: C]<w. Now, one will easily see that R is
algebraic over ZMC. Combining this with [R: C]<Ceo, [4, Proposition 10.
12. 3] proves that R is locally finite over ZM\ C. Hence, our assertion is
clear by [S: ZNCJl<oo,

The next is an extension of [9, Lemma 4] to simple rings. Although
the proof proceeds just as in that of [9, Lemma 4], for the sake of com-
pleteness, we shall repeat it here.

Lemma 5. 1. Lel S be a subfield of R containing the center C. If R
is left algebraic and of bounded degree over S, then [R: Cl<<oo,

Proof. At first we shall prove that S is algebraic over C. If, on the
contrary, there exists an element x&ES that is transcendental over C, then,
as is well-known, {1, x., ---, 2%, ---} (gHomgl(R, R)) is linearly independent
over R;, whence so it is over S,. Now, let X be an arbitrary S-S-submodule of
R with [ X: §7,<<eo," and y+x(*) a minimal polynomial of x,| X&€Hom, (X, X)
over S with the degree #(X). And then, choose an element # € R
such that #uz(x, )50, and set X,=X+SuS, which is evidently left finite
over S. Since Xis.(x,)%0, it follows that the degree »(X;) of a minimal
polynomial of x,|X, over S, is greater than »2(X). Continuing the same
procedures, we can find an S-S-submodule Y with [Y: S],<Ceo such that
the degree #(Y) of a minimal polynomial of x,| Y over S, exceeds m, where
m is an integer with [S[a]:S],<m for all a=R. Then, by [3, p.69,
Theorem 1], there exists an element y& Y such that {y, yx,, -, yx™"7'}
is linearly left-independent over S. But, recalling that x is contained in S,
this yields a contradiction #(Y )<{[SyS: ST, <[S[y]:S1<m. We have
proved therefore S is algebraic over C, as desired.

Secondly, we shall show that [S: CJ]<Coo. Now, suppose [S: C]=o0,
and take an intermediate field S* of S/ C with oo>p =[S*: C]>m, where
m is the integer cited just above. Since R is inner Galois and finite
over the simple ring V,(S*), by [5, Satz 9], Vz(Vx(S")=S5*C Vi(S*
secures the existence of an element » € R such that R = 3., g Va(SH)(r5),
where s;’s are regular elements of S*. Accordingly, we see that {rsi},
.-, rs3'} is a linearly independent S-left basis of >, S(rs,) =3¢ Srsi't
But this yields a contradiction p<([S[r]: S1,< m. Hence, we have proved
[S: C]<eo. Now, since R is evidently algebraic and of bounded degree
over C, [R: C]<Coo follows by [4, Theorem 7.11.1].

As a consequence of Lemma 5.1, we obtain the following which cor-
responds to [9, Theorem 4].

Theorem 5. 2. Let S be a central simple algebra of finite rank. If R

11) For instance, arbitrary S{a](¢ER) may be taken as our X.
12) Here, S; may be regaded naturally as a subset of HomsL(X,X).
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is Galois, left algebraic and of bounded degree over S, then [R: Cl<oo
and [R: S]<<oo.

Proof. R is naturally left algebraic and of bounded degree over Z. In
particular, the center Z, of V being Galois over Z, we see that [Z,: Z]<<
oo, Accordingly, it follows [Z[C]: Z]<<occ. We set here Z[C]1=31 Ze¢,
with some ¢;’s in C. Now, let x be an arbitrary element of K. Then, there
holds Z[x]=3]-1Zx; with some x,’s, where ¢ is bounded with a fixed in-
teger m. And then, it will be easily seen that (Z[ C [ x]=>%.>3%-1Zcix,,
which proves that R is left algebraic and of bounded degree over the field
Z[ C] (containing the center C). Hence, our first assertion is a direct conse-
quence of Lemma 5. 1. Next, combining [R: C]< oo with the fact [Z,: Z]
<oo, itfollowsthat [R: S|, <<[R: Z],=[R:Zo]:-[Zs: Z]<[R: C] [ Zo: Z]
<Coo, which is the second assertion.

§ 6. Appendices.
(a) As an application of Lemma 1. 4 (or Theorem 1. 1), we can prove
the following theorem.

Theorem 6. 1. Let V be a division ring containing infinitely many
elements, and R (left) finite over S. If S=J(a, R) with some automorphism
a, then for each intermediate ving T there exists an automorphism p such
that T=J(p, R).

For the case where R is a division ring, this theorem has been obtained
by Bortfeld [1]. And Lemma 1. 4 enables us to apply his method to comp-
lete the proof of our theorem. In the sequel, we assume always that V is
a division ring and S= J(s, R).

At first, H= Vx(V) is a simple ring. If [H : S]=a then « is the order
of ¢|H, and so ¢"=p. Moreover, ¢ vo=va=c0v implies vo=cv with some

ce . Hence, one will readily see that V is the fie/d C[v].

Next, if & is the order of ¢| V, then it will be almost evident that &
divides . Recalling that C is Galois and finite (consequently, separable
and finite) over V4(R) and V=C[v], it will be easy to see that V is primi-
tive over Vi(R). Hence, as is well-known, there exists only a finite num-
ber of intermediate fields of V/ Vy(R).

Now, by Lemma 1.4, each intermediate ring T of H/S is J(¢*|H, H)
with some positive divisor # of a. Recalling here that (¢*) =2, we obtain
J(¢'|H, H)=J(¢*, R). In general, for each positive divisor ¢ of @, we denote
by R, the set of all intermediate (simple) rings T of R/S such that TNH
= J(¢*, R). Since J(¢*|H, H)= J(¢“*?|H, H) € N,v.», it will be clear that
each intermediate ring T of R/S is contained in some M,t. And then, if we
set ¢*=¢' and S*= J(o* R), Vu(Va(S*))=H shows at once T €R,n. Thus,
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to prove our theorem, it suffices to do the follcwing proposition.

Proposition. If V contains infinitely many elements, then for each
Te ‘.‘R“, there exists an automorphism o such that T= J(p, R).

Although the proof of our proposition proceeds just as in that of the
corresponding fact for division rings, for the sake of self-containedness, we
shall sketch it here.

If a ring M is maximal in ) ,, then M= J(is, R) with some uEV.
For, recallirg that R/ M is Galois and M H= =S, we see that 8 (R/M) contains
some xo and M C J(we, RYEN,). We shall prove here the follcwing lemma.

Lemma 6. 1. Let u be a non-zero element of 'V, and T an intermediate
ring of J(ue, R)/S, then J(ua, R)[ T is inner Galois and V;Gg p (T)= Vs(T).

Proof. Since (TT%Ziua”)=TTsZtus”, uo=TT%Zius" is contained in S. On
the other hand, for each x& J(ues, R), x = x(ue)" = xvity, 1. €. x0=2xi,"".
Hence, S = J(#a|H, H) = J(tia, RINV(v) = ViGo.x(uo) = J(to, J(ta, R)),
which contains V.. »,(S). Consequently, J(xs, R)/S is inner Galois, whence
so is J(ua, R)/T. Moreover, we obtain Vy{(T)C Viae.o(T)=Viae n(S)N
Ve(T)SENV(T)= V(T), whkence Vigo,z (T)= Vy«(T).

In what follows, we shall use the following additional conventions: T
is an arbitrary ring contained in N ;. Let {M,} be the set consisting of all
the subrings which contain 7 and are maximal in ﬂivl. Since Vi (R)C Vx(M.,)
C V, as is noted above, { V,(M,)} contains only a finite number of different
rings. We shall denote them as { V, (M), -+, Vx(M,)}. In particular, we set
M=M,= J(it s, R) and w,=TT5Zqs’, which is contained in S (cf. the proof
cf Lemma 6. 1). And finally, we set Vi(T)=V(R)[d].

Lemma 6. 2. Vi(T) is a-invariant and [ V(T): Vi(T)]=0.

Proof. Since (Zl?o-)“=;u\(.;), we have Vy(M)= C[ww]. Recalling here
that uw,ES and ve=cv(cE C), it is evident that Vy(M)= C[ww] is s-invari-
ant. Moreover, | V(M) =14=¢s'|Clv] =1¢=4'| V=1 proves that the
order of | Vx(M) is . By [13], each automorphism of M/ T can be exten-
ded to an automorphism of R/T. Now, we denote by © the group consist-
ing of all these extended automorphisms. Then, recalling that M/T is
Galois, we obtain J(§, R)=7. Since for each # =9 there exists an element
sE VL(T) such that #|M =35 M (Lemma 6. 1), we see that u € sVx(M).
Hence, V() (= the ring generated by all regular elements of R effecting
inner automorphisms belonging to £) is the field Vx(M)[V«T)], whence
it follows Vx(T) = VA{M) V«(T)], which is evidently s-invariant. More-
over, noting that ¢'| Vi(T)=1¢= +'| Vi(M) =1, it is clear that the order
of ¢| V(T) is b, whence we have [ Vi(T): Vi(T)]=0b.

Lemma 6. 3. If g(x)=TTs_i{x—da")=>1-0 gex'(g.=1), then V(T)=

Produced by The Berkeley Electronic Press, 1960

19



Mathematical Journal of Okayama University, Vol. 10 [1960], Iss. 2, Art. 5

162 TAkASI NAGAHARA and Hisao TOMINAGA

V.S‘(M)[go, AN gu—l:l-

Proof. Let f(x)=TTizix—de")=D%-fix'. Since Vi(T) is s-invariant
by Lemma 6.2, f(x)E Vi(T)[x], and g(x) =( Fx)%. At first we shall
prove that V(T) = V{M)[ fo, *++, for). It is clear that V(T)2 V(M) [f,
<+, fa-1). On the other hand, noting that Vi(T)= Vi(M)[d] and f(d)=0,
we have [Vi(T): VAT)]1=b>[Va(T): V(M) [ fu, -, Sfr»-1]] by Lemma 6.
2. We have proved therefore V(T)= V(M) [ fu, ***, fo-1]. We shall distin-
guish here two cases:

Case I: the characteristic of R does not divide afb. U= VM) [go,
«++, ga_1] is contained in Vs(T). Since g._.=(@/b)f,-,, we see that f,_,U.
Furthermore, gu_. = (a/b0) fi—pu+ P(fo—ps1, ***, fu-1) (P is a polynomial with
integeral coefficients) shows inductively that £,- . U. Hence we have V(T)
= VS(M) [fm ot fb—l] cU.

Case I1: the chacteristic p of R divides a/b. Since Vi(M)= Clww],
we see V= Vx(M)[w,]. Recalling that ¢*| V=1, it is easy to see that w, =
(w,)s, where w,=TTZhws". If w, is inseparable over Vy(M), Viu(M)[w,"]
S V(M)[w,]=V. On the other hand, Va(M)[w,”] 2 Va(M)[(w.")3]=
Vo(M)[wo,]=V, which is a contradiction. Hence, Vi(T)/Vz(M) has to be
separable. Moreover, recalling that V,(M)/ V(M) is Galois by Lemma 6. 2,
Va(T)/ Vs(M) is separable. Accordingly, to be easily verified, for each #,,
oo, hp& Vi(T) and an arbitrary positive integer s there holds VS(M)[hf’s,
v, B2 ] =V(M)[ Ry, +=-, hn]. In particular, if p* divides ¢/b exactly then
VsM)LFE, -+, Fi21=Vs(M)L for -, fo-s]=V(T). Since g(x)=(f¢ + 17’z
2 = gyt g+ o+ gaax™ '+ 2" and p does not divide ¢/bp*, the
same argument as in Case I enables us to obtain Vyi(M)[g, ***, o] =
V(T). .

Remark. One may remark here that Lemma 6. 3 is true for all maxi-
mal M,. '

Lemma 6. 4. Let I be an infinite subset of Vs(R), and ke, -+, k, ele-
ments of VT) such that V(T)= Vo(M))[kq, +++, ko] for all § =1, -, 7.
Then, there exists an infinite subset M of W\ {d} such that V(M) k(m)]
=VT) for all mE T and all j, where k(x)=3V., k'

Proof. Since there exists only a finite number of intermediate fields
of Vs(T)/ Vs(M), there exists an intermediate field W such that M, = {m
EM;mv~d and V(M) k(m)]= W} is infinite. Now, for different m,, *--,
me. € DY the simultaneous equations with Vandermond determinant

ko+lym+ ---+k,,m,"=v;€ w (i=1> e q+1)

possess a unique solution, which is necessarily contained in W. Hence, it
follows Vs(T) = VS(M)[ko, ..y kq:l c VV; that iS, Vs(T)= W= Vs(M)[k(ﬂ‘Z):l
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for all sm = M,. Repeating the same procedures for W, and M, and so on,
one will eventually obtain the desired Wi.

Lemma 6.5. Let V contain infinitely many elements. Then, for an
arbitrary positive integer n, there exist n elements my, -+, m,E Vs(R)\{d}
such that Vi(M)[TTi-sg(mi)] = VAT) for all j and all integers s, t with
1<, where g(x)=TTs2i(x —dg").

Proof. We shall proceed with induction for n. If #=1, by Lemma 6. 3,
V(ML go **, gu-1] = Vs(T) for all j. And then, by Lemma 6.4, there
exists an infinite set I, contained in V3(R)\ {d} such that Vi(M))[g(m,)]=
V(T) for all m, €9 and all . Now, we assume that m,, -+, m, have been
so chosen as desired :

Vs(M)[TTi-cg(m)] = Vs(T) for all 7 and all 1<s<t<n.

We set here TTi.g(m)=us =1, -, n). Since V(M) usgo, ***, UsGa-1, Us]
= Vi(M,)[#;] = Vi(T), noting that u,g(x) = w;go+thsg1+ +++ + 28,121+
u.x", Lemma 6.4 secures the existence of such an infinite subset 9%, of
Vo(RO\{d} that V(M) u1g(nns11]) = Vs(T) for all m,,, € DY and all ;.
Next, again by Lemma 6. 4, there exists an infinite subset 9%, of Y, such
that Vo(M,)[ #.g(m,21.5)]= Vs(T) for all 52,,1.EM; and all j. Repeating the
same procedures, we obtain eventually an infinite subset t, of 9,_, such
that Vs(M)[w.g(m,.1,.) 1= Vs(T) for all m,,,.,EI, and all j. Finally, as in
the case #=1, we can find an element m,.,EIN, such that Vi(M)[g(m,.1)]
=Vs(T) for all j. Now, it will be easy to see that V(M,)[TTi..glm)]=
Vs(T) for all § and all 1<s<¢<n+1.
Now, we are at the position to prove our proposition.

Proof of Proposition. Let g be the number of all intermediate fields
of Vi(T)/C. By Lemma 6.5, we can find ¢+1 elements my, ++-, Mg €
Vs(R)\{d} such that

(1) Vs(M)[TTesg(m) 1= Vs(T) for all j and all 1<s<t<g+1.

If we set w, =TT —d)(n=1,++, g+1), then T,,= ] (ma, R) is contained
in N1, and Wt |T =wae|T=1 shows TCT,. Since (wowa)® = ¥ where
wh =pTT28 wevTTh-y g(my), there holds Viu(T.) = C[ovTT5Zs worTTia: g(my)]
(=1, -+, ¢g+1). Noting that Vx(T)2 Va(T,) 2C, there exists some ¢, f
(1<e<< f<g+1) such that Va(T,)= Vx(Ty), thatis;

2) C[oTTezt wov TTier g(m) 1= CLoTTiZs wov Ty glmy)].
Recalling here that m, —d %0, one will readily see that »TT523 we> TTi-1g(ms)
0. Accordingly, from (2), we obtain Vi(TH[TT{oesr gn)]1C V(Ty).
Since Vs(T)2Vs(T7)2 Vs(M,,) for some jo, by (1), there holds Vi(T)=
Vo(TH[TTi=cs1 glme)], whence it follows Vs(T)= Vs(T,). And then, Vi(T)
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2DV(Ty and [V(T): Vi(T)]=b=[Vu(Ty : Vs(T5)] (Lemma 6. 2) yield at
once Vi(T)=Vi(T,). Consequently, we have Vq.](T Y=V, I(T,-). Now, since
T,/ T is inner Galois by Lemma 6.1, T,=T, which is our assertion.

(b) In what follows, R be always a division ring (accordingly, so is
S). And we shall present here another proof of [9, Theorem 1] that we
believe is fairly simpler than that given in [9]. To this end, at first we
shall prove the next.

Lemma 6. 6. Let N be a right V-submodule of R that is finite over V.
If [S: Z]=oco then for each positive integer n there exist n non-zero
elements s, +++, s, S such that -, Ns;=>7-, ¢ Ns..

Proof. In case §/Z is not algebraic, our assertion is contained in [8,
Lemma 3]. Thus, it remains only to prove the lemma for the case where
S/Z is algebraic.

Let M be a maximal subfield of S. Then it will be clear that M is in-
finite and locally finite over Z. Accordingly, M[V](=MXVCESX V) is
a division ring that is infinite and locally finite over V. If N=3}_, ¢ d.V,
then we may assume >3, d M[V]=>V_, ¢ d,M[ V], and we can find such
a finite subset F of M[ V] that 3%._,d,V[F ]2 N. Since [VIF]: V],<<oo
and [M[V]: V],=oo, it follows MZV[F]. And so, we can choose an
element s,& M\V[F]. If >}, duyu=3Vc1 dusiys, thatis, 33 du(yu—
$1¥.) =0 with y,, y,€ V[F], then, noting that y,—s,y.€ M[ V], we see
that y,/s and y,’'s are all zero, which means {0} =3}, d.V[FIN
St-idusiV[F12NMNNs,. Hence, we have N+ Ns;=N @ Ns,.

Next, if we have found such non-zero s, -+, s, & S that >, Ns,=
Dlt-1 @ Ns;, we can apply the above argamsznt for N'=>1%, Ns, in place of
N to obtain a non-zero element s/, 8 such that N'+N's",..=N' P N's!,..
Then, setting s,.1=s.5,+1, one will readily see that 33745 Ns;=>1 ¢ Ns.

Now the proof of ths next [9, Th2orem 1] can bz completed without
distinguishing two cases.

Theorem 6. 2. Lot a division ring R bz Glois over S, and [S: Z]
=oo, If Xis an S-S-submidule of R which is left finite over S, then X=
SaS for some aE X.

Proof. Let [X:S],=n. Then, by [9, Corollary 1 (2)], we have
[x8V,: V], =[SxS:S,]<[X: S].=u for each x+ = X. Hence, to our end, it
suffices to show that there exists an element «= X such that [«¢®V,: V].=
[X:S],=n.

We set here X=3)_, ¢ Sd; and (B|X)V.=3, ¢ (m| X)V,, where a,
€® (cf. [Corollary 1 (1)]). Then, by [9, Corollary 1 (2)], we have
[d@V,: V],<oo. Andso, N=33, d,®V, is right-finite over V. Hence,
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by Lemma 6. 6, there exist n non-zero elements s,, --+s,, €S such that 3.,

NSi=

St e Ns.. We sethere a= >V, disi. If @ =3)(s| X)u,, is a non-

zero element of (&| X) V., then 05 Xa=>)_, S(d:«), whence it follows that
d,oa‘aé() for some i,. Noting that d,wEN and >\, Ns;=>1{_, g Ns;, we
obtain ea=>)-,(d,x)s,5~0. Hence, {ams, -+, as,} is linearly right-indepen-
dent over V. There holds therefore [a®V,: V], =G| X)V,: V.],=n.
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Added in proof. In the proof of Corollary 3.4, N = S[«] was
obtained as a consequence of Lemma 3.4 and Lemma 3.6. However, by
making use of Theorem 3.1 and Lemma 3.6, one will easily see that the
assertion N=S[«] is a direct consequence of the fact that Vy(S)is the
field C[Z]. Thus, Lemma 3.4 is unessential in our present study.
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