Mathematical Journal of Okayama University

Volume 21, Issue 1

1979

Article 6

JUNE 1979

Note on maximal Galois subrings of finite local rings

Takao Sumiyama*

Copyright ©1979 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Aichi Institute Of Technology

Math. J. Okayama Univ. 21 (1979), 31-32

NOTE ON MAXIMAL GALOIS SUBRINGS OF FINITE LOCAL RINGS

TAKAO SUMIYAMA

Throughout R will represent a (not necessarily commutative) finite local ring with radical M. Let K be the residue field R/M, and R^* the unit group of R. Let $|K| = p^r (p \text{ a prime})$, $|R| = p^{nr}$, $|M| = p^{(n-1)r}$, and $p^k (k \le n)$ the characteristic of R.

Let $Z_{p^k} = Z/p^k Z$. Given a polynomial g(X) in $Z_{p^k}[X]$, $\overline{g}(X)$ will denote the image of g(X) under the natural homomorphism $Z_{p^k}[X] \to Z_p[X]$. The r-dimensional Galois extension $GR(p^{kr}, p^k)$ of Z_{p^k} is called a Galois ring (of characteristic p^k and rank r), and is characterized as a ring isomorphic to $Z_{p^k}[X]/(f(X))$ with a monic basic irreducible polynomial $f(X) \in Z_{p^k}[X]$ of degree r (see [1]). By [2, Theorem 8 (i)], R contains a subring isomorphic to $GR(p^{kr}, p^k)$, which will be called a maximal Galois subring of R. If R_1 and R_2 are maximal Galois subrings of R then, by [2, Theorem 8 (ii)], there exists a unit a in R such that $R_2 = a^{-1}R_1a$.

The purpose of this note is to prove the following

Theorem. If an inner automorphism of R maps a maximal Galois subring of R into (and hence onto) itself, then it induces the identity map on the maximal Galois subring.

Proof. Let $\overline{u_0}$ be a generator of K^* , and choose a monic polynomial $f_0(X)$ in $Z_{p^k}[X]$ of degree r such that $\overline{f_0}(X)$ is the minimal polynomial of $\overline{u_0}$. Then, by [2, Theorem 6], we may assume that $f_0(u_0) = 0$. Let $R_0 = Z_{p^k}[u_0]$ be the subring of R generated by u_0 , and consider the natural homomorphism $\phi: Z_{p^k}[X]/(f_0(X)) \to R_0$. Since the degree of $\overline{f_0}(X)$ is r, it is a routine to see that the sum $Z_{p^k} + Z_{p^k}u_0 + \ldots + Z_{p^k}u_0^{-1}$ is a direct sum. It follows therefore that ϕ is an isomorphism and R_0 is a maximal Galois subring of R. Since $K^* \cong R^*/(1+M)$ and 1+M is a p-group, the order of the unit u_0 is $p^*(p^r-1)$ with some s. Let us set $u = u_0^{p^n}$. Then \overline{u} is still a generating element of K^* , and we have $R_0 = Z_{p^k}[u]$ as above. Let M_0 be the radical of R_0 . Notice that $R_0/M_0 \cong K$ in the natural way. Now, let a be a unit of R such that the inner automorphism I_a effected by a maps R_0 onto R_0 . Since u is of order

T. SUMIYAMA

32

 p^r-1 , R^* is a semidirect product of $\langle u \rangle$ with 1+M. We set $a=u^i(1+x)$ with $x\in M$. Then, we can easily see that $I_a(u)-u=I_{1+x}(u)-u\in M$. Combining this with $I_a(u)\in R_c$, we readily obtain $I_{1-x}(u)-u=y_0\in M_c$. By [3, Proposition 2. 2], $R=R_0\oplus M'$ with some $R_0\cdot R_0$ -submodule M' of M. Let $x=x_0+x'$ with $x_0\in R_0$ and $x'\in M'$. Since R_0 is commutative, (1+x) $\{I_{1+x}(u)-u\}=(1+x)y_0$ simplifies to $ux'-x'u-x'y_0=(1+x_0)y_0$. Obviously, the last belongs to $R_0\cap M'=0$, and hence $(1+x_0)y_0=0$. Since x_0 is in M_0 , it follows $y_0=0$. We conclude therefore $I_a(u)=I_{1+x}(u)=u$, which proves that I_a induces the identity map on R. Now, the rest of the proof is immediate by [2, Theorem 8 (ii)].

Remark. Let R_0 and u be as in the proof of Theorem. Then the number of maximal Galois subrings of R is equal to the index |M:N|, where $N=\{x\in M|xu=ux\}$. In fact, by [2. Theorem 8 (ii)], the number of maximal Galois subrings of R is given by $|R^*:L|$, where $L=\{a\in R^*|I_u(R_0)=R_0\}$. Since R^* is a semidirect product of $\{u\}$ with 1+M, by Theorem we see that $L=\{a\in R^*|I_a(u)=u\}=\{u^i(1+x)|xu=ux,\ x\in M,\ 1\leq i\leq p^r-1\}$. Hence, $|L|=(p^r-1)|N|$, so that we obtain $|R^*:L|=(p^r-1)|M|/(p^r-1)|N|=|M:N|$. Furthermore, we can easily see that R contains a unique maximal Galois subring if and only if R^* is a nilpotent group.

Now, we consider the ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & \sigma(a) \end{pmatrix} \mid a, b \in \mathrm{GF}(p^2) \right\}$, where σ is a nontrivial automorphism of $\mathrm{GF}(p^2)$. Then R is a local ring with radical $M = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathrm{GF}(p^2) \right\}$. Obviously, for any generating element c of the multiplicative group of $\mathrm{GF}(p^2)$ the unit $u = \begin{pmatrix} c & 0 \\ 0 & \sigma(c) \end{pmatrix}$ of order p^2-1 generates a maximal Galois subring of R. If $x = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ satisfies xu = ux, then $(c - \sigma(c))b = 0$. Since σ is nontrivial, we obtain b = 0, and so x = 0. Applying the above remark, we readily see that R contains p^2 maximal Galois subrings.

REFERENCES

- [1] B.R. McDonald: Finite Rings with Identity, Pure & Appl. Math. Ser. 28, Marcel Dekker, New York, 1974.
- [2] R. RAGHAVENDRAN: Finite associative rings. Compositio Math. 21 (1969), 195-229.
- [3] R.S. WILSON: On the structure of finite rings, Compositio Math. 26 (1973), 79—93.

AICHI INSTITUTE OF TECHNOLOGY

(Received October 26, 1978)