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ALMOST HERMITIAN GEOMETRY,
GEODESIC SPHERES AND SYMMETRIES

M. DJORIC and L. VANHECKE

1. Introduction. The geometric properties of small geodesic spheres
on a Riemannian manifold (M, g) influence strongly the geometry of this
ambient space, and conversely. Many examples are known and we refer to
[1], [9] for a collection of results. The main purpose of this paper is to
give some new examples for the case where (M, g) is an almost Hermitian
manifold (M, g, J). More precisely, let G be a small geodesic sphere and
let N be a unit normal vector field of G. Then JN is a distinguished tangent
vector field of G. Our aim is to investigate some of the properties of this
vector field. For example, we will consider the integral curves of JN and
also the action of the shape operator and the Ricci operator of G on the
field JN. This leads to new characterizations of locally Hermitian symmet-
ric spaces, nearly Kahler manifolds of constant holomorphic sectional cur-
vature and complex space forms. Moreover, the investigation of several
symmetric properties gives rise to some new theorems about 3-symmetric
spaces and s-regular manifolds.

To derive our results we mainly work with Jacobi vector fields and
their use to study the geometry of a normal neighborhood. For a detailed
survey about this theory we refer to [9] and the detailed reference list
included there may serve to get more information. In particular we also
refer to [1]. From all this information and from the results we will prove
in this paper, it follows that there is a great analogy between the properties
of the shape operator (extrinsic geometry) and the properties of the Ricci
operator (intrinsic geometry) of a geodesic sphere.

In the next section we collect some formulas and results which will be
needed to prove our theorems in almost Hermitian geometry and for s-regular
manifolds.

The first author wishes to thank the Section of Geometry of the Univer-
sity of Leuven for the hospitality and support during her stay at that uni-
versity.

2. Preliminaries. Let (M, g) be an n-dimensional Riemannian manifold
of class C” which we suppose to be connected. Denote by ¥4 the algebra
of smooth tensor fields on M with contravariant and covariant orders p and
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q, respectively. In particular, we put T4 = T, and Tf = T°. Further, let
V denotes the Riemannian connection and R the corresponding Riemannian
curvature tensor field. The curvature operator Ry is defined by

ny - V[x.Y]—[Vx, V}']

for all X, Y& T'. p denotes the (0, 2)-Ricci tensor field and 7 is the
associated scalar curvature.

Let m &€ M and 7y a geodesic parametrized by arc length r such that
¥(0) = m, y’(0) = u. Moreover, let |ei, ..., ex] be an orthonormal basis
of the tangent space ThnM at m with « = e, and extend this basis to a par-
allel basis | Ei, ..., E,| along the geodesic y. In the rest of the paper we
will always suppose that we work in a sufficiently small neighborhood of m
in order to have a diffeomorphic exponential map exp» centered at m. Often
we will work in a neighborhood of m which is a normal neighborhood of each
of its points, without mentioning it explicitly.

A vector field Y along y is called a Jacobi vector field if and only if

(1) Y”+ R'y'y}’/=0.

We consider the n—1 Jacobi vector fields Ya, a = 2, ..., n, along 7, deter-
mined by the initial conditions

(2) Ya(0) =0, Y2(0)=eara =2, ..., 7.

For sufficiently small 7, the vectors Ys(r) determine a basis for the space
[y (r)t+ Next, put

(3) Ya('f) = (AEa)(T)

Then r » A(r) is an endomorphism-valued function. Each A(r) is an endo-
morphism of the space | ¥'(r)|* and these spaces may be identified via the
parallel translation along ¥ by using the parallel basis | E;}. We will often
do this without mentioning it explicitly. Substituting (3) in (1) and using
(2), we obtain the following matrix-valued Jacobi differential equation

(4) A"+RoA=0
with initial conditions
(5) A(0) = 0, A(0) =1L

Here R denotes the Jacobi endomorphism or the Jacobi operator Y = Ry-yy’
along 7.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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Let Gn(r) = expnSalr), where Sx(7) denotes the sphere with radius
r and center m in TwM. Gn(r) is the geodesic sphere with center m and
radius r. For small r it is a nice hypersurface of (M, g). The extrinsic

geometry of Gn(r) is described by the shape operaior Tw. Since % (7(r))
is a unit normal vector of Gn(r) at p = ¥(7) = expn(ru), Tn is defined by
(6) Ta(p)X = (72 (o)

©or

where X is tangent to Gn(r) at p. Next, since the Jacobi vector fields Ya,
a = 2,...,n, are tangent to the geodesic spheres Gn(r), (6) leads to

_ o
(7) TnYa= Vro 35— .
But we also have
o o
(8) VYQV— V%Ya = Ya

and hence, using (3), (7) and (8), we obtain
(9) Ta(p) = (A"A ) (7).

The key method to derive our results will be the use of power series
expansions which may be derived from (4) and (5). From these formulas
one gets easily

3 4
— g p _ T p s
(10) Alr) =11 6 R 12 Rn+40(+%),
(11) A () = S I+ L Rut L RL40 ()
T/ = r 6 " 12 nt ),

where Rn = R(m) = Ry .uand Rp= R’ (m) =(P,R),.u. This yields from
(9) and for p = expamlru):

(12) Talp) = Ly

2
_Tp T ’ 3
" 3 Ran 7 Ra+0(#).

Using the Gauss equation for the hypersurface Gn(r) we obtain the following

power series expansion for the Ricci endomorphism Qa(p) (of type (1, 1))
of the geodesic sphere Gn(r) at p (see for example [1]):
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(13) Qulp) = 252 1+1Q—plu, Ju—5p(u, w)I— 5 RI(m)

2
r

172 @= (P Ju— ()t ) [~ 23L 7 R | (m) 4 0(r),

where Q denotes the Ricci operator for the ambient space (M, g).
Next, we treat some aspects about almost Hermitian geometry. Let
(M, g.J) be an almost Hermitian manifold, that is J € ¥ and

JP=—1 g(JX.JY) = g(X, Y)

for all X, Y € T'. (M, g, J) is said to be a Kahler manifold if VJ = 0 and
a nearly Kahler manifold if

(PxJ)X =0

for all X € T'. For a unit vector X, Rxuxxsx = g(RxuxX, JX) is called
the holomorphic sectional curvature associated with X. A Kahler manifold of
constant holomorphic sectional curvature is called a complex space form. As
is well-known, such a manifold is locally isometric to complex Euclidean
space, a complex projective space or a complex hyperbolic space. We will
need the following theorems:

Theorem 1 [8). Let (M,g,J), dimM = 4, be a nearly Kahler mani-
fold. Then (M, g,J) is of constant holomorphic sectional curvature if and
only if RxixX is proportional to JX for any X € T'.

Theorem 2 [3]. Let (M, g, J), dim M = 4, be a nearly Kahler manifold
of constant holomorphic sectional curvature. Then it is a complex space form
or it is locally isometric to the sphere S°(A) of constant sectional curvature

A> 0.

For real and complex space forms one can solve explicitly the Jacobi
equation. First let (M, g) be a space of constant curvature « > 0. Then
we get, since Rnp = of for all m € M,

(14) Alr) = M—rl, Tulp) = Vacotva rl, p = expn(ru).

vVa
For a« < 0 one has to replace the trigonometric functions by hyperbolic
functions and the case a = 0 may be obtained by taking the limit for a« — 0.
Next, let (M, g, J) be a Kihler manifold of constant holomorphic sectional

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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curvature. We suppose again that « > 0. Then we have, for all m € M,

(15) R (“ ’ )
1 m=
a
0 II
where a is the eigenvalue corresponding to the eigenvector Ju at m. Further
we obtain
1 .
7 sinva r 0
(16) Alr)=| V® '
0 2 sini I
Ve oo 27
and
Vacotvar 0
(17) Tm(P) = \/; \/;
0 5 cot 5 rl

where p = expm(ru). Finally, it follows easily from the expressions for
the curvature tensor of (M, g) and from the Gauss equation that Qn(p) has
similar expressions as Tn(p) in (14) and (17).

Next, we note that for a Kihler and a nearly Kahler manifold, the holo-
morphic plane | y’,Jy’| is parallel along . When we take the restriction
of the holomorphic sectional curvature function to this plane field, then it
follows directly that this restriction is a constant function if and only if

( 4 Y'R) YIrYaYy = 0
and this holds for any geodesic if and only if
(18) (VXR)XJ.\’XJX =90

for all X € ¢'. (18) is a very useful condition to characterize some par-
ticular classes of almost Hermitian manifolds. Indeed, we will use the
following results :

Theorem 3 [2], [7], [10]. A Kéhler manifold is locally symmetric if
and only if VxRxxxix=0 for all X € T'.

Theorem 4 [2]. Let (M, g.J) be an analytic nearly Kihler manifold.

Then it is a locally 3-symmetric space with canonical almost complex structure
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Mathematical Journal of Okayama University, Vol. 32[1990], Iss. 1, Art. 23

192 M. DJORIC and L. VANHECKE

J if and only if VxRxsxxax=0 for all X € g

We note that a locally 3-symmetric space is a C* Riemannian manifold
(M, g) together with a family of local cubic diffeomorphisms m = sm, m €
M, such that each s, is a holomorphic isometry in a neighborhood of m with
respect to the canonical almost complex structure J of the family, determined
by

(19) Sm = Sm'(m) = _ilm_*'—‘/z—?_

2 JIn.

By a family of local cubic diffeomorphisms we mean a differentiable function
m — sn which assigns to each m € M a diffeomorphism s» on a neighborhood
U(m) of m such that sy = identity and m is the unique fixed point of sn.
‘We refer to [2] for more information.

The notion of a locally 3-symmetric space is a special case of a more
general concept due to Graham and Ledger [4]. We will now treat this in
view of our results in section 5. First, let P€ €5 and S € Ti. Then
the tensor field P is said to be S-invariant if for all wi, ..., wp € T, and

X, ... Xe€ ¥ A
P(wls, ey CL)pS, X}, ceey Xq) = P(wx, ceey Wpy SX], sesy SXq)

where (wS)(X) = w(SX) for w € T, and X € T'. Next, S is called
a symmetry tensor field if I—S is non-singular and g is S-invariant. In
particular, if 7S and P?S are S-invariant, then we say that S is regular.

For any symmetry tensor field S on M we define a local symmetry sn
at each point m € M by

(20) Sm = eXpmo Snoexpn'

on a sufficiently small neighborhood of m. Then s is a local diffeomorphism.
We denote by s the map m — s» so defined on M and note that, for each
meM,

Sm‘l Tm = Sm-

Hence, S is determined uniquely by s.

Now, let S be a regular symmetry tensor field. Then (M, g) together
with s is called a Riemannian locally s-regular manifold if each s, is also
a local isometry which preserves S, that is

s SX) = S(sn-X)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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for all m € M and each vector field X defined on some neighborhood of m.
In this case s is called a local regular s-siructure on M. Finally, (M, g) is
said to be a Riemannian k-symmetric space if there exists a local regular
s-structure on it such that s* = identity. For k = 2 we obtain the well-
known locally symmetric spaces and for £ = 3 we have a locally 3-symmetric
space. For more details we refer to [2], [4], [5]. Here we just state the
following characterization which will be needed in section 5:

Theorem 5 [4]. Let S be a regular symmetry tensor field on a Rie-
mannian manifold (M, g). Then (20) defines a local regular s-structure on
(M, g) if and only if R and VR are S-invariant.

We are now ready to state and prove our results about the properties
of the shape operator, the Ricci operator and the integral curves of the

vector field J—a-.
or

3. The shape operator of a geodesic sphere. In this section we
consider the characterization theorems related to the shape operator.

Theorem 6. Let (M, g, J) be a nearly Kahler manifold with dim M = 4.
Then (M, g, J) has constant holomorphic sectional curvature if and only if
Jair is an eigenvector of the shape operator Tn of the geodesic sphere Gn{r)

Jor all m € M and all sufficiently small r.

Proof. We use the notations of section 2 and put u = ¥'= a_ar along

y. Since (M, g, J) is nearly Kahlerian, Ju is parallel along 7. Then (12)
yields

(21)  Talp)u = 2= (Ju)m) - (RI)(m) =5 (R Ju)m)+ (),

Next, let x be a parallel vector field orthogonal to the parallel plane|«, Ju|
along 7. Then it follows that Ju is an eigenvector of T at p if and only if

(22) g(Tun(p)Ju, x) = 0

for all such x. Using (21), this gives
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Mathematical Journal of Okayama University, Vol. 32[1990], Iss. 1, Art. 23

194 M. DJORIC and L. VANHECKE

g(RJu_. x)(m) = RuJuux('m) =0

for all x € TnM, orthogonal to |u, Jul| at m. This means that R,s,u must
be proportional to Ju for all » and all m € M. Then the result follows
from Theorem 1.

Conversely, let (M, g, J) has constant holomorphic sectional curvature.
Then the classification theorem (Theorem 2) and the explicit expressions
(14) and (17) show at once that Ju is an eigenvector of T'.

Theorem 7. Let (M, g, J) be a nearly Kihler manifold with dim M= 4.
Then (M, g, J) has constant holomorphic sectional curvature if and only if

each integral curve of the vector field Jair on the geodesic sphere Gn(r) is

a geodesic for all m € M and all sufficiently small r.
Proof. Let (M, g, J) be a nearly Kihler manifold and denote by ¥ the

induced Riemannian connection on the geodesic sphere Gn(7). Then, with

u= we have

o
or’
(23) Y= mY+a(X, Yu

for all X, Y tangent to Ga(r). o denotes the second fundamental form.
Hence, the integral curves of the vector field Ju are geodesics on Gn(7) if

and only if

Vou(Ju) = 0
that is, if and only if
(24) g(Vn(Ju), X) =0

for all vectors X tangent to Gn(r). Now, (24) is equivalent to
g((Vsud)u, X)+g(JVru, X) = 0.

Since (M, g, J) is nearly Kihlerian, the first term vanishes and so we get
as condition

g(JVsu, X) = 0.

This implies that the integral curves of Ju are geodesics if and only if
TmJu is proportional to Ju, that is if and only if Ju is an eigenvector of T4.
Then the result follows from Theorem 6.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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But we have even a stronger result:

Theorem 8. Let (M, g, J) be a nearly Kahler manifold with dim M = 4.
Then (M, g, J) has constant holomorphic sectional curvature if and only if
the vector field Ja_ar on Gal(r) is a Killing vector field for all m € M and
all sufficiently small r.

Proof. First, let Ju be a Killing vector field. Then the integral curves
are geodesics and the result follows from Theorem 7.

Conversely, let (M, g, J) be a nearly Kihler manifold of constant holo-
morphic sectional curvature. Ju is a Killing vector field if and only if

g(Px(Ju), Y)+g(7(Ju), X) = 0
for all X, Y tangent to Gn(r), or by using (23), if and only if
(25) g(Zx(Ju), Y)+g(rv(Ju), X) = 0.

Since (M, g, J) is nearly Kahlerian, it follows easily, using g(JX, Y)+
g(X,JY) = 0, that (25) is equivalent to

g(JPxu, Y)+g(JPwu, X) = 0
or, equivalently,
(26) g(TnX, JY)+g(TaY,JX) =0

for all X, Y tangent to Gn(r). Hence the result follows again using the
classification theorem (Theorem 2) and (14), (17).

Now we will prove some applications of Theorem 3 for Kihler mani-
folds. Again let p = expm(7u) and consider the geodesic of Gn(7) tangent
to Ju at p. Then the curvature xm(p), at p, of this geodesic is given by

(27) xn(p) = g(Tu(p)Ju. Ju).

Further, let sp: p = expn(ru) = sa(p) = expa(—ru) denote the geodesic
reflection centered at m. Then we have

Theorem 9. Let (M, g.J) be a Kahler manifold and let xn(p) denote
the curvature at p = expm(7u) of the geodesic of Gn(7) tangent to Ju. Then,
for all m € M and all p with v sufficiently small,

(28) xn(p) = xm(sn(p))

Produced by The Berkeley Electronic Press, 1990
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if and only if (M, g, J) is locally isometric to a Hermitian symmetric mani-
Sfold.

Proof. First, let (M, g, J) be locally isometric to a Hermitian sym-
metric manifold. Then the result follows easily from the fact that the
geodesic reflections are holomorphic isometries.

Conversely, suppose (28) holds. Using (12) we get for (27):

(29) xm(p) = %g(Ju. Ju)(M)_%RuJuu.lu(m)

2

—TT(VuR)uJouu(m)-" O(Tj)'

Hence (28) and (29) imply
(VuR)uJuu.lu =0
and so the result follows from Theorem 3.
Theorem 10. Let (M, g, J) be a Kahler manifold and put p = expa(ru).
Denote by xo(m) the curvature of the geodesic, at m, of the geodesic sphere

Go(r) tangent to Ju. Then (M, g, J) is locally isometric to a Hermitian
symmetric manifold if and only if

(30) xp(-m) = Ksm(pl(m)-
Jor all m € M and all p with r sufficiently small.
Proof. Using (12) we get

1 r? ,

To(m) = —T—I—%R9+’TRP+0(P)

and hence
_L _L _r_z 4 3

Tp(m) - r I 3 Rﬂl 12 Rm+0(r )-

So we have
1 ;

(31) Kp(m) = Tg(Ju, Ju)(m)_%RuJouu(m)

2
__{7( PR )uJouu(m) + O( T3)~

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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The desired result follows now by proceeding in the same way as in the
proof of Theorem 9.

4. The Ricci operator of a geodesic sphere. In this section we will
consider the Ricci operator of the small geodesic spheres and prove similar
theorems as for the shape operator. We start with

Theorem 11. Let (M. g, J) be a nearly Kahler Einstein manifold with
dimM = 4. Then (M, g, J) has constant holomorphic sectional curvature if
‘and only if Jgar— is an eigenvector of the Ricci operator of Gun(r) for all
m € M and all sufficiently small r.

Proof. We proceed as in the proof of Theorem 6 but we use now the
power series expansion (13) for the Ricci operator Qn(p) of Ga(r) where
p = expm(ru). Then Ju is an eigenvector of Qu(p) if and only if

(32) g(Qn(p)Ju, x) =0
with the same convention for x as in Theorem 6. Further, (13) yields

n

(33) Qulp)Ju= ;2 (Ju)(m)-l-[QJu—p(u., Ju)u—%p(u, u)Ju

—%RJu](m)+r[(VuQ)Ju—(Vu,0)(u, Ju)u

nl—l R'Juj(m)—I—O(rz)

—%(Vu.o)(u. u)Ju—

and hence, from (32) and (33), we get the condition
(34) 3g(QJu, x) = nRuysuux

for all m € M, all unit u € TnM and all x orthogonal to the plane {u, Jul.
Since (M, g) is an Einstein manifold, (34) becomes

RuJuux =0

and so, our result follows again from Theorem 1.
The converse follows easily by using Theorem 2 and the explicit ex-
pressions for Qn.

We have a better result when the ambient space (M, g, J) is a Kihler
manifold but the proof is more complicated.

Produced by The Berkeley Electronic Press, 1990



Mathematical Journal of Okayama University, Vol. 32[1990], Iss. 1, Art. 23

198 M. DJORIC and L. VANHECKE

Theorem 12. Let (M, g,J) be a Kahler manifold with dimM = 4.
Then (M, g, J) is a complex space form if and only if J% is an eigenvector
of the Ricci operator of Gm(r) for all m € M and all sufficiently small r.

Proof. Suppose first that (M, g, J) is a complex space form. Then
the result is proved in Theorem 11.

Now, we prove the converse. In this case (34) also holds for all u
orthogonal to Jx, since g(QJx, x) = 0 for a Kahler manifold. Put u = ay
+ Bz for y, z € {Jxt* in (34) and write down the coefficient of aB’. Using
the Kdhler and the first Bianchi identity we get

(35) 3g(2, z)p(Jy, x)+6g(z, _‘)’)P(ng I) = 3nRiyzxztnRyzzsz.

Now, put z = e;, i = 1, ..., n—1 and Jx = en, where |e;, i =1, ..., nl is
an orthonormal basis, and sum with respect to i. Then we get

(36) (n—3)o(Jy, x) = 3nRyzziz-
This, together with (34), implies
(n—12)p(Jy, x) = 0
and so, for n =+ 12, we have
o(Jy,x) =0
which, with (36), yields
Ryxzix= 0

for all y € |Jx|*. Hence, for n # 12, the result follows from Theorem 1.
Next, let n = 12. Then, with a similar choice for x, we get from(33):

(37) 4(VuQ)(Juq 13) = (ﬂ+1)(VuR)uJuux-
Differentiation of (34) and (37) then leads to
(38) (VuR)u.!uux =0

for all w € {Jx!™.
Now, let u € {x, Jx|*. Then (38) also implies

(39) (VJuR)Juu.lu:r = 0‘

and the use of the Kihler and the second Bianchi identity in (39) gives

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/iss1/23
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(PuR)suuzut (Poz R Ysusuu = 0
and hence, from (38), we obtain
(40) (VxR )usuusu = 0
for any x € {u, Jul*. Since (M, g) is Kahlerian, this implies
(PR )uvwe = 0
for all u, v, w, t € {x, Jx!* and so, we have
(41) (PzR)uvus = 0

for all u,» € {x, Jxl*. Again, let le;, i = 1, ..., n| be an orthonormal
basis with x = en_1, Jxr = en. Put v = ¢; in (41) and sum with respect
to i. Then we get

(42) (Pzo)(u, v) = PxRuzuz+ VzRuszusz-

Doing the same for u in (42), we obtain

(43) Vet—4(Vzp)(x, £)+2(VeR )zszzsz = 0

for any unit vector x, that is, for an arbitrary vector x we must have

(44)  2(PxR)zszziz—4g(x, x)(Vxp)(x, x)+g(x, x)g(x, )Pz v = 0.
Next, we linearize (44) to get, for y € |x|*:

(45) Z(VyR )er.rJ.r'*‘ 8(VIR).YJIJ:JI = 4(Vyp)(13, x)g(x, CC)
+8(Prp)(x, ylglx, x)—(Py7)g(x, x)g(x, x).

Now, suppose y € |x, Jx|* and substitute Jx for x in (45). Adding the
result up with (45) gives

(46) 12(VyR)zszzsz = 8(Pyp)(x, x)g(x, x)+8(Vrp)x, y)g(x, x)
+8(Vizp)(Jx, y)glx, x)—2(Pyr)glx, x)glax. x).

Then (40) and (46) vield
4(Pyp)x, x)+4(Vzp)x, y) +4(Vizp)(Jx, y) = (Pyr)g(x, x)

for all y € {x, Jxl*.
We use again the summation procedure to get

(47) 16(Py0)(y, y) = (10—a)( 7y )g(y, y).

Produced by The Berkeley Electronic Press, 1990
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Finally, linearization of (47) yields
161 (P=p)(y, y)+2(Pyp)(z, y)| = (10—l (P7)g(y, y)+2(Pyr)g(y, 2)1
and using again summation, we obtain
(n—2)(n—6)P-v = 0.

So, since n = 12, V.7 = 0 and hence (47} yields

(Pyp)(y. y) = 0.
These relations and (44) yield
(48) (PyR 339y = 0

and so, from Theorem 3, we conclude that (M, g, J) is locally symmetric.

When (M, g, J) is irreducible, then it is an Einstein space and hence
the result follows from Theorem 11. Next, if (M, g, J) is reducible, it is
locally a product M, XM, X---X My of Kidhlerian Einstein spaces. On the
other hand (34) implies that each factor M;, with dimM = 4, is a space of
constant holomorphic sectional curvature and (48) implies the same result
for a two-dimensional factor.

Next, (34) may be written in the form

3QJu—nRymwu = alu
are projecting this onto the factor M,, we get
(49) 3(QJulr—n(Rusuu)y = a(Ju).

Since this factor is a space of constant holomorphic sectional curvature,
say ci, we have

(50) (QJu)l - %(Ju)l, (RuJuU)l = (01COsza|)(J-u)1

1
where n, = dimM, and 7, denotes the scalar curvature of M,, that is
(51) 4r1=n1(n1+2)cl.

Moreover, g{u:, u1) = cos®*a:. Then, using (49), (50) and (51), we obtain
(52) cil3(m+2)—4ncos’aml = 4a.

Projecting onto the second factor gives
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c2] 3(n.+2)—4ncos’a:l = 4o
and hence, we have
(53) cif3(ni+2)—4ncos’ail = ¢zl 3(n:+2)—4ncos’a:i.

By taking different possible values for a, and @; in (53) and by using a sim-
ilar method for the coefficient of r* in (13)(See [1]. We delete the details.),
we obtain finally ¢ = ¢2 = 0. Proceeding in the same way for the other
factors implies that (M, g, J) is flat. This completes the proof of our
theorem.

In what follows we consider the Ricci curvature of Gn(7) with respect

to Ju = Ja%' that is om(Ju, Ju). Then we have

Theorem 13. A Kihler manifold of dimension = 4 is locally isometric
to a Hermitian symmeiric space if and only if the Ricci curvature of the
geodesic spheres Gm(r) satisfies

(54) onlJu, Ju)(p) = pul(Ju, Ju)(sn(p)),  p = expalru),

for all m € M and all sufficiently small r. Here sm denoles the geodesic
reflection centered at m.

Proof. First, let (M, g, J) be locally isometric to a Hermitian sym-
metric space. Then the result follows again from the fact that the geodesic
reflections are holomorphic isometries.

Conversely, suppose (54) holds. Using (13) we get

n—

(55)  palJu, Ju)p) = r22 + 1 0(Ju, Ju)—%p(u, u)—%RuJouu](m)

(o)t i) = (Pup) ) = (R ] )
+0(r%).

So (54) and (55) imply

(56) APy p)(Ju, Ju)—(Pup)u, u)—(n+ 1) (Ve R )usuusn = 0.

and since p(Ju, Ju) = p(u, u), (56) becomes

(57) 3(Pup)(u. u) = (n+1)(PuR)usuusn.
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Now, a similar linearization and summation procedure as in Theorem 12
(we omit the details) yields

(58) (2—3n)(Pup)(u, u)+2p, = 0.
Doing this again for (58), we obtain
(59) Vur = 0.

So, (57), (58) and (59) yield
VuRuJouu =0

and the desired result follows then from Theorem 3.

Theorem 14. Let (M, g, J) be a Kihler manifold of dimension = 4
and let pp denote the Ricci tensor of the geodesic sphere Go(r) with center
p = expn(ru). Then (M, g, J) is locally isometric to a Hermitian symmetric
space if and only if

(60) Ep(:]u, Ju)(m) = ﬁsm:pl(Juy Ju)(m)

for all m € M and all sufficiently small r. (sm denotes again the geodesic
reflection centered at m.)

Proof. The proof is similar to that of Theorem 13 but now we use

(61) 5o(Ju, Ju)(m)

) p(ll u) RuJouu}(p)

T[(Vu/’)(n]u Ju (Vup)(u»u _T(VuR)uJouu](p)
+0(7%)

= r22+[ (Ju, Ju)— 1 o(u, U)_?RuJouu’(m)

12 i(VuP)(u u)+(n 3)(VuR)uJouui(m)’+'0('rz)

(We omit the rest of the proof.)

5. 3-Symmetric spaces and s-regular manifolds. The aim of this final
section is to extend some of the theorems of section 3 and section 4. We
start with a theorem for the Ricci operator. The similar theorem for the
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shape operator has been proved in [6] (see also [10]).

Theorem 15. Let S be a regular symmetry tensor field on (M, g) where
dimM > 3. Then (M, g) is a locally s-regular manifold with associated
symmetric tensor field S if and only if

(62) Qsm(py(m) °Smn = Snm °Qp

for all m and all p = expn(ru) with r sufficiently small (sn is the local
symmetry determined by S via (20)).

Proof. (62) holds trivially when (M, g) is a locally s-regular manifold
since sp 1S an isometry.

To prove the converse we use (13) to determine Q,(m). Then we pro-
ceed as for To(m) in the proof of Theorem 10. This gives

Q,(m) = ":,2 I+[Q—p(u, ')u—%p(u, u)I—%R](m)
(P W I+ (= 3) PR | (m)+ 00,
Then (62) and the expression for Q,(m) yield the conditions
(63) o(Sx, Sx)—%p(Su, Su)—%RSusISHSI
= o(z. )~ 5ol w) ~ 2 Ruzue

and

(64) (VSuP)(SU- SU)+(n_3)(VSuR)SuS:rSqu
= (Vuﬂ)(us u-)+(n—3)(VuR)nru:c

for all m € M, all unit « € TpM and all unit x orthogonal to u. Next, let
le, i =1, ..., nl be an orthonormal basis such that © = e,. Put x = e; in
(63) and sum with respect to i. This gives

olu, u) = p(Su, Su)
which implies that o is S-invariant. Then (63) takes the form
(65) Rsusrsusz = Ruzuz .
Further, put
(66) Txyzw = Raiyzw— Rszsyszsw.

Produced by The Berkeley Electronic Press, 1990

17



Mathematical Journal of Okayama University, Vol. 32[1990], Iss. 1, Art. 23

204 M. DJORIC and L. VANHECKE

Then T € ¢, satisfies the algebraic identities of a Riemannian curvature
tensor and moreover, (65) implies

Tu:ru.r = 0.

Hence, T = 0 and so we see from (66) that R is S-invariant.
Similarly, (64) yields

(67) (Zup)u, u) = (Psup)(Su, Su)
and since dimM > 3, (64) and (67) give
(PsuR)suszsusz = (PuR )uzux.
Now, put
Buzyzw = VsuRszsyszsw— VuRzyzw.

Then B is a (0, 5)-tensor which satisfies all the identities of the covariant
derivative PR, and moreover,

Buuxux = 0.

This yields (see for example [3], [10], [1]) B = 0 and so, PR is also S-
invariant. Then the desired result follows from Theorem 5.

Since we obtain the usual locally symmetric spaces for S = —1I, we
have

Corollary 16. A Riemannian manifold M of dimension > 3 is locally
symmetric if and only if

Qexpm(ru)(M) = Qexpm(—Tu}(m)
Jor all m € M, all unit w € TuM and all sufficiently small r.

Now we turn to the characterizations of 3-symmetric nearly Kihler
manifolds. We use the conventions and notations as before.

Theorem 17. Let (M, g, J) be an analytic nearly Kihler manifold and

3
let sm be the local symmetry defined by (20) for Sm = ——%Im-i-ng.

Further let x,(m) be the curvature at m of the geodesic of Go(r) tangent to
Ju and let xs,(m) be the curvature at m of the geodesic of Gs,w(r) tangent
to JSau. Then (M, g, J) is a locally 3-symmeiric space with J as canonical
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almost complex structure if and only if for all m € M and all p = expn(ru)
(r sufficiently small) we have

(68) xo(m) = xspo(m).

Proof. Let (M, g.J) be such that (68) holds. Then (31) and the cor-

responding expression for the second member of (68) imply
(69) (PsuR)sussusussu(m) = (PuR)usunsu(m).
Using the explicit expression for S, in (69) we obtain
(70) V3 (PuR)usunsu = (PouR)usuusu-
Replacing « by Ju in (70) yieldé
(71) V'3 (VsuR)uwsursu = —(VPu R Dusuusu.
Hence, from (70) and (71), we obtain

(7uR)usuusn = 0

and so the result follows from Theorem 4.
The converse is trivial since s, is then a holomorphic isometry.

Proceeding similarly, but now using (29), we have

Theorem 18. Let (M, g, J) be an analytic nearly Kihler manifold and
let sm and Sn be as in Theorem 17. Further let xn(p). p = expn (ru), de-
note the curvature at p of the geodesic of Gn(r) tangent to Ju and xn (sn(p))
the curvature at sa(p) of the geodesic of Gm(r) tangent to JSnu. Then
(M, g, J) is a locally 3-symmetric space with canonical almost complex siruc-

ture J if and only if
km(p) = Xm(Sm(p))

Jor all m and all p = expa(ru) with r sufficiently small.

Finally, using the power series expansions for the Ricci operators we
may prove the following theorem (we omit the details since the proof is
similar to that for Theorems 13, 14, 17 and 18):

Theorem 19. Let (M, g, J) be an analytic nearly Kihler manifold of
dimension = 4 and let sm and Sn be as in Theorem 17. Then (M, g, J) is
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a locally 3-symmetric space with canonical almost complex siructure J if and
only if

on(Ju, Ju)(p) = pn(JSnu, JSnu)(sn(p))
or, if and only if
Bo(Ju, Ju)(m) = Bspio(JSnu, JSnu)(m)

for all m € M and all p = expn(ru) with r sufficiently small.
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