Mathematical Journal of Okayama University

Volume 25, Issue 2

1983

Article 6

DECEMBER 1983

Some remarks on normal classes of semiprime rings

Motoshi Hongan*

^{*}Tsuyama College of Technology

Math. J. Okayama Univ. 25 (1983), 139-143

SOME REMARKS ON NORMAL CLASSES OF SEMIPRIME RINGS

MOTOSHI HONGAN

The purpose of this note is to extend the results of [4] and [5], which are obtained for normal classes of prime rings, to those of semiprime rings. As for notations and terminologies used in this paper we follow the previous paper [3].

We begin with the following

Proposition 1 (cf. [4, Proposition 3]). Let (R,V,W,S) be a Morita context with $R \neq 0$. and write $C = \begin{pmatrix} R & V \\ W & S \end{pmatrix}$. Then C is a semiprime ring if and only if the following hold:

- 1) R is a semiprime ring.
- 2) $Vw=0 \ (w \in W) \ implies \ w=0.$
- 3) $vW=0 \ (v \in V) \ implies \ v=0.$
- 4) S=0 or S is a semiprime ring.

Proof. Observe that the lack of symmetry in 2) and 3) is only apparent. For example, wV=0 implies $(Vw)^2=0$, so w=0 by 1) and 2). Similarly, Wv=0 implies v=0. To see that C is a semiprime ring, suppose cCc=0, where $c=\begin{pmatrix} r&v\\w&s \end{pmatrix} \in C$. Since $0=\begin{pmatrix} r&v\\w&s \end{pmatrix} \begin{pmatrix} R&0\\0&0 \end{pmatrix} \begin{pmatrix} r&v\\w&s \end{pmatrix} = \begin{pmatrix} rRr&rRv\\wRr&wRv \end{pmatrix}$ and R is semiprime, we have v=0, and then $0=\begin{pmatrix} 0&v\\w&s \end{pmatrix} \begin{pmatrix} 0&0\\w&s \end{pmatrix} \begin{pmatrix} 0&v\\w&s \end{pmatrix} = \begin{pmatrix} 0&vWv\\0&sWv \end{pmatrix}$, whence it follows vWvW=0. Now, by the semiprimeness of R, we have vW=0 and v=0. Similarly, we can obtain w=0. Hence, $0=\begin{pmatrix} 0&0\\0&s \end{pmatrix} \begin{pmatrix} 0&0\\0&S \end{pmatrix} \begin{pmatrix} 0&0\\0&S \end{pmatrix} = \begin{pmatrix} 0&0\\0&sSs \end{pmatrix}$, and so s=0 by 4). The converse is easily checked.

Let (R, V, W, S) be a Morita context, and A an ideal of R. We set $V_A = \{v \in V \mid vW \subseteq A\}$, $W_A = \{w \in W \mid Vw \subseteq A\}$ and $S_A = \{s \in S \mid V_SW \subseteq A\}$. Then it is known that $(R/A, V/V_A, W/W_A, S/S_A)$ is a Morita context, the products being defined in the natural manner. If X is a subset of a ring R, we denote by $\operatorname{Ann}_R(X) = l_R(X) \cap r_R(X)$ the annihilator of X in R. In case L is a left, right or two-sided ideal of R, we write $L \triangleleft_I R$, $L \triangleleft_T R$ or $L \triangleleft R$, respectively.

M. HONGAN

Now, we shall extend [4, Theorem 1] to the classes of semiprime rings.

Theorem 1. Let \mathcal{P} be a class of semiprime rings. Then \mathcal{P} is a normal class if and only if \mathcal{P} satisfies the following conditions:

- (i) If $R \in \mathcal{P}$, $L \triangleleft_{l} T \triangleleft_{r} R$ and L is a semiprime ring, then $L \in \mathcal{P}$.
- (ii) If R is a semiprime ring, $L \triangleleft_l T \triangleleft_r R$, $\operatorname{Ann}_T(L) = \operatorname{Ann}_R(T) = 0$ and $L \in \mathcal{P}$, then $R \in \mathcal{P}$.

Proof. Suppose that \mathcal{P} satisfies (i) and (ii). Let (R, V, W, S) be an S-faithful Morita context with $R \in \mathcal{P}$. Then we have a Morita context $(R, V/V_{(0)}, W/W_{(0)}, S)$, which satisfies the conditions 1)-3 in Proposition 1. Suppose that sSs=0 ($s \in S$). Then sWVs=0 implies $(VsW)^2=0$, and so VsW=0. This means s=0, that is, S is a semiprime ring, proving 4) in Proposition 1. Hence the ring $C=\begin{pmatrix} R & V/V_{(0)} \\ W/W_{(0)} & S \end{pmatrix}$ is semiprime by Proposition 1. If we set $R'=\begin{pmatrix} R&0\\0&0 \end{pmatrix}$ and $T=\begin{pmatrix} R&V/V_{(0)}\\0&0 \end{pmatrix}$, then $R\cong R' \triangleleft_t T \triangleleft_r C$. As is easily seen, $Ann_T(R')=0$ and $Ann_C(T)=0$, and so $C\in \mathcal{P}$ by (ii). Again, $S\cong\begin{pmatrix} 0&0\\0&S \end{pmatrix} \triangleleft_t \begin{pmatrix} 0&0\\W/W_{(0)}&S \end{pmatrix} \triangleleft_r C$ and S is a semiprime ring, and so (i) implies $S\in \mathcal{P}$.

Conversely, suppose that \mathcal{P} is a normal class. If $R \in \mathcal{P}$, $L \triangleleft_{\iota} T \triangleleft_{r} R$ and L is a semiprime ring, then the context (R,RL,T,L) is L-faithful, and so $L \in \mathcal{P}$. If R is a semiprime ring, $L \triangleleft_{\iota} T \triangleleft_{r} R$, $\operatorname{Ann}_{\tau}(L) = \operatorname{Ann}_{R}(T) = 0$ and $L \in \mathcal{P}$, then the context (L,T,RL,R) is R-faithful, and so $R \in \mathcal{P}$.

Corollary 1 ([3, Theorem 3.2]). Every normal class \mathcal{P} of semiprime rings is a weakly special class.

Now, combining Proposition 1 and the proof of Theorem 1, we readily obtain

Corollary 2 (cf. [4, Corollary 2 to Theorem 1]). Let \mathcal{P} be a normal class of semiprime rings. Let (R,V,W,S) be a Morita context with $R \in \mathcal{P}$, and $C = \binom{R}{W} \binom{V}{S}$. If C is a semiprime ring, then C is in \mathcal{P} .

Now, we expose the relationship between the normal classes of semiprime rings and the weakly special classes.

Theorem 2 (cf. [5, Theorem 7.5]). Let \mathcal{P} be a class of semiprime rings. Then \mathcal{P} is a normal class if and only if \mathcal{P} satisfies the following conditions:

- (i) P is a weakly special class.
- (ii) If $R \in \mathcal{P}$ then $eRe \in \mathcal{P}$ for every non-zero idempotent e of R.
- (iii) If e is a non-zero idempotent of a semiprime ring R and $eRe \in \mathcal{P}$, then $R/\operatorname{Ann}_R(ReR) \in \mathcal{P}$.

Proof. If \mathcal{P} is a normal class, then (i), (ii) and (iii) are satisfied (Corollary 1 and [3, Proposition 3.2]).

Conversely, suppose that \mathcal{P} is a weakly special class with the properties (ii) and (iii). Let (R,V,W,S) be an S-faithful Morita context with $R \in \mathcal{P}$. If R^1 is the Dorroh extension of R obtained by adjoining identity in the usual way, then the context (R^1, V, W, S) is S-faithful. Let $A = l_{R^1}(R)$. Then A is an ideal of R^1 and, in the notations introduced just before Theorem 1, we have $V_A = V_{(0)}$, $W_A = W_{(0)}$ and $S_A = S_{(0)} = 0$. If we set $R^{\circ} = R/A$, $\overline{V} = R/A$ V/V_A and $\overline{W}=W/W_A$, then R° is a ring with an identity and is contained in \mathcal{P} by [2, Theorems 1 and 5]. And $(R^{\circ}, \overline{V}, \overline{W}, S)$ is an S-faithful Morita context. Now, we set $C = \begin{pmatrix} R^{\circ} & \overline{V} \\ \overline{W} & S \end{pmatrix}$ and $e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then $e_{11}Ce_{11} \simeq R^{\circ} \in \mathcal{P}$, and hence $C/Ann_c(Ce_{11}C) \in \mathcal{P}$ by (iii). But, we can easily see that $\operatorname{Ann}_{\mathcal{C}}(\operatorname{Ce}_{11}\mathcal{C})=0$, and so $\mathcal{C}\in\mathcal{P}$. Next, we consider the Dorroh extension S^1 of S and $C^1 = \begin{pmatrix} R^{\circ} \overline{V} \\ \overline{W} S^1 \end{pmatrix}$. Then C^1 is a ring and $l_{C^1}(C) = \begin{pmatrix} 0 & 0 \\ 0 & l_{S^1}(S) \end{pmatrix}$. Setting $S^{\circ} = S^{1}/l_{S^{1}}(S)$ and $C^{\circ} = C^{1}/l_{C^{1}}(C)$, we see that $C^{\circ} = \begin{pmatrix} R^{\circ} & \overline{V} \\ \overline{W} & S^{\circ} \end{pmatrix}$ is a ring with an identity containing C as an ideal. Now, by checking the conditions (2)-4) in Proposition 1, we shall prove that C° is a semiprime ring. First, if $V\overline{w}=0$ ($\overline{w}\in \overline{W}$), namely $Vw\subseteq l_{R^1}(R)$, then VwR=0, and so Vw=0, that is, $w \in W_{(0)}$. Similarly, $\bar{v}\bar{W}=0$ ($\bar{v}\in\bar{V}$) implies $\bar{v}=0$. Finally, if $(s,n)S^{\circ}(s,n)=0$ $((s,n)\in S^{\circ})$, then (s,n)S(s,n)S=0. Since C is semiprime, S is so. Hence (s,n)S=0, i.e., $\overline{(s,n)}=0$, proving that S° is a semiprime ring. Thus, we have shown that C° is a semiprime ring. Since C is an ideal of C° and C is in the weakly special class \mathcal{P} , we have $C^{\circ}/\mathrm{Ann}_{C^{\circ}}(C) \in \mathcal{P}$. As is easily verified, $l_{C}(C)=0$, and so $C^{\circ} \in \mathcal{P}$. Then $S^{\circ} \simeq e_{22}C^{\circ}e_{22} \in \mathcal{P}$ by (ii), where $e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in C^{\circ}$. Since S is an ideal of S° and \mathcal{P} is a weakly special class, we obtain $S \in \mathcal{P}$. Thus, \mathcal{P} is a normal class.

Given subsets X and Y of a ring R, we set $YX^{-1} = \{a \in R \mid aX \subseteq Y\}$ and $X^{-1}Y = \{a \in R \mid Xa \subseteq Y\}$.

142 M. HONGAN

The next result extends [5, Theorem 7.6] to the classes of semiprime rings.

Theorem 3. Let \mathcal{P} be a normal class of semiprime rings, and (R, V, W, S) an S-faithful Morita context. Then there is a one-to-one correspondence between $\{A \triangleleft R \mid R/A \in \mathcal{P}, A(VW)^{-1}(=(VW)^{-1}A) \subseteq A \text{ and } A \not\supseteq VW\}$ and $\{B \triangleleft S \mid S/B \in \mathcal{P}, B(WV)^{-1}(=(WV)^{-1}B) \subseteq B \text{ and } B \not\supseteq WV\}.$

Proof. Let *A* be an ideal of *R* such that $R/A \in \mathcal{P}$, $A(VW)^{-1} \subseteq A$ and $A \not\supseteq VW$. Here we set $\overline{R} = R/A$, $\overline{V} = V/V_A$, $\overline{W} = W/W_A$ and $\overline{S} = S/S_A$. Now, suppose that $\overline{S} = 0$, then $VSW \subseteq A$ which implies $VWVW \subseteq VSW \subseteq A$, so $VW \subseteq A$ by the semiprimeness of *A*, a contradiction. Hence $(\overline{R}, \overline{V}, \overline{W}, \overline{S})$ is an \overline{S} -faithful Morita context, and so $\overline{R} \in \mathcal{P}$ implies $\overline{S} = S/S_A \in \mathcal{P}$. Assume now that $WV \subseteq S_A$, then $VWVW \subseteq A$, and so $VW \subseteq A$, a contradiction. Hence we have $WV \subseteq S_A$. If *x* is any element in $S_A(WV)^{-1}$, then $xWV \subseteq S_A$, i.e., $VxWVW \subseteq A$, and so $(VxW)^2 \subseteq A$. Hence we have $VxW \subseteq A$, and so $x \in S_A$, proving that $S_A(WV)^{-1} \subseteq S_A$. Now, let $R_{S_A} = \{r \in R \mid WrV \subseteq S_A\}$. Since $V(WaV)W = (VW)a(VW) \subseteq A$ for any $a \in A$, we have $R_{S_A} \supseteq A$. If $r \in R_{S_A}$, then $WrV \subseteq S_A$, that is, $VWrVW \subseteq A$. Since *A* is semiprime, this means $VW \subseteq A$, i.e., $r \in A(VW)^{-1} \subseteq A$. Hence we have $R_{S_A} \subseteq A$, and therefore $R_{S_A} = A$. By symmetry, we can get the inverse map out of *B*.

Proposition 2 (cf. [5, Corollary 7.8]). Let R, S be semiprime rings with a common non-zero ideal A such that $l_R(A) = l_S(A) = 0$.

- (1) Let \mathcal{P} be a normal class of semiprime rings. Then, R is in \mathcal{P} if and only if so is S.
 - (2) R is a semiprimitive ring if and only if so is S.
 - (3) R is a right Goldie ring if and only if so is S.
- *Proof.* (1) Consider the S-faithful Morita context (R,A,A,S) and the R-faithful Morita context (S,A,A,R).
- (2) Since the class of semiprimitive rings is normal by [1, Corollary 21], this is immediate by (1).
- (3) By assumption, A is an essential right ideal of R. If R is a right Goldie ring, then A contains a regular element a of R. Then, for any q in the classical right quotient ring Q(R) of R, $a^{-1}qa=bc^{-1}$ with some b, $c \in R$, and therefore $q=aba(aca)^{-1}$. Hence, Q(A)=Q(R), and A is a semiprime right Goldie ring (by Goldie's theorem). Conversely, if A is a semiprime right Goldie ring, then $A \hookrightarrow R \hookrightarrow \operatorname{End}(A_A) \hookrightarrow Q(A)$, and so Q(A)=Q(R). Thus, R is a right Goldie ring. Similarly, we can show that S is a right

SOME REMARKS ON NORMAL CLASSES OF SEMIPRIME RINGS

143

Goldie ring if and only if so is A. This completes the proof.

REFERENCES

- [1] S.A. AMITSUR: Rings of quotients and Morita contexts, J. Algebra 17 (1971), 273-298.
- [2] G.A.P. HEYMAN and C. Roos: Essential extensions in radical theory for rings, J. Austral. Math. Soc. 23A (1977), 340—347.
- [3] M. HONGAN: On strongly prime modules and related topics, Math. J. Okayama Univ. 24 (1982), 117—132.
- [4] W.K. NICHOLSON and J.F. WATTERS: Normal radicals and normal classes of rings, J. Algebra 59 (1979), 5—15.
- [5] J.C. ROBSON: Some Results on Ring Extensions, Vorlesungen Fachbereich Math. Univ. Essen 4, 1979.

TSUYAMA COLLEGE OF TECHNOLOGY

(Received January 27, 1983)