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Fujii: Some Riemannian manifolds admitting a concircular scalar field

SOME RIEMANNIAN MANIFOLDS ADMITTING
A CONCIRCULAR SCALAR FIELD

MasaMmi FUJII

Introduction

Recently, R.S.Kulkarni [2] and others have dealt with Riemannian
manifolds admitting a concircular scalar field in a theory of curvature-
preserving mappings or in connection with the so-called Nomizu's con-
jecture. Properties of concircular scalar fields, of special ones or in
Einstein manifolds etc, were studied by Y. Tashiro [1] or other authers.
However, we have less knowledge of concircular scalar fields in manifolds
of constant scalar curvature, even in case of low-dimensional manifolds.

In this paper, we shall discuss properties of Riemannian manifolds
admitting a concircular scalar field by using adapted coordinate systems
for concircular scalar fields as tools. We refer to [1] as to notations and

~ terminologies.

In 1, formulas with respect to an adapted coordinate system will be
stated as preliminaries. In 2, we shall determine the structure of a 4-
dimensional Riemannian manifold of constant scalar curvature admitting
a concircular scalar field. We shall prove, in 3, that a 4-dimensional
Einstein manifold admitting a concircular scalar field is of constant
curvature, and slightly generalize Kulkarni’s theorem concerning con-
formal map. It will be proved, in 4, that a manifold having the vanishing
tensor H,.,.\* defined by E. Cartan and admitting a concircular scalar
field is of constant curvature, and, in 5, that a manifold satisfying
I},..,M=Hm,,.,\"=0 is an Einstein manifold, unless the gradient vector
field of the concircular scalar field is concurrent.

I would like to thank Professor Y. Tashiro who gave me continuous
encouragements and valuable suggestions.

1. Preliminaries

We shall assume, throughout this paper, that a Riemannian manifold
M is connected, differentiable and of dimension #, and the metric tensor
gun of M is positive definite. Two kinds of indices run on the ranges
X, A pv,o0t=1273 - n
hi,j, =23, < n
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respectively. We denote the Christoffe]l symbol, the curvature tensor,
the Ricci tensor and the scalar curvature of M by {5}, K. K. and

x respectively, where the scalar curvature defined by x=mlﬁ>\g“".

The scalar field p is said to be concircular if it satisfies the equation

(1- 1) VgVAP=ngm,

Vv indicating covariant differentiation and ¢ being a scalar field, and to
be special concircular if it satisfies the equation

(1.2) VuVae={(—kp+b)gu

k and b being constant.
Along any geodesic with arc-length %, the equation (1. 1) becomes to
the ordinary equation

ap _
(1.3) i =,

We put p,=4d,p. A point P is said to be ordinary or stationary
according as p\(P)s%40 or p\(P)=0. Stationary points of a concircular
scalar field p are isolated and there exist at most two in M, see [1]. In
a neighborhood U of an ordinary point of p, we can choose an adapted
coordinate system () having the following properties: the first coor-
dinate #' is the arc-length # of p-curves, trajectories of p*, the coor-
dinate hypersurfaces #'=constant are p-hypersurfaces defined by p=
constant, the field p is a function of #'=w# only, and the metric form
ds® of M is given in the from

(1. 4) dst=du’+ p'(u)ds’,

where the prime indicates ordinary derivative with respect to u and
ds*=fudu’du’ is a metric form of an (z—1)-dimensional manifold M. We
indicate quantities of M by barring. With respect to an adapted coor-
dinate system («*), the metric tensor has components

(1.5) gu=1, g,=gu=0, gx=p"fy

the curvature tensor K,..* of M has components

1"
— — R_ b "
Km"* ’“Kjuh'— ":), ajh: Ku‘i = T 4hgi ”‘*‘P'P' fﬁ,

Kkjih = Kkjih - P"Z(athﬁ —0 jhf;ci),

(1.6)
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the other components being zero, the Ricci tensor has components

i
(1 7 Ku='—(n“‘1)—f:o—,, K11=K14=0

Ki=K;—[(n—2)p" + PP fy,

and the scalar curvature « of M is equal to
1
(1.8) 'C=m[(n"'z)('c—‘P"’)—zP'P”'],

where « is the scalar curvature of M defined by Z=(7—_1)1(T2)I? a7

2. 4-dimensional Riemannian manifolds of constant scalar cur-
vature

Let M be a 4-dimensional Riemannian manifold of constant scalar
curvature r and p a concrcular scalar field. For n=4, the equation
(1. 8) is reduced to

2.1 2;‘0'2_{_%(‘,!2)”:;.

Since the left hand side depends on # only and &« is independent of u,
is also a constant. According the signature of the constant scalar curvature

r, We put
I( I)o
(2.2) e="(II) —¢
l(III) c

¢ being a positive constant. By a suitable choice of the arclength #, the
general solution of (2. 1) is given by one of

(I, A) au (=0)
(I, B) ru’ta _ (z5%40)
(11, A,) aexp Zcu—ng,
2.3) p?={(II, A_) @ sinh 2cu—-";
(I, B) a cosh 2cu—-=,
2c
(III) & cos 2(:u+2"—:c.2 )
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Therefore the manifold M has a local structure such that the metric form
is given by (1. 4) substituted with (2. 3) for p”.

Next we suppose that M is complete. Then the arc-length of any
geodesic is extendable to the infinities. Since p-curves are geodesic,
the cases (I, A) and (II, A_) do not occur, and in the other cases, the
inequalities
((I, B) =0, a=0
J(IL, Ag) >0, 7<<0
](II, B) >0, #<2ac

Iy >0, #=2ac’

(2. 4)

should be satisfied respectively, because p”=0.

Moreover, in order that there exists no stationary point of p in a
complete manifold M, it is necessary and sufficient that the equalities in
(2. 4) do not appear in all cases. Then the manifold M is topologically
the direct product IXM of a straight line 7 and a 3-dimensional complete
manifold M. By transferring the factor % in the case (I, B) or @ in the
cases (II, A;), (II, B) and (III) into the metric tensor f; of M, in other
words, applying a homothety to M, the metric form of M is given by

(I,B) du'+(#*+a)ds* (a=0)
2 . E \7a =
(II, A,) du’+ (exp 2cu zc‘z)ds (<<0)

2.5) AS'=(11 B) du'+ %(cosh 20u——§2—)d—s2 (F<c?)

(111) du’—lr—;—

—Cos ZL‘u)d—s2 (F>c?)

L4
c2

in the whole manifold M, respecitively. On the other hand, the existence
of a stationary point of p is possible in the cases (I, B), (II, B) and (III).
Then M is of constant curvature and the scalar curvature is equal to
=1 in (I, B), or x=¢* in (I, B) and (III). There is one stationary point
corresponding to #=0 in (I, B) and (II, B) and are two corresponding to

#=0 and u=% in (IIT). The metric form of M is given by

(I B) du+u’ds
(2. 6) ds*={(II, B) du’+(sinh cu)ds®
I(III) du*+(sin cu)ds™

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 16/iss1/1
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These are the polar forms of the metrics of (I, B) a Euclidean space, (I,
B) a hyperbolic space and (III) a sphere, respectively. Thus we have
established the following

Theorem 1. Let M be a 4-dimensional complete Riemannian manifold
of constant scalar curvature r and suppose that M admits a concircular
scalar field p. If there exists no stationary point of p, then the manifold
M is topologically the direct product of a straight line I and a 3-dimen-
sional complete manifold M of constant scalar curvature % and, the
metric form of M is given by one of (2.5). If there exists a stationary
point of p, then the manifold M is a Eucldean space, a hyperbolic space
or a sphere.

3. 4-dimensional Einstein manifolds

Let M be an n-dimensional Einstein manifold admitting a concircular
scalar field p. Applying Ricci's formula to the equation (1. 1), we have

(3.1) — Ky 0 =P8 urn—Pur,

and contracting with g**,

3.2) — Ky p=(n—1),.

Since M is an Einstein manifold, that is, K,"=(#n—1)x¢,", we have the
equation

3.3) ¢,=—«xp,, OF Pp=—xp+b

and

(3.4) VuVap=(—rp+b)gu,

where b is an integral constant. Hence, in an Einstein manifold, a con-
circular field is special and the characteristic constant of p is equal to
the constant scalar curvature «.

Theorem 2. If a 4-dimensional Einstein manifold M admits a con-
circular scalar field, then the manifold is of constant curvature.

Proof. With respect to an adapted coordinate system (u*) in a
neighborhood U of any ordinary points of M, the equation (3. 4) is reduced
to the ordinary equation

(3.5) pl'=—kp+b and p'''=—kp'.
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Substituting these into the third equation of (1. 7) for #n=4, we have
(3.6) K;=K;—(2p""+ PPN =K.ii —(2p" —rp")f s

Since M is an Einstein manifold, we substitute K;=3rg;=3«p"fs into
(3.6) and obtain the equations

(3.7 K;=(3:p"+2p""—rp") fs=2(rp"+ p'") f1.

This shows that M is a 3-dimensiona'.Einstein manifold

(3.8 Ky=2 fy

and constant scalar curvature

(3.9) F=rpl+ o',

is equal to

As it is known that a 3-dimensional Einstein manifold is of constant
curvature, the manifold M is of constant curvature, that is,

(3.10) K" =580 fx —0/ fr)-
Substituting this and (3. 9) into the third equation of (1. 6), we have
(3.11) K= —p'"™) 0 f1—0;" fu)=rp"™(08 f—0,"fus)

=’C(6khg jr*aj"g m)-
The first and second equations of (1. 6) are rewritten as
(3.12) K1j11;= - -fﬁ:r»(al"igﬁ—aj"]gn)
Kyl =wp" f1i=u(0'gs—08,g1)

by means of (1.5). The equations (3.11) and (3.12) together make the
tensor equation K,.*=#(8,"g.—0.gvy). Therefore the manifold M is of
constant curvature at ordinary points. Since the stationary point of p is
isolated if there is any, M is of constant curvature.

Q.E.D.

By virtue of this theorem, we give a slight generalization of Kul-
karni’s theorem [2] in a different way.

Corollary. Let M and M* be A-dimensional Einstein manifolds
which are nowhere of constant curvature. Then every conformal map of
M into M* is a homothety.

Proof. Let f be a conformal map of M into M*, and denote the
metric tensor f*g by components gi.. Then they are related by the

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 16/iss1/1
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equation g,’i&=%.lgua, where p is a positive valued scalar field. We in-

dicate by asterisking quantities of g, corresponding to those of g.
Then we obtain the transformation formulas

(3.13) {,fx}* {,M} 8o+ 0N Pu—gurP"),

(3.14) K=K+ F(By“VuP,\’" 0, VoA VP — En VuP")

—%P...P"(f’y"gm— g,
3.15)  Kh=Ka+-L 2v,;pk+ ;gmvx ;3;7,9 Zue

Since M and M* are Einstein manifolds, we substitute Ku=3c*gm
=3r*p g and K, =3rg. into (3.15), and obtain the following equa-
tion

(3. 16) VP -———(3,0_2 *—3c '—?pr + Pop )g#’\

This equation means that p is a concircular scalar field if p would not
be constant, and M would be a manifold of constant curvature by
Theorem 2. This is a contradiction. Therefore p must be a constant,
that is, f is a homothety.
Q.E.D.
We notice that «* need not be equal to «.

4. Manifolds of H,.,.\"=0

E. Cartan defined the tensor H,..,." by the equation
(4- 1) H a'mwu\x = K a'mer qn)\x + K o’wurK wJLK + K q»ArK e *— K "_me 'YM-

Theorem 3. If M is a manifold with the property H =0 and
admits a concircular scalar field p such that ¢ is not identically con-
stant, then the manifold is of constant curvature.

Proof. We refer to an adapted coordinate system (") in a neigh-
borhood of any ordinary points of o and put the indices o=1, w=k, c=4#,
A={, p=7, v=1 in the equation (4. 1). Taking account of the components
(1. 6) of the curvature tensor, we have
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P n gy n P s n &
o' {Kix"— p'"(0¢ f:ﬁ—aj Sl "'—p,—(P P8 frr—0 f#)=0

or
o .
(4.2) % {Kui*—(p'"*—p'p"") (08 fri—9d," fin)} =0.

As p'"'s£0, we have from (4. 2) the equation
(4- 3) I—{kﬂh = (Pm - p'Pm)(akhfji —thfki)’

from which follows p'?—p'p'"”"=%. This implies that M is a manifold of
constant curvature. Substituting (4. 3) into the third of (1. 6), we have

"t
K kjih = %5 x"g 3 3;"g t:)«

From the first and second equations of (1.6) and the other components
being zero, we can obtain the tensor equation

11
Kmm.'(: - ’;), (avxgyh'—aukgw\)-

Since a stationary point is isolated, M is a manifold of constant curvature.
Q.E.D.

We put J = {u]|p"(x) =0}. If J contains intervals, we have
p=Au'+ Bu+C, where A, B and C are constant. At the points of
the complement J° of J, the equation p/'*—p!p'" =% is satisfied under
initial conditions p''(0)=2A4, p'(0)=B and p(0)=C by a suitable choice
of arc-length #. Then the solution is given by

B LY ——r ' L
p(u):m(ZA cosh Tru+\/4A’——-/c sinh B Ku-—-ZA)—{-C.

So the differentiability is broken at the point of x=0. Therefore, J is
equal to the whole straight line I or discrete. When J is the straight
line, p'"(u)=0 for every point of I, that is, p'"=b and V.o\=0bgu,
b being constant. It follows that p, isconcurrent or parallel. If [ is
discrete, M is of constant curvature at any point.

5. Manifolds of H,..,=0
We put the tensor,
(5- 1) HcmuA = u'mwt}\v = KauuvK'M + Kmuthp.v .

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 16/iss1/1
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*
Theorem 4. If M is a manifold having the property H,.,.=0 and
admits a concircular scalar field p suck that ¢ is not identically con-
stant, then M is an Einstein manifold.

Proof. Referring to an adapted coordinate system («*) in a neigh-
borhood of any ordinary point of p, and putting the indices o=1, w=7,
A={, p=1 in the equation (5.1), we have

(5.2) % {Kn—(n—2)(p"—p'p") fu} =0.

As p''"s£0, it follows from (5. 2) that
(5.3) Ku=(n—2)(p""—p'p") fs.

This implies that M is an Einstein manifold and the scalar curvature is
equal to k=p'?—p'p".  Substituting (5.3) into the third of (1.7), we
have

1141
(5.4) Ky=—(n— 1)% 2

From the first and second equations of (1.7), we have the tensor equation

H
K= -—(n——l)lo.‘—),—t_gr,,)t and hence M is an Einstein manifold.

Q.E.D.
When p'"" vanishes, the same argument as that of 4 is applicable.
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