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GLOBAL DIMENSION AND A QUESTION
OF ARMENDARIZ

Jae KeoL PARK and Kravs W. ROGGENKAMP

M. Auslander has shown that the global dimension of a ring A is bounded
by the projective dimension of A/I for left ideals I of A[AU]. For noetherian
rings satisfying a polynomial identity, Rainwater [R] restricted I to being a
two sided maximal ideal. In this note we consider a somewhat dual statement.
More precisely :

The aim is to give a positive answer to the following question of Armen-
dariz in case of semiprimary rings and classical orders:

(1) Let A be a noetherian ring with a polynomial identity. If the injec-
tive dimension of all maximal two sided ideals is bounded by n, does n then
also bound the global dimension of A?

We shall prove the

(2) Proposition. (i) If Ais semiprimary, then the question (1) has
a positive answer.

(ii) Let R be a Dedekind domain with the field of fractions K and A an
R-order in a finite dimensional semisimple K-algebra A; i.e., A is finitely
generated over R as module. Then the question (1) has a positive answer.

The proof is done in several steps :

Step 1 (for(ii)): Reduction to the case where R is complete. Since A
is an R-order, we note that a two sided A-ideal M is maximal if and only if
all its completions M, at the maximal ideals p of R coincide with A,, except
for one, p,, where M,, is a maximal two sided ideal of A,,. Moreover, each
such set of local data determines a unique maximal two sided ideal of A. In
addition, if M and N are A-lattices ; i. e., left A-modules, which are finitely
generated and projective over R, then

Ext2(MN) = @ Exti(M,, N,)

where the subscript denotes the completion. Since every finitely generated
module has a resolution by A-lattices, this formula also holds for finitely
generated A-modules. Thus it is enough to prove the proposition in case R
is complete. The importance of this is that in the complete situation we have
the Krull-Schmidt theorem available.
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Hence we assume from now on that R is complete and A is basic. In the
semiprimary case the Krull-Schmidt theorem always holds, and projective
covers exist.

Step 2: Assume that A is not local. Let A= @7, P, where | P;}i<izn
are the indecomposable projective A-modules with J; = rad(P,) ; note that
m > 1. The maximal two sided ideals of A are then ;=D P, & J,.
According to the hypothesis, al

0 = Ext™'(—, M) = @ Ext™(—. P,) ® Ext?*(—. J)).

J+i

Since m > 1, we conclude
Ext}*(—,P) =0 = Ext}*(—.J). 1 <i<m
Recall that given a short exact sequence of A-modules
(3) 0->X->X->X -0,
we get functorially exact sequences

Exti(—, X) » Ext?(—, X) » Ext}(—. X") -

(4) Extf“(—.X') _) Exthrl(—,X)
and
(5) Exti(X", —) - Exti(X, —) - Ext}(X, —) -

Exti* (X, —) = Exti"(X, —).
Applying this to the exact sequence
0~-J;»>P—->S§5,-0,
where S, is the associated simple module, we conclude
Ext}*(—.S) =0
and by induction —using (4) — we get
Exti*(—.,L) =0

for every finitely generated artinian A-module L. (Since A/M is finitely
generated artinian for every maximal two sided ideal M, we could quote a
result of Rainwater [R] to conclude that the global dimension of A is bounded
by n: however, the arguments below give a very short direct proof.) Now let
M be a A-lattice, and let 7 be a parameter of R. Then the exact sequence

0>M3M->M/z-M-0,
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where - 7 is multiplication by 7, gives rise to the exact sequence (cf. (4))
Ext?(—, M) 5 Ext?(—, M) - Ext?(—, M/x-M):

however, M/x+M is artinian and finitely generated, and so the map x, which
is induced from - 7 is surjective. Since r is a central element, p is still mul-
tiplication by #, which generates the radical of R. But for each finitely
generated A-module X, Ext}(X, M) is finitely generated over R. Thus
Nakayama’s lemma implies Ext(X, M) =0, and so Ext}(—, M) =0. If
now Y is an arbitrary finitely generated left A-module. then we have an exact
sequence

0-HY)—>Y->Y/HY) -0,

where #(Y) is the R-torsion submodule of Y and Y/#Y) is a A-lattice. Again
the sequence (4) implies that for every finitely generated left A-module Y,

Ext?*(—,Y) =0

on finitely generated modules. This implies that A has global dimension
bounded by n. In fact, the global dimension of any ring is bounded by the
projective dimension of the finitely generated modules, and for a noetherian
ring the syzygies of finitely generated modules are finitely generated, thus
the above formula guarantees that the global dimension is bounded by n.

Assume now that A is semiprimary. In that case A/rad(A) is semisimple
artinian and rad(A) is nilpotent : consequently every finitely generated
left A-module has finite Loewy length. The above argument has shown
that Ext?*'(—,S;) = 0 for every simple module S;,. But then
Ext3*'(—, A/rad(A)) =0, and quoting a result of Eilenberg [E,
Theorem 12] we conclude gl.dim.(A) < n.

Step 3: A is local semiprimary. Let E be the injective envelope of
the unique simple A-module. The radical of A now is the unique maximal two
sided ideal, which has injective dimension n. So we get a minimal injective
resolution

0 = rad(A) = E, - --- = E,_, _a; E, E’ E... =0,

where | E;!,<;<ny1 are injective A-modules. The natural map Im(e) — E, is
an essential monomorphism and hence Soc(E,). the socle of E,, is contained
in Im(a) = Ker(#). Thus we obtain a factorization of g as

E, - E,/Soc(E,) = E,_,.
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An argument with the Loewy lengths now shows that this can not happen.
This also proves that for a local semiprimary ring the only modules of
finite injective dimension are the injective ones.

Step 4: An R-order A has also injective lattices; i.e., A-lattices,
which are injective with respect to the category of left A-lattices. They are
the modules QF = Homg(Q,, R), where Q, are the indecomposable projective
right A-modules. For a A-lattice M we write LExt%(—, M) for the functor
Ext}(—, M) restricted to the category of A-lattices. Let now A be a local
R-order, where R is a complete Dedekind domain. Then arguments similar
to the ones above show

Ext}*'(—, M) = 0 iff LExt}(—, M) = 0.

Since A is a local order, it has a unique indecomposable injective left
A-lattice E = Homg(A, R), and if rad(A) has injective dimension bounded
by n, then

0 = Ext}*'(—, rad(A)) = LExt?(—, rad(A)),
and so we have a minimal injective resolution in the category of left A-lattices
(6) 0 - rad(A) » E®) > ... » ESnv 5 FSn 5, 5, € N,

Applying the exact functor Homy{—, R), we get a minimal projective reso-
lution for Homg{rad(A), R), which ends at the left hand side as
B

0 > A S gonn s

Since this is part of a minimal projective resolution, the map g factorizes
via rad(A)** . Since rad(A/z-A)=rad(A)/n-A, and since reduction

modulo 7 is exact, we get a monomorphism
B (Afm-A)Y = (A/r- A),

which factorizes via rad(A/z- A)“* . Now an argument as above with the
Loewy lengths shows that this is impossible. Hence there can not be any
A-lattice of finite injective dimension. This completes the proof of the
proposition.

Remarks. 1) The fact that A is an R-order in a semisimple K-algebra
is only used to pass from the global to the local situation: The ext-formula
linking global and local extensions of lattices.

2) The arguments in Step 2 are totally general for rings, where the
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Krull-Schmidt theorem is valid for finitely generated modules, thanks to
Rainwater’s argument [R].

3) That for a local perfect ring finitely generated modules of finite
injective dimension must be injective should be a general fact; however, we
were not able to prove this.
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