Mathematical Journal of Okayama University

Volume 10, Issue 1 1960 Article 6
OCTOBER 1960

On conformal collineations

Yoshihiro Tashiro*

Copyright © 1960 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

ON CONFORMAL COLLINEATIONS

YOSHIHIRO TASHIRO

This paper is devoted to the study of the decomposition of a conformal collineation relative to the reducibility of a manifold.

§ 1. Conformal collineation on an irreducible Riemannian manifold.

We consider an *n*-dimensional Riemannian manifold M with metric tensor $g_{\mu\lambda}$. The Christoffel symbol, the curvature tensor and the Ricci tensor are denoted by $\begin{Bmatrix} \kappa \\ \mu\lambda \end{Bmatrix}$, $K_{\nu\mu\lambda}^{\kappa}$ and $K_{\mu\lambda}$ respectively.

An infinitesimal transformation v^{κ} is called a *conformal collineation* if it satisfies the equation

$$(1.1) f_{\nu}\{_{\mu\lambda}^{\kappa}\} = \Gamma_{\mu}\Gamma_{\lambda}\nu^{\kappa} + \nu^{\nu}K_{\nu\mu\lambda}^{\kappa} = A_{\mu}^{\kappa}\sigma_{\lambda} + A_{\lambda}^{\kappa}\sigma_{\mu} - g_{\mu\lambda}\sigma^{\kappa},$$

where \pounds_v indicates the Lie differentiation with respect to v^{κ} , Γ the covariant differentiation, A^{κ}_{λ} is the unity tensor and σ_{λ} is a vector field. The class of conformal collineations contains affine and conformal transformations. Since we have

$$(1.2) \Gamma_{\mu}\Gamma_{\alpha}v^{\alpha} = n\,\sigma_{\mu},$$

 σ_{λ} is the gradient vector field of a scalar function σ :

$$\sigma_{\lambda} = \partial_{\lambda} \sigma.$$

Substituting (1. 1) into the well-known formula [5, p. 17]

$$\mathfrak{L}_{\mathfrak{v}}K_{\nu\mu\lambda}{}^{\kappa} = \Gamma_{\nu}\mathfrak{L}_{\mathfrak{v}}\{{}^{\kappa}_{\mu\lambda}\} - \Gamma_{\mu}\mathfrak{L}_{\mathfrak{v}}\{{}^{\kappa}_{\nu\lambda}\},$$

we obtain the equation

$$(\mathfrak{L}_{\sigma}K_{\nu\mu\lambda}{}^{\alpha})g_{\alpha\kappa} = v^{\alpha}\Gamma_{\alpha}K_{\nu\mu\lambda\kappa} + K_{\alpha\mu\lambda\kappa}\Gamma_{\nu}v^{\alpha} + K_{\nu\alpha\lambda\kappa}\Gamma_{\mu}v^{\alpha} + K_{\nu\mu\alpha\kappa}\Gamma_{\lambda}v^{\alpha} - K_{\nu\mu\lambda}{}^{\alpha}\Gamma_{\alpha}v_{\kappa}$$

$$= -g_{\nu\kappa}\Gamma_{\mu}\sigma_{\lambda} + g_{\mu\kappa}\Gamma_{\nu}\sigma_{\lambda} - g_{\mu\lambda}\Gamma_{\nu}\sigma_{\kappa} + g_{\nu\lambda}\Gamma_{\mu}\sigma_{\kappa}.$$

Now, from (1.1), we have

$$(1.6) \Gamma_{\mu}(\Gamma_{\lambda}v_{\kappa} + \Gamma_{\kappa}v_{\lambda}) = 2\sigma_{\mu}g_{\lambda\kappa},$$

or

(1.7)
$$\Gamma_{\mu}(\Gamma_{\lambda}v_{\kappa} + \Gamma_{\kappa}v_{\lambda} - 2\sigma g_{\lambda\kappa}) = 0.$$

¹⁾ All transformations appearing in this paper are infinitesimal, so we shall omit the modifier "infinitesimal".

YOSHIHIRO TASHIRO

76

If the Riemannian manifold M is irreducible, we have therefore

$$(1.8) V_{\lambda}v_{\kappa} + V_{\kappa}v_{\lambda} - 2\sigma g_{\lambda\kappa} = 2cg_{\lambda\kappa},$$

c being a constant. Thus the vector field v^* satisfies the equation

$$\pounds_{v}g_{\mu\lambda}=2(\sigma+c)g_{\mu\lambda},$$

and we obtain the following

Theorem 1. If a Riemannian manifold M is irreducible, then a conformal collineation on M is a conformal transformation.

§ 2. Conformal collineation on a locally reducible Riemannian manifold.

Let a Riemannian manifold M be locally a product

$$(2.1) M_0 \times M_1 \times \cdots \times M_r,$$

where M_0 is the euclidean part and M_1, \dots, M_r are the irreducible parts. Let each part M_t be of dimension n_t $(t=0,1,\dots,r)$; $n_0+n_1+\dots+n_r=n$. There exists then a local coordinate system $(x^{a_0}, x^{a_1}, \dots, x^{a_r})$, called a separated coordinate system, where the metric tensor field $g_{\mu\lambda}$ is given by a reduced matrix

(2.2)
$$(g_{\mu\lambda}) \stackrel{*}{=} \begin{pmatrix} \partial_{j_0 i_0} & 0 \\ & g_{j_1 i_1} \\ 0 & g_{j_1 i_2} \end{pmatrix},$$

 $\hat{\sigma}_{J_0t_0}$ being the Kronecker delta and the notation $\stackrel{*}{=}$ meaning that the equation holds in a separated coordinate system. In such a system, the non-vanishing components of $\begin{Bmatrix} \kappa_{\mu\lambda} \end{Bmatrix}$ and $K_{\nu\mu\lambda}^{\kappa}$ are only $\{j_t^{h_t}, i_t\}$ and $K_{\kappa_t J_t i_t}^{h_t}$ respectively, which are dependent only of the variables x^{n_t} belonging to M_t $(t=1,2,\cdots,r)$. If we define tensor fields $g_{\mu\lambda}$ $(t=0,1,\cdots,r)$ by

$$(g_{\mu\lambda}) \stackrel{*}{=} \left(\begin{array}{cccc} 0 & & & & \\ & \ddots & & & \\ & & 0 & & \\ & & & g_{j_t}, & \\ & & & & 0 \end{array}\right),$$

then they have obviously the properties

and

$$(2.4) g_{\mu\lambda} = \overset{\scriptscriptstyle 0}{g}_{\mu\lambda} + \overset{\scriptscriptstyle 1}{g}_{\mu\lambda} + \cdots + \overset{\scriptscriptstyle r}{g}_{\mu\lambda}.$$

Now, referring the equation (1.5) to a separated coordinate system and putting $\kappa = h_s$, $\lambda = i_t$, $\mu = j_t$, $\nu = k_s$ ($s \neq t$), we have

$$(2.5) -g_{k_s h_s} \Gamma_{J_t} \sigma_{i_t} - g_{J_t i_t} \Gamma_{k_s} \sigma_{h_s} \stackrel{*}{=} 0$$

and consequently

(2.6)
$$V_{J_t}\sigma_{i_t} \stackrel{*}{=} \alpha_i g_{J_t i_t} \qquad (t = 0, 1, \dots, r)$$

and the proportional factors α_0 , α_1 , ..., α_r satisfy the relations

$$\alpha_s + \alpha_t = 0 (s \neq t).$$

If M has at least three parts, then the proportional factors α_t all vanish and we have

(2.8)
$$\Gamma_{j_{i}}\sigma_{i_{i}} \stackrel{*}{=} 0 \qquad (t = 0, 1, \dots, r).$$

Moreover, putting $\kappa = h_u$, $\lambda = i_s$, $\mu = j_t$, $\nu = k_u$ (s, t, $u \neq$) in (1.5), we have also

The equations (2.8) and (2.9) together make up the tensor equation

$$(2.10) \Gamma_{\mu}\sigma_{\lambda} = 0.$$

The equations (2.9) imply that σ may be written in the form

$$(2.11) \sigma = \sigma_0 + \sigma_1 + \cdots + \sigma_r,$$

where each σ_t is a function depending only on the variables x^{a_t} belonging to M_t in a separated coordinate system. However, by (2.8), $\partial_{t_t}\sigma_t$ is a parallel vector field on the part M_t and hence σ_t for $t=1,\cdots,r$ are constants in virtue of the irreducibility of M_t and σ_0 is a linear function of the variables x^{a_0} belonging to the euclidean part M_0 . Thus σ may be written as

(2. 12)
$$\sigma \stackrel{*}{=} a_{i_0} x^{i_0} + a,$$

 a_{i_0} and a being constants.

On the other hand, putting $\kappa = h_s$, $\lambda = i_t$, $\mu = j_u(s, t, u \neq)$ in (1.6), we have

(2.13)
$$\partial_{j_{i_1}}(\mathcal{F}_{i_1}v_{h_2}+\mathcal{F}_{h_2}v_{i_2})\stackrel{*}{=} 0,$$

and therefore the expressions in the parentheses are dependent only of x^{a_z} and x^{a_t} . Putting also $\kappa = h_s$, $\lambda = i_t$, $\mu = j_s$ ($s \neq 0$), we have

(2.14)
$$\Gamma_{j_s}(\Gamma_{i_t}v_{h_s} + \Gamma_{h_s}v_{i_t}) \stackrel{*}{=} 0.$$

The expressions in the parentheses for each value of i_t are regarded as the components of a parallel vector field on the irreducible part M_s and

YOSHIHIRO TASHIRO

we have hence

for any pair of h_s and i_t ($s \neq t$). Moreover, from (1.1), we have

and consequently the equations

$$(2.17) V_{i_s} v_{h_s} \stackrel{*}{=} \sigma g_{j_s h_s} + f_{i_s h_s},$$

where $f_{i_s h_s}$ are functions dependent only of x^{a_s} . Substituting (2.17) into (1.6) referred to M_s , we have

(2.18)
$$\Gamma_{j_s}(f_{i_s h_s} + f_{h_s i_s}) \stackrel{*}{=} 0.$$

Therefore we see that for s = 0

(2. 19)
$$2 \beta_{i_0 h_0} \stackrel{*}{=} f_{i_0 h_0} + f_{h_0 i_0}$$

are constants and for $s \neq 0$

$$(2. 20) f_{i_s h_s} + f_{h_s i_s} \stackrel{*}{=} 2c_s g_{i_s h_s}$$

 c_s being constants. Thus we have

(2. 21)
$$\Gamma_{i_0} v_{h_0} + \Gamma_{h_0} v_{i_0} \stackrel{*}{=} 2 \sigma \hat{\sigma}_{i_0 h_0} + 2 \beta_{i_0 h_0}$$

and

(2.22)
$$\Gamma_{i_s} v_{h_s} + \Gamma_{h_s} v_{i_s} \stackrel{*}{=} 2 \sigma g_{i_s h_s} + 2 c_s g_{i_s h_s} \qquad (s \neq 0).$$

If we define a tensor field $\beta_{\mu\lambda}$ by

$$(2.23) (\beta_{\mu\lambda}) \stackrel{*}{=} \begin{pmatrix} \hat{\beta}_{i_0h_0} & 0 \\ 0 & 0 \end{pmatrix},$$

then $\beta_{\mu\lambda}$ is a symmetric parallel tensor field. The equations (2. 15), (2. 21) and (2. 22) together make up the tensor equation

(2. 24)
$$\mathfrak{L}_{v}g_{\mu\lambda} = 2\sigma g_{\mu\lambda} + 2\beta_{\mu\lambda} + 2\sum_{s=1}^{r} c_{s}g_{\mu\lambda}.$$

Conversely, if a vector field v^* satisfies the equation (2. 24), then we substitute (2. 24) into the well-known equation

and obtain the equation (1.1). Thus we have established

Theorem 3. In order that a vector field v^* be a conformal collineation, it is necessary and sufficient that v^* satisfy the equation (2.24).

From (2.6) and (2.22), we notice here that the vector field given by v^{h_t} on each irreducible part M_t , which we call the *restriction* of v^{κ} on M_t , defines a concircular transformation [7].

§ 3. Conformal collineation in a locally euclidean manifold.

A locally euclidean manifold M of dimension $n \ge 2$ may be regarded locally as a product of n straight lines. Accordingly, in a local orthogonal coordinate system (x_h) , the function σ is given by²⁾

$$(3. 1) \sigma = \sum a_i x_i + a.$$

The equation (1.1) is reduced to

$$\partial_i \partial_i v^h = \partial_{ih} a_i + \partial_{ih} a_i - \partial_{ii} a_h.$$

We seek for the general solution of this equation, cf. [3]. First, from (3.2) with h, i, $j \neq 1$, we see that $\partial_i v^h$ are dependent only of the variables x_h and x_i . If $h \neq i = j$ in (3.2), we have

$$\partial_i \partial_i v^h = -a_h \qquad (h \neq i),$$

from which

$$\partial_i v^h = -a_h x_i + \phi_{ih} \qquad (h \neq i),$$

 ϕ_{ih} being a function of x_h . For $h = j \neq i$ in (3.2), we have

$$\hat{\sigma}_h \hat{\sigma}_i v^h = \frac{d \phi_{ih}}{d x_h} = a_i \qquad (h \neq i)$$

and hence

$$\phi_{ih} = a_i x_h + b_{ih} \qquad (h \neq i),$$

 b_{in} being constants. Therefore, from (3.4), we see that the components v^h are written in the form

(3.7)
$$v^{h} = -\frac{1}{2}a_{h}\sum_{i\neq h}x_{i}^{2} + x_{h}\sum_{i\neq h}a_{i}x_{i} + \sum_{i\neq h}b_{ih}x_{i} + \psi_{h},$$

where, for each value of h, ψ_h is a function of x_h . From (3. 2) we have also

$$\partial_h \partial_h v^h = a_h$$

and, substituting (3.7) into these equations,

$$\frac{d^2\psi_h}{dx_h^2}=a_h,$$

from which

(3.10)
$$\psi_h = \frac{1}{2} a_h x_h^2 + b_{hh} x_h + b_h,$$

 b_{hh} and b_h being constants. Thus the vector field v^h is expressed as

٩

²⁾ In this paragraph we do not adopt the summation convension and omit the notation = for equations in an orthogonal coordinate system.

80 Yoshihiro TASHIRO

$$(3.11) v^h = -\frac{1}{2}a_h \sum_i x_i^2 + x_h \sum_i a_i x_i + \sum_i b_{ih} x_i + b_{h*}$$

If we define vector fields u^h and w^h by

(3. 12)
$$u^{h} = \sum_{i} b_{ih} x_{i} + b_{h},$$

(3.13)
$$w^{h} = -\frac{1}{2}a_{h} \sum_{i} x_{i}^{2} + x_{h} \sum_{i} a_{i}x_{i},$$

then u^h defines an affine transformation and w^h a conformal transformation in the locally euclidean manifold. Thus we have

Theorem 3. A conformal collineation v^* in a locally euclidean manifold is decomposed into

$$(3. 14) v' = u'' + w'',$$

where u^* is an affine transformation and w^* a conformal transformation. As it can be easily proved, the decomposition (3.14) is unique to within a homothetic transformation.

Since the conformal homeomorphism of a euclidean space onto itself is only a homothety, we can obtain

Theorem 4. If a conformal collineation v^{κ} on a euclidean space generates a global one-parameter group of transformations, then the collineation is affine.

\S 4. The case where M has at least three parts.

By means of the notice at the biginning of § 3, the case where the euclidean part is of dimension ≥ 2 is one of the present cases.

If no part of M is locally euclidean in this case, then, by the argument proceding (2.12), the function σ is constant and we have

$$\mathfrak{L}_{\nu}\{\xi_{\mu\lambda}\} = 0,$$

that is

Theorem 5. If a Riemannian manifold M has at least three parts and no part is locally euclidean, then a conformal collineation on M is an affine transformation.

By use of a theorem due to S. Ishihara and M. Obata [1] and S. Kobayashi [2], we can further say

Theorem 6. If, in addition to the assumption of the above theorem, the manifold M is complete, then a conformal collineation on M is an isometry.

If there exists a euclidean part M_0 , then σ is given by (2.12) and we have

(4.2)
$$\sigma_{i_0} \stackrel{*}{=} a_{i_0}, \quad \sigma_{i_s} \stackrel{*}{=} 0 \qquad (s \neq 0).$$

The equation (1.1) with $\kappa = h_0$ is separated into the following equations:

By the second equations $\partial_{i_0}v_{h_0}$ are independent of x^{a_s} ($s \neq 0$), and by the third equations we have the expressions

$$(4.4) v_{h_0} \stackrel{*}{=} -\frac{1}{2} a_{h_0} \sum x_{i_0}^2 + x_{h_0} \sum a_{i_0} x_{i_0} + \sum b_{i_0 h_0} x_{i_0} + \gamma_{h_0},$$

 γ_{h_0} being the functions independent of x^{a_0} . Substituting (4.4) into the first of (4.3), the functions γ_{h_0} are solutions of the equations

$$(4.5) V_{j_{t}}V_{i_{s}}\gamma_{h_{0}} \stackrel{*}{=} -g_{j_{t}i_{s}}a_{h_{0}} (s, t \neq 0).$$

Now we define a vector field w^{ι} by the equations

$$(4.6) w_{h_0} \stackrel{*}{=} -\frac{1}{2} a_{h_0} \sum x_{i_0}^2 + x_{h_0} \sum a_{i_0} x_{i_0} + \gamma_{h_0}, \\ w_{i_s} \stackrel{*}{=} -\sum x_{h_0} \partial_{i_s} \gamma_{h_0}$$
 $(s \neq 0)$

in the separated system. We can easily verify that the vector field $\boldsymbol{w}^{\epsilon}$ satisfies the equation

$$\pounds_{\nu\nu} g_{\mu\lambda} = 2\sigma g_{\mu\lambda},$$

that is, w^{ϵ} is a conformal transformation. Since the equation (1.1) holds also for w^{κ} , if we put

$$(4.8) u^{\kappa} = v^{\kappa} - w^{\kappa},$$

then we have

$$\mathfrak{L}_{u}\left\{ _{\mu\lambda}^{\star}\right\} =0,$$

that is, the vector field u' is an affine transformation. Thus

Theorem 7. If a locally reducible Riemannian manifold M has at least three parts, one of which is euclidean, then a conformal collineation v^t on M is decomposed into

$$(4.10) v^{\kappa} = u^{\kappa} + w^{\kappa},$$

where u^{ϵ} is an affine transformation and u^{ϵ} a conformal transformation. Since, in the present case, the function σ depends only on the points of M_0 , the equations (2.22) means that the restriction of v^{ϵ} on each part

 M_s ($s \neq 0$) defines a homothetic transformation on M_s . If M is complete and simply connected, then M_s ($s \neq 0$) are complete, simply connected and irreducible. By means of a well-known theorem [1], the homothetic trans-

YOSHIHIRO TASHIRO

formation should be an isometry on each M_s ($s \neq 0$). Hence

$$(4.11) c_s = -\sigma (s \neq 0)$$

and σ is constant. Then the equation (2.24) is reduced to

$$\pounds_{\nu}g_{\mu\lambda} = 2\sigma g_{\mu\lambda}^{0} + 2\beta_{\mu\lambda},$$

and the collineation is affine. The simple connectedness can be removed and we obtain the following

Theorem 8. If, in addition to the assumption of Theorem 7, the manifold M is complete, then a conformal collineation on M is an affine transformation.

\S 5. The case where M has two irreducible parts.

We can not go on with the discussions in this general case as yet, but proceed in the case of a manifold of constant scalar curvature, to which we shall confine ourselves in this paragraph. We call here $K = K_{\mu\lambda} g^{\mu\lambda}$ and k = K/n(n-1) the contracted curvature and the scalar curvature of an *n*-dimensional manifold M respectively.

Let M be locally the product of two parts:

$$(5.1) M = M_1 \times M_2.$$

There occur the two following cases:

- i) The two parts are both irreducible.
- ii) One part is irreducible and the other is a straight line.

First we consider Case i). Denote the contracted and scalar curvatures of the part M_s by K_s and k_s :

(5.2)
$$K_s \stackrel{*}{=} K_{j_s i_s} g^{j_s i_s}, \quad k_s = \frac{K_s}{n_s(n_s - 1)}$$
 (s = 1, 2).

We have clearly

82

$$(5.3) K = K_1 + K_2$$

and K_1 and K_2 are constant, and consequently so are k_1 and k_2 . Since the restrictions on M_1 and M_2 , denoted here by v_1 and v_2 , of a conformal collineation v' define concircular transformations on M_1 and M_2 respectively, we can derive the equations

(5.4)
$$\mathfrak{L}_{v_1} K_1 = -2(\sigma + c_1) K_1 - 2(n_1 - 1) n_1 \alpha_1 = 0, \\
\mathfrak{L}_{v_2} K_2 = -2(\sigma + c_2) K_2 - 2(n_2 - 1) n_2 \alpha_2 = 0$$

from the equations similar to (1.5) for the restrictions v_1 and v_2 by taking account of (2.6) and (2.22). By (2.7) we may put

$$(5.5) \alpha_1 = -\alpha_2 = -\alpha$$

http://escholarship.lib.okayama-u.ac.jp/mjou/vol10/iss1/6

8

and then from (5.4) follow the equations

$$(5.6) \alpha = (\sigma + c_1)k_1 = -(\sigma + c_2)k_2$$

or

$$(5.7) (k_1 + k_2)\sigma = -(c_1k_1 + c_2k_2).$$

If $k_1 + k_2 \neq 0$, we see that σ is a constant and the collineation is affine. If $k_1 = -k_2 \neq 0$, we have $c_1 = c_2$ and the collineation is a conformal transformation. If $k_1 = k_2 = 0$, then α vanishes identically and we have

$$(5.8) \Gamma_{j_1}\sigma_{i_1} \stackrel{*}{=} \Gamma_{j_2}\sigma_{i_2} \stackrel{*}{=} 0.$$

In virtue of the irreducibility of M_1 and M_2 , we have $\sigma_{\lambda} = 0$ and the collineation is affine. Combining these results with Theorem 5, we obtain the following

Theorem 9. Let a Riemannian manifold M be of constant scalar curvature and have no euclidean part. If M itself is irreducible or M is the product of two irreducible parts whose scalar curvatures are signed oppositely to each other, then a conformal collineation on M is a conformal transformation. Otherwise it is an affine transformation.

Next we consider Case ii). We suppose that in (5.1) M_1 is the irreducible part and M_2 the straight line. Then the indices belonging to M_2 take only the number n. Clearly K_1 satisfies the first equation of (5.4), and K_2 and K_3 vanish. Thus we have

$$(5.9) \alpha = (\sigma + c)k_1$$

and, from (2.6), (2.7) and (2.22), the equations

(5. 10)
$$\Gamma_{j_1} \sigma_{i_1} \stackrel{*}{=} -(\sigma + c_1) k_1 g_{j_1 i_1},$$

$$\Gamma_n \sigma_n \stackrel{*}{=} (\sigma + c_1) k_1.$$

If we define a vector field w_{κ} by

$$(5. 11) w_{h_1} \stackrel{*}{=} - \sigma_{h_1},$$

$$w_{\mu} \stackrel{*}{=} \sigma_{\mu},$$

then it is verified that the vector field w^{k} satisfies the equation

$$\mathfrak{L}_{w}g_{\mu\lambda} = \Gamma_{\mu}w_{\lambda} + \Gamma_{\lambda}w_{\mu} = 2(\sigma + c_{1})k_{1}g_{\mu\lambda}.$$

Hence w' is a conformal transformation. On the other hand, putting

$$(5. 13) c_2 \stackrel{*}{=} \beta_{nn},$$

the equation (2. 24) is written as

YOSHIHIRO TASHIRO

84

(5. 14)
$$\mathfrak{L}_{v}g_{\mu\lambda} = 2(\sigma g_{\mu\lambda} + c_{1}g_{\mu\lambda}^{1} + c_{2}g_{\mu\lambda}^{2}).$$

If $k_1 \neq 0$ and we put

$$(5.15) u^{\kappa} = v^{\kappa} - \frac{1}{k_1} w^{\kappa},$$

then, from (5.12) and (5.15), we have

Substituting (5. 16) into (2. 25), we can see that the vector field u^{ϵ} defines an affine transformation.

If $k_1 = 0$, then we have

$$(5.17) \Gamma_{j_1}\sigma_{i_1} \stackrel{*}{=} \Gamma_n\sigma_n \stackrel{*}{=} 0$$

and, by the irreducibility of M_1 ,

$$\sigma_{ij} \stackrel{*}{=} 0, \quad \sigma_{a} \stackrel{*}{=} a_{n}$$

and hence

$$\sigma \stackrel{*}{=} a_n x^n + a,$$

where a_n and a are constants. By the same argument as that in § 4, the n-th component of v^{κ} is given by

$$(5.20) v^n \stackrel{*}{=} \frac{1}{2} a_n x_n^2 + c_2 x_n + \gamma,$$

where γ is a function of the variables x^{a_1} belonging to M_1 and satisfies the equation

$$(5.21) \Gamma_{j_1} \Gamma_{i_1} \gamma \stackrel{*}{=} -g_{j_1 i_1} a_{n}.$$

If we define a vector field w^* by the equations

(5. 22)
$$w_{i_1} \stackrel{*}{=} -x_n \partial_{i_1} \gamma, \\ w_n \stackrel{*}{=} \frac{1}{2} a_n x_n^2 + \gamma$$

in the separated coordinate system, then the vector field w^* is a conformal transformation satisfying the equation

$$\mathfrak{L}_{w} g_{\mu\lambda} = 2\sigma g_{\mu\lambda}.$$

Moreover we can see that the vector field u^x given by

$$(2.24) u^{\kappa} = v^{\kappa} - w^{\kappa}$$

is an affine transformation. Combining these results with Theorem 7, we establish the following

Theorem 10. Suppose that a Riemannian manifold M is of constant

scalar curvature and has a euclidean part. Then a conformal collineation v^{κ} on M is decomposed into

$$(5.25) v^{\kappa} = u^{\kappa} + w^{\kappa},$$

where u's an affine transformation and w's a conformal one.

Thus the further discussions on conformal collineations, in particular, of a complete and reducible Riemannian manifold, are connected with K. Yano and T. Nagano's study [6] as for the part of affine transformation and with the author's recent work [4] as for the part of conformal transformation.

BIBLIOGLAPHY

- [1] S. ISHIHARA and M. OBATA: Affine transformations in a Riemannian manifold. Tôhoku Math. J., vol. 7 (1945), pp. 146—150.
- [2] S. KOBAYASHI: A theorem on the affine transformation group of a Riemannian manifold. Nagoya Math. J., vol. 9 (1955), pp.39—41.
- [3] J. LEVINE: Groups of motions in conformally flat spaces. Bull. Amer. Math. Soc., vol. 42 (1936), pp. 418—422.
- [4] Y. Tashiro: Conformal transformations on reducible Riemannian manifolds. To appear.
- [5] K. YANO: The Theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam, 1956.
- [6] K. YANO and T. NAGANO: The de Rham decomposition, isometries and affine transformations in a Riemannian space. Jap. J. of math., vol. 29 (1959), 173-184.
- [7] K. YANO, K. TAKANO and Y. TOMONAGA: On infinitesimal deformations of curves in spaces with linear connection. Jap. J. Math., vol. 19 (1948), pp. 433-477.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received July 15, 1960)