Mathematical Journal of Okayama
University

Volume 10, Issue 1 1960 Article 6
OCTOBER 1960

On conformal collineations

Yoshihiro Tashiro*

*Okayama University

Copyright (©1960 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou



Tashiro: On conformal collineations

ON CONFORMAL COLLINEATIONS

YosHTHIRO TASHIRO

This paper is devoted to the study of the decomposition of a conformal
collineation relative to the reducibility of a manifold.

§ 1. Conformal collineation on an irreducible Riemannian mani-
fold.

We consider an n#-dimensional Riemannian manifold M with metric
tensor g... The Christoffel symbol, the curvature tensor and the Ricci
tensor are denoted by {,}, K..»* and K., respectively.

An infinitesimal transformation 2" is called a conformal collineation”
if it satisfies the equation
1.1 £ = Fulav* +0" K\ = Aoy + Afou — gurno’,

where £, indicates the Lie differentiation with respect to 2%, F the cova-
riant differentiation, Aj is the unity tensor and «, is a vector field. The
class of conformal collineations contains affine and conformal transforma-
tions. Since we have

1.2) Fulet® = nay,

ax is the gradient vector field of a scalar function ¢ :
(1.3) ox = o

Substituting (1. 1) into the well-known formula {5, p. 17]
(1. 4) LKW = MGBLUA) — il

we obtain the equation

(£0Kwka)gdx = vﬁra Kvu)« + K.x,.).,!'-.vu + sz)ucrpvm
(1' 5) + Kwum( r)\vw - Kwu\m ruvn
= —g‘mrﬂ”:\ +gfurv”7\—gnkrvﬂx'*'gv).rnﬂm

Now, from (1.1), we have

(1.6) FulMav+ 7o) = 20,80,
or
(1.7) Fu(Fave+Foon—2agy) = 0.

1) All transformations appearing in this paper are infinitesimal, so we shall omit
the modifier “infinitesimal”.
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If the Riemannian manifold M is irreducible, we have therefore
(1. 8) Pate + Foon — 2080 = 2800
¢ being a constant. Thus the vector field v* satisfies the equation
(1.9) Logun = 2(a + €)gun
and we obtain the following
Theorem 1. If a Riemannian manifold M is irreducible, then a

conformal collineation on Mis a conformal transformation.

§ 2. Conformal collineation on a locally reducible Riemannian

manifold.
Let a Riemannian manifold M be locally a product
(2' 1) M() X M] X e X Mr,
where M, is the euclidean part and M, -+, M, are the irreducible parts.
Let each part M, be of dimension #, (f = 0,1, ++, #); no+#+ = +n.=

n. There exists then a local coordinate system (x%, x“, -, z%), called a
separated coordinate system, where the metric tensor field g, is given by
a reduced matrix ‘

Bigta 0

(2.2) (gu) = &t ,

. 0 &4, 7

r?,",n being the Kronecker delta and the notation L meaning that the equa-

tion holds in a separated coordinate system. In such a system, the non-
vanishing components of {},} and K., are only {,",}and K,,L%"t respec-
tively, which are dependent only of the variables x* belonging to M,

(t=1,2, -, r). If we define tensor fields ;:rm (t=0,1,--, r) by

0 ~
t E3 ) 0
(gw) = &8, )
0
o

then they have obviously the properties
(2.3) Py gu =0
and
(2 4) Burx = éln)x + éuk + e + éM'
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Now, referring the equation (1. 5) to a separated coordinate system
and putting « = k;, A =1, = j, v =k (s5=1t), we have

(2.5) — 8, T 5,01, — 8, FryTng £90

and consequently

(2.6) Fs,m, = gy, ¢=0,1,,7)
and the proportional factors «p, «;, ***, «, satisfy the relations

2.7 as + o, =0 (s5~t).

If M has at least three parts, then the proportional factors «. all
vanish and we have

(2.8) o, £0 (#=0,1,, 7).
Moreover, putting « = 1, 2=4,, n=7j, v=*k, (s, ¢, u5) in (1. 5), we have
also

(2.9) [0, £0 (s 5~ t).
The equations (2. 8) and (2. 9) together make up the tensor equation
(2.10) Fuax = 0.

The equations (2. 9) imply that ¢ may be written in the form

(2.11) c=a +aot+ - +oa,

where each ¢ is a function depending only on the variables x% belonging
to M, in a separated coordinate system. However, by (2.8), 0,0, is a
parallel vector field on the part M, and hence 4, for t =1, .-+, # are cons-
tants in virtue of the irreducibility of M, and «, is a linear function of the
variables x“ belonging to the euclidean part M,. Thus s may be written
as

(2.12) s ax + a,

a;, and « being constants.
On the other hand, putting « =hy A =1, =7, (s, t, u5%) in (1. 6),
we have

(2, 13) 6]2L(F1£ Un, + V”‘gv’t) £ 0,

and therefore the expressions in the parentheses are dependent only of %%
and x%. Putting also « = k,, 2 =14, = j, (s 0), we have

(2.14) P (Fiong + Fa o) £ 0.

The expressions in the parentheses for each value of 7, are regarded as
the components of a parallel vector field on the irreducible part M, and
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we have hence

(2. 15) Fion, + Voo, =0

for any pair of %, and i, (s % ¢). Moreover, from (1.1), we have
(2.16) 8;,F1, 0" = a,,00,

and consequently the equations

(2.17) Fion, = agsn, + Fines

where f,, are functions dependent only of x%. Substituting (2. 17) into
(1. 6) referred to M,, we have

(2. 18) Py, (Fin, + Fog) = 0.

Therefore we see that for s =0

(2.19) 2 F?innﬂ L fton" -+ f"o‘o

are constants and for s %0

(2. 20) fi tgn, T /i gy z 2¢s iy

¢, being constants, Thus we have

2. 21) r'.“v,,n + F;,.nviﬂ = 20’(1(071“ + ztginnn

and

(2. 22) Fion -+ Ta s = 20810, + 2681, (s5=0).

If we define a tensor field 3., by
3 0
* [Py
(2. 23) @) = ()
then j3,, is a symmetric parallel tensor field. The equations (2. 15), (2. 21)

and (2. 22) together make up the tensor equation
(2. 24) Lolfin = 2agia + 23 + 2 3 Ca i
Conversely, if a vector field v* satisfies the equation (2. 24), then we
substitute (2. 24) into the well-known equation
(2' 25) ‘Ev{p‘:)\} = ’%g"u(rwf’ughw + r)\£ugp.m - Fdf'vgyl\):
and obtain the equation (1.1). Thus we have established

Theorem 3. In order that a vector field v* be a conformal collinea-
tion, it is necessary and sufficient that v* satisfy the equation (2. 24).

From (2. 6) and (2. 22), we notice here that the vector field given by
v" on each irreducible part M,, which we call the restriction of v* on M,,

defines a concircular transformation [7].
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§ 3. Conformal collineation in a locally euclidean manifold.

A locally euclidean manifold M of dimension # =2 may be regarded
locally as a product of »# straight lines. Accordingly, in a local orthogonal
coordinate system (x,), the function ¢ is given by?

3.1) a= D ax + a.
The equation (1. 1) is reduced to
(3. 2) 6}611}n = 3‘ha1 +- 31};(1; _— 61(0;;.

We seek for the general solution of this equation, cf. [3]. First, from
(3. 2) with &, 7, j 5=, we see that d,v" are dependent only of the variables
xpand x. If h%i =7 in (3. 2), we have

(3.3) 0,0, 0" = —a, (hs£1),

from which

3.4) " = —anxi + b (hFED),

¢ being a function of x,. For £ =j=%{ in (3. 2), we have
(3.5) ot = G o (i)

and hence

(3.6) b = axn + ba (h1),

by, being constants. Therefore, from (3.4), we see that the components
v" are written in the form

3.7 vt = “'%’an ‘E‘ X+ ‘:43‘ ayx + ‘Q banxs + frn,

where, for each value of %, + is a function of x.. From (3.2) we have
also

(3.8) 0n0,0" = ay

and, substituting (3. 7) into these equations,

(3.9) d{;;’%" = o,

from which

(3.10) n = T G+ b + b,

bu, and b, being constants, Thus the vector field »” is expressed as

2) In this paragraph we do not adopt the summation convension and omit the nota-

L ]
tion = for equations in an orthogonal coordinate system.

LY
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3.11) " = —-—%—au ; X X ?_‘_.‘ acx; + tE b % -+ by
If we define vector fields #* and w" by

(3. 12) u’” = ‘L‘? bmx( + b),_,

(3.13) w" = —%—an ; X+ x, ? acxy,

then #" defines an affine transformation and w" -a conformal transfor-
mation in the locally euclidean manifold. Thus we have

Theorem 3. A conformal collineation v in a locally euclidean mani-
fold is decomposed into
(3.14) vo=u + w,
where u* is an affine transformation and w" a conformal transformation.
As it can be easily proved, the decomposition (3.14) is unique to within a
homothetic transformation.

Since the conformal homeomorphism of a euclidean space onto itself
is only a homothety, we can obtain

Theorem 4. If a conformal collineation v* on a euclidean space
generates a global one-parameter group of transformations, then the col-
lineation is affine.

§ 4. The case where M has at least three parts.

By means of the notice at the biginning of §3, the case where the
euclidean part is of dimension = 2 is one of the present cases.

If no part of M is locally euclidean in this case, then, by the argu-
ment proceding (2. 12), the function s is constant and we have

(4‘ 1) : f‘ll{:l.)\} = O)
that is

Theorem 5. If ¢ Riemannian manifold M has at least three parts
and no part is locally euclidean, then a conformnal collineation on M is an
affine transformation.

By use of a theorem due to S. Ishihara and M. Obata [1] and S.
Kobayashi [2], we can further say

Theorem 6. If, in addition to the assumption of the above theorem,
the manifold M is complete, then a conformal collineation on M is an iso-
metry. A ' . _
If there exists a euclidean part M, then + is given by (2. 12) and we
have

4.2) oy, 3 ay, o £0 (s 5= 0).

(3
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The equation (1. 1) with & = &, is separated into the following equations :

oo
F’t i Z’;,,o - g-’s‘xaho'

(4.3) 8, 04, 04, = 0, (s, t=0)

X

1.3 — )
2N 04, Un, Osghg Bty + 6‘0"0 @iy ™ Ougly Gy

By the second equations @,vs., are independent of x% (s 0), and by the
third equations we have the expressions

% 1 — 2 1 .
= T g, 2 X1, + X, P QX1 + X biuhoxto + Ty

(4. 4) vuo

i, being the functions independent of x". Substituting (4. 4) into the first
of (4. 3), the functions 7u, are solutions of the equations

(4.5) thrt‘;’no = — &8, Ony (s, t#0).
Now we define a vector field w* by the equations

%

wh’ﬁ =

X

1 2 !
(4.6) —gln, B X, 2, L aug X, F (s#0)

w;”

in the separated system. We can easily verify that the vector field w*
satisfies the equation

— 25 %, O, 7

4.7 L0 Gur = 208

that is, w* is a conformal transformation. Since the equation (1. 1) holds
also for w*, if we put

(4. 8) ut = " — w-,
then we have
(4' 9) £u{:l.k} = 0,

that is, the vector field #* is an affine transformation. Thus

Theorem 7. If a locally reducible Riemannian manifold M has at
least three parts, one of which is euclidean, then a conformal collineation
v on M is decomposed into

(4. 10) v =t owt,

where u* is an affine transformation and w* a conformal transformation.

Since, in the present case, the function ¢ depends only on the points
of M, the equations (2.22) means that the restriction of »* on each part
M, (s 5= 0) defines a homothetic transformation on M,. If M is complete
and simply connected, then M, (s -0) are complete, simply connected and
irreducible. By means of a well-known theorem.(1], the homothetic trans-
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formation should be an isometry on each M; (ss=0). Hence

(4.11) ;= —a (s5%£0)
and ¢ is constant. Then the equation (2. 24) is reduced to
(4.12) £olir = 208 + 28,

and the collineation is affine. The simple connectedness can be removed
and we obtain the following

Theorem 8. If, in addition to the assumption of Theorem 7, the
manifold M is complete, then a conformal collineation on M is an affine
transformation.

§ 5. The case where M has two irreducible parts.

We can not go on with the discussions in this general case as yet,
but proceed in the case of a manifold of constant scalar curvature, to
which we shall confine ourselves in this paragraph. We call here K=
K,..g" and k= K/n(n — 1) the contracted curvature and the scalar cur-
vature of an n-dimensional manifold M respectively. '

Let M be locally the product of two parts :

(5. l) M= M] X Mg.

There occur the two following cases:

i) The two parts are both irreducible.

ii) One part is irreducible and the other is a straight line.

First we consider Case i). Denote the contracted and scalar curva-
tures of the part M; by K, and &, :

x Jts = —__K‘
(5' 2) KS stisg 3 kt ns(ns—' 1)

(s =1,2).
We have clearly
(5. 3) I( = K] -+ K'_»
and K, and K, are constant, and consequently so are k, and k,. Since the
restrictions on M, and M., denoted here by », and »,, of a conformal col-
lineation »* define concircular transformations on M, and M. respectively,
we can derive the equations

£v] Kl = "‘2(0’"‘ C])K] —_ 2(”] _— 1)”1((1 = O,
(5. 4) £v,2 Kg = _2(0’ + CQ)KQ - 2(”2 - 1) Nal¥o = 0
from the equations similar to (1. 5) for the restrictions », and ». by taking
account of (2. 6) and (2. 22). By (2. 7) we may put

(5.5) a = —o = —a
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and then from (5. 4) follow the equations

(5. 6) a=(+c)bhh=—(o+c)ks
or
(5- 7) (kl + kz)ﬂ' = - (Cl by + Czkz)-

If & + k,5=0, we see that ¢ is a constant and the collineation is affine.
If k, = — k,5=0, we have ¢, = ¢, and the collineation is a conformal trans-
formation. If %k, = k, = 0, then a vanishes identically and we have

(5- 8) Fjlo.-l é F,_zo-,z i 0.

In virtue of the irreducibility of M, and M, we have 4, = 0 and the col-

lineation is affine, Combining these results with Theorem 5, we obtain
the following

Theorem 9. Let a Riemannian manifold M be of constant scalar
curvature and have no euclidean part. If M itself is irreducible or M is
the product of two irreducible parts whose scalar curvatures are signed
opbositely to each other, then a conformal collineation on M is a con-
Sformal transformation. Otherwise it is an affine transformation.

Next we consider Case ii). We suppose that in (5. 1) M, is the irredu-
cible part and M, the straight line. Then the indices belonging to M. take
only the number n#. Clearly K, satisfies the first equation of (5. 4), and K,
and %, vanish. Thus we have

(5.9) a =g+ c)k
and, from (2.6), (2.7) and (2. 22), the equations

r_;lmj = — (o + C;)kjgj,zl,
(5.10) *
FnO'n = (d + C])k].

If we define a vector field w, by
%

wh.] = - Uhlr
(5.11) .

w, = a,,
then it is verified that the vector field «* satisfies the equation
(5. 12) £ogun = Futox + Maw, = 2(a + 1) kigun
Hence w* is a conformal transformation. On the other hand, putting
(5. 13) [ = ﬂ”m

the equation (2. 24) is written as
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(5. 14) Logun = 2(08ur + c]g1M + ngzux)-
If k=0 and we put
(5.15) u = — 1 w",
ky

then, from (5. 12) and (5. 15), we have

(5. 16) £ugun = 2(c2 — )&
Substituting (5. 16) into (2. 25), we can see that the vector field «* defines

an affine transformation,.
If 2/, =0, then we have

(5.17) Fioy = Fuow =0
and, by the irreducibility of M,,

(5. 18) cu 20, a, = a,
and hence

(5.19) o= a1+ a,

where a, and @ are constants. By the same argument as that in § 4, the
n-th component of »* is given by

(5. 20) o %aq, %o+ €%, oy,

where ;- is a function of the variables x* belonging to M, and satisfies the
equation

(5 21) l"h thr 'i‘ - g;];l (/29

If we define a vector field w* by the equations

Wy, = — %, ¥y
§, — T AU
(5. 22) ’ ’

[[ES

W % ants +

in the separated coordinate system, then the vector field w* is a conformal
transformation satisfying the equation

(5. 23) £wg;.k;\ = 20’g;u\-
Moreover we can see that the vector field #" given by
(2.24) u o= v — w"

is an affine transformation. Combining these results with Theorem 7,
we establish the following

Theorem 10. Suppose that a Riemannian manifold M is of constant
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scalar curvature and has a euclidean part. Then a conformal collineation
v on M is decomposed into

(5. 25) v° o=+ w,

where u* is an affine transformation and w* a conformal one.

Thus the further discussions on conformal collineations, in particular,
of a complete and reducible Riemannian manifold, are connected with K.
Yano and T. Nagano’s study [6] as for the part of affine transformation
and with the author’s recent work [4] as for the part of conformal trans-
formation.
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