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COMPACTIFICATION OF TOPOLOGICAL SPACES

T AKESHI INAGAKI and MASAHIRO SUGAWARA

One of the writers1
) has given the compactification of a T-spaceZ)

R as follows:
Let us denote by R* the totality of all ultrafilters in R. Then it

is proved that the family

{U* 3) I U is an open set in R}4)

can be taken as a basis of open sets in R* and R* becolnes a compact';,)
T-space containing the set:

R = {~316) I x E R; ~l. is the ultrafilter containing x}

as a dense subset, moreover, Ii is homeomorphic with R by the 1naPPing
qJ defined by

q>(X) = ~:ll.

It is the purpose of this note to make clear some relations among
our compactification and Wallman's of a XI-space and Cech's of a
completely regular space.

§1. An extension theorem of continuous functions. First of all
we shall prove the

Theorem 1. Let f be a real valued bounded continuous function
defined on R. Then there exists a real valued bounded continuous
function f* defined on R* such that

f* (ir) = inf sup f(x) = sup inf f(x) and f* <il,) = (x).
AEfYXEA AE~XEA

1) T. Inagaki: Contribution a Ia topoIogie I, Math. lourn. of Okayama Univ., VoI.1
(1952), pp. 158 -166.
, 2) A ~space is a topological space which satisfies the conditions:

1) ~ = 'I>; 2) M:J M; 3) M U N = M u N; 4) Ai = M,
where M and N are subsets of Rand eJ> is the null set as usual.

3) M* is the totality of all ultrafilters in R, which contains M.
4) The notation {A I B} means the totality of all sets A satisfying the condition B.
5) AT-space R is called compact if each filter in R has at least one cluster point.
6) In future, we shall denote by ~ a ultrafilter in R and by ~r. the ultrafilter contain­

ing x.
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8G TAKBtlITI INAGAKI and MASAIIffiO SUGAWARA

Since ({J is the homeomorphism of R on ii, if we regard R as the
space R, then the theorem says that f can be extended on R *.

Proof. Let ~ E'R* and let

t = inf sup f(x) and t' = sup inf f(x).
At~xtA At~XfA

Then it is clear that r>t', but we can show that t = t'. In fact, by
definition of t, for every positive number ~ there exists a set At E B
such that t < sup f{x) < t + =, and hence for some point Xl E A v"

:lll> Al

t - s < f(XI) < t + s. Therefore, if we denote by B the set {x I t - s

<f(x) < t -I- s}, then B *" r/J. We now show that BE %. Since g: is
an ultrafilter, if BE~, then CBl) E~ and Ai nCB E~. Let x be a
point of At nCB, then f(x) < t + s by definition of At and f(x) -< t - s

or t + e -< f(x) by definition of B. Therefore we can say that if
x EAt nCB then f(x) <:: t - =, and hence sup f(x) <:: t - e." This

:II E ...lIn OB

contradicts with the definition of t. Thus we have B E ~ and inf
rsER

f(x) >- t - s. Therefore, by definition of t', we have t - s -< t', and
this shows that t < t'; hence· t = t'.

From what we have just proved above, we can define a function
f* defined on R* by the equality

f* (i!) = inf sup f(x) = sup inf f(x).
AE~XtA Ad~XfA

It follows evidently that f* is bounded and f*tiJ,,) = f(x).
To prove that f'l} is continuous, let t 7 f* (%). In proving that

t -< t' above, we have shown that for every positive number s, the
set G = {x I t - -~ < f(x) < t + ~} belongs to~. Since f is continu­
ous, G is open in R and so G* is open in R*. Now, it follows from
the definition of f* that f*(G) c [t - ~ , t + 1-]c (t - s, t + e). This
shows that f* is continuous, Q.E.D.

Remark. As it is easily seen, if f is continuous, then for any
set A, sup f(x) = sup f(x) and inf !(x) = inf f(x); therefore the func-

:IlfA :ilEA :ilIA rsE.1

tion f* can be defined by the equality

(1 ) f* (~) = inf sup f(x) = sup inf f(x).
AdLxtA Af~ xtA

1) CB denote the complement of B. that is, eB = R - B.
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COMPACTIFICATION OF TOPOLOGICAL SPACES 87

§ 2. Compactification ofaXI-spacel
) • In this place, we suppose

that R is a To-space. For a point ~ E R* we define ~ by

.~ = {F I FE ~ and F is closed in R}.

For two points g:l and ~2 of R*, we write

C1: __ ~ if ~-~
lii u2 , vI - U2·

Obviously the relation -- is an equivalence relation, hence the relation
divides R'* into disjoint classes of equivalent points.
We introduce the notations:

R 0 _ the totality of all classes of equivalent points;

[g:] = the class of equivalent points, which contains ~.

It is important to remark that if x =F y then [%0,] =\= [~!lJ. For,
since x =F y and R is a Tu-space, at least one of x E y and Y E x holds,
from which x =F J'; .hence it is not hard to see that ~:lI =F ~il.

We define the mapping ¢J l of the set R* on the set R C such that

Then it is evident that ¢Ji ' is one-to-one mapping between R and flo,
by setting

Now it is not difficult to see that the family

r = {F:l I ¢Jl1(F) = F*, where F is closed in R}

can be taken as a basis of closed sets in RO, and, moreover, RO be­
comes a T-space and ¢J1 is continuous.

From this definition, we can prove the
Theorem 2. RO is a compact Tu-space and contains a dense sub­

set RO which is homeomorphic with R.

Proof. RO is compact, because R* is compact. and ¢JJ is continu­
ous in the topology introduced in R 0 •

1) A 1O-space is a 'J!.space such that, for any two different points x and y, at least
one of xlY or y t"x holds.

3
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88 TAKESHT INAGAKI and MASABIRO SUGAWARA

To show that RO is a ~l-Space, we shall prove first that

~ll(~l(U*» = U* for any open set U in R.

In fact, if ~ E rPt"l(¢l( U*», there exists a point ~1 E U* such that
~ = ~l' Hence UE ITl "and CUEIT!" Since CU is closed, we have
CUE B; and so UE~. This shows that ¢11(¢1(U*» c U*. Since it is
evident that rPl!(ePl(U*»:::J U*, we have ¢1 1(tP.(U*» = U*."

Under this remark, we shall show that RO is a To·space. Let
[ITl] and [IT~] be two different points of RO, then ~1 =F ~2. Hence, at
least one of rtl and IT~, say ITl' contains a closed set F such that
F E ~2' and so CFE ~I and CF E IT2' Since CF is open, we get
~ll(~l((CF)*» = (CF)*, and clearly [BIlE" ePl( (CF)*) and [i~2] E tPI((CF)*).
Hence it follows that R ° is a To-space.

In order to show that Rand RO are homeomorphic, as it is
readily seen, it is sufficient to prove that the mapping ePl'P sends an
open set in R to an open set in flo. Now let G be an open set in
R, then

·tPlfl'(G) = tPl(G* nR) = ePI{ U IT:r.) = U ~l{IT:ll) = ft° nePI(G*),
~. G :r.. G

from which rf>lCP(G) is open in RO, because ePI(G-l<') is open in RO,
Q.E.D.

Theorem 3. Let f be a real valued bounded continuous function
defined on R. Then there exists a real valued bounded continuous
function fO defined on RO such that

fO <[IT]) = f* (iJ).

Proof. Since f is continuous, the function f* defined by the
equation (1) in §1 takes the same value at each point which belongs
to an equivalence class in R*. Thus we can define a function fO
such that

.To prove that fO is continuous, let [IT] be a point of RO and
t = /0 ([IT]) = f*(IT). Since f* is continuous, for every neighborhood
Vet) of t, there exists an open set G in R such that G E IT and
U(t) :::Jf*(G*). On the other hand~ as we proved in the proof of
Theorem 2, G E IT implies [B]c G* and ePl(G*) is open in RO. Hence

4
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COl\·IPACTIFICATION OF TOPOLOGICAL SPACES 89-

U(t) -:Jf*(G*) = fO (f/Jl(G*», this shows that fO is continuous, Q.E.D.

Let us denote by. a(R) the totality of all dual prime ideals in
the lattice ,2 composed of all closed sets in R, then we have the

Lemma 1. There is an one-ta-one mapping of the set RO on a(R).

Proof. To a point [~] E R C we correspond the se~ ~, and we
write

~ = 1j,.([~]).

First of all we prove that ~ is a dual prime ideal. It is evident
that ~ is a dual ideal. In order to show that ~ is prime, let FI and
F2 be closed sets in R such that FI U FzE~. If we suppose that
F l E~, then, since FI is closed and % is an ultrafilter in R, we have
F l E% and so CFl E~. Hence it follows that CFl n (FI UF2) E~, from
which F2 E g: and F2 E~, since eFt n (Ft U F'!.) c F'j and F2 is closed.
This shows that ~ is a dual prime ideal, and hence ~ E a(R). More­
over, it is evident that if [%J =F [~2]' then 1j,.([g:I]) =\= "",([g:2]).

W~ shall now prove that ",,.(RO) = a(R). In fact, let m, be a
dual prime ideal in ~ and let

91 = {G , G is open in Rand CGE"9JC}.

Since R E 9.n, we have f/J t m. Next, in order to show that ~ has the
finite intersection property, take two sets GL and G2 of~. Then
eGLEW, CGz"Effie and 9JC 1" CGl U CGz = C(G l n G2), since ~m is prime.
Therefore, Gl nGz E 9C and G1 nG2 =\=¢, from which we say that 9C
has the finite intersection property. Now let FE 9Jl and G E 9t If
we suppose that Fn G = f/J, then Fe CG and so CG E 9.)(. This contra­
dicts with CG"Effi(, and hence Fn G =\= ¢. From what we have proved
above, we can say that the totality of all sets Fn G, where FE ill(

and G E 9C, forms a basis of a fliter. Hence there exists an ultrafilter
~ which contains the above basis: 9Jl U me g:. For this ultrafilter ~,

we can show that ~ = 'JJt In fact, if FE %, then FE d and CF"E'ij,.
from which CFE\]t Hence FE'.J.n by definition of 91, and so ~c ffiC.

From what we have just proved, it follows that 'fr(RO) = a(R)
and '0/ is an one-to-one mapping between RO and a(R), Q.E.D.

We note here that a set po c R 0 belongs to the closed basis r
of RO, if and only if there exists a closed set F in R such that
""'(FO) = a(F) by setting

a (F) = {ill, I me is a dual prime ideal in ~. and FE 9Jl}.

5
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90 T AKHSHI INAGAKI andMASAHIRO SUGAWARA

In fact, if F O belongs to r, there exists a closed set F in R such
that ¢:;l(FO) = F*. Hence 'fr(FO) = "/r(¢l(F*» = "'''(i[~J r FE ~}) = a(F).

Conversely, let F be a closed set in. Rand' 'fr(FO) = «(F). Then,
since '!r is one-to·one, we have ¢ll(FO) = ¢-;l(''/J'-I('o/(F-») = ¢;l(,!,.-l(a(F»)

= ¢ll({[~J I FE %}) = F*, and hence FO is contained in the closed
basis r' of R,o.

Thus we have the
Lemma 2. If we introduce the topology in a(R) such that the

family {a(F) I F is closed in R} is a closed basis of a(R), then the
',mapping "\r([~J) = @" is a homeomorphism of the space RO on the space
a(R).

§ 3. Compactification of a TJ-space. In this section, we suppose
that R is a Ts-space. Now let

{do (R) = {[~J I ~ is a maximal dual ideal in E},

J1(R) = '!r(W" (R) ).

Then, it is evident that (d(R) is a subset of a(R) and consists of all
maximal dual prime ideals in~. Moreover, since ~o (R) and J3(R) are
regarded as the subspaces of RO and a(R) respectively, $O(R) and (1(R)

~re homeomorphic with each other. _
Since R is a T1-space, it is important to remark that [~~J is iJ~

itself and hence R = RO c $0 (R).

Under these remarks, we have the well known
Wallman's Theorem. The space p(R) is a cOlnpact T 1-space and

.contains a dense subset R° which is homeomorphic with R.
But we give a proof of this theorem for the purpose to make

clear the relation among the spaces considered in this note.
Proof. Let IDll and ill12 be any two distinct points of $(R). Then,

since they are maximal ideals in 2, anyone of them, say IDe!, con-,
tains a closed set F in R such that FE 9112 • However, (1 (R) - a (F)
is open in lj(R) and contains ~TQ2 and not "JJl l , bence' (j(R) is a
T1-space.

To show that (1(R) is compact, we take an ultrafilter F in (1(R).

Obviously, since F is a filter in a(R) which is compact, there is a
-cluster point ~ of F. As we know, there is an ultrafilter ~1 in R
such that ~1. E ,go (R) and ~ c ~l • Since ~ c ~l' for any closed set F in
R, a(R) - a(F) 3 ~l implies a(R) - a(F) 3~, and hence we can say

6
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COMPACTIFICATION OF TOPOLOGICAL SPACES 91

that in the space a(R) each neighborhood of ~} is also a neighbor­
hood of~. Hence ~1 is a cluster point of F, and therefore ~(R) is
compact.

It is almost evident that the subset lie = R of fJ(R) is dense
and homeomorphic with R, Q.E.D.

By using Theorem 3, we can prove the
Theorem 4. A real valued bou1uJ~d continuous function f defined

on R is extendable to a real valued bounded continuous function ffJ de­
fined on [3(R) such that

li~) = f*(~)·

Finally we give the
Theorem 5. In order that peR) be normal, it is necessary and

sufficient that R be normal.
Proof. . Suppose that (j(R) is normal, and let F J and F z be two

disjoint closed sets in R. Then, the sets FA = peR) na(F1) and FJ
= peR) na(F2) are disjoint closed sets in peR). Hence there exists a
continuous function IfJ defined on [3(R) ~uch that f(3 = 0 on F.J ,113 = 1
on F~ and 0 <ff3 < 1 on I1(R). If we define a function I by the
equality I(x) = fift.) , it is clear that f is continuous and 0<f<1
on R. Moreover, if x E F 1 , then ~'" E [3(R) na(F}) and hence I(~) =
f 13 ("f§;z:) = O. Similarly, if x E F2 , then f(x) = 1. This shows that R is
normal.

Conversely, let R be normal and let 9J2 J and ~2 be two distinct
points in S(R). Then, as ill11 and ill12 are maximal dual ideals in £,
there exist disjoint closed sets F1 and F'2 such tlJat F1 E £011 and
F2 E 9](2. Since R is normal, there exists a continuous function f
such that f(x) = 0 on F1 , f(x) = 1 on F2 and 0<f< 1 on R. Let fl3
be the function extended from f by Theorems 1 and 4, then it is
clear that f{~(mll) = 0 since F 1 E 9R., and similarly II3(Wl~) = 1. This
shows that S(R) ·is a Hausdorff space, and hence, as f1(R) is compact,.
peR) is normal, Q.E.D.

§ 4. Compactification of a completely regular space. In this
section, we suppose first that R is a complete Hausdorff space.)) By
considering, the remark in §1, it is easily seen that, for two points

1) We means by a complete Hausdorff space the Hausdorff space such that,- for any
two distinct points x and y, there exists a real valued bounded continuous function­
taking different values at x and y.

7
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92 T..urnSHI INAGAKI and MASAIDRO SUGAWARA

lJJ and ~2' the following propositions are equivalent:
(tr). There is no real valued continuous funcNon f* defined on

R* such that f*(rsl) = 0, f*(IT2) = 1 and 0 </* < 1 on R*.
({1). Any real valued bounded continuous function f* defined on

R * takes the sanze value at ~1 and ~2'

If two points f!sl and f!s2 satisfies the proposition, we write ~lJ ~ ~2.

Evidently the relation ~ is an equivalence relation, hence the relation
divides R* into disjoint classes of equivalent. points.

\Ve introduce the notations:

r(R) = the totality of all classes of equivalent points;
{~} = the class which contains f!s.

Moreover, we define the mapping ¢>2 of R:* on r(R) such that

We shall give the
Lemma 3. If f!slc~2I then f*Ci!5J = f*(~2)' for every real valued

hounded continuous function f* on R *.
Proof. Let f(x) = f*(fjat)' then f is a real valued bounded con­

tinuous function and equality (1) in § 1 holds. On the other hand,
since ~l c ~2' it follows that inf sup f(x) ::> inf sup f(x) and

A ~ ~l X ~ .If A ~ ili x ~ .If
sup inf f(x) < sup inf f(x). Therefore, it is clear that f*('f5!) =
A ~ 'iiI X ~ A A Ec ~2 X ~ ...If
f*(fj2)' Q.E.D.

Fronl the lemma, it is not difficult to see that:
( a ). [fj] c {fj};
(b). {fj} contains a point ~1 such that [%lJ E pO (R).

Since R is a· complete Hausdorff space, for two distinct points x
and y, there exists a continuous function f such that f(x) = 0, f(y) = 1
and 0<I< 1 on R. Then, by the equality (1) In §1, I*<'il,,) = 0,

I"/c- (~y) = 1 and 0 <f* -< 1. Thus we have

(c ). If x *y, then cPil(ITo,) *¢2(Bv).

Hence, if we put

l:(R) = ¢iR),

then ¢2 gives an one-to"one correspondence between Rand r(R).
Moreover, if we take the set:

8
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GOMPACTIFICATION OF TOPOLOGICAL SPACES

{Foy ! t/Ji I (F"I) is closed in R*},

as the totality of all closed sets in r(R), then r(R) is a T-space and
¢2 is a continuous mapping.

Thus we can prove more precisely the
Thorem 6. The space r(R) is a contpact Hausdorff spa.ce and

contains a dense subset r(R). Moreover, a real valued bounded con­
tinuous function f defined on R can be extended to the function f"l de­
fined on r(R) such that

Proof. Since t/J'!. is continuous, it follows that r(R) is compact.
Let {~1} and {~2} be two distinct points in r(R). Then ~J* ~2

and, therefore, there exists a continuous function f* defined on R*
such that 1* (f!fJ) = 0, 1*(f!f2) =1 and 0<1*<1 on R*. Hence, if we
put ~* = f*-1([0, ~» and 0;* = f*-l«{_, 1]), then U1* and Ut are
disjoint open sets in R*. Moreover, it is evident, frOlTI the definition
of the relation ;::::::, that if f!f E Ul then {rt} E ~*, from which it is
easily seen that Ul = ¢;1(r/J2(U",*», (i = 1,2). Hence, it follows that
t/J2(Ut*) and ¢lUi) are disjoint open sets in r(R) such that {rtt} E ¢2(U{)

and {B2} E ¢~(Ut). Thus r(R) is a Hausdorff space.
To prove that /" is the function extended from I, it is sufficient

to verify that f r is continuous. Now, let {fj} be a point of r(R),
t = fy({fj}) , and let U(t) be an open set containing t. Then, since
f"l({%}) =f*(fs), the set U* =f*-l(U(t» is open in R* which contains
%. As it is easily seen, from U* = f* -1( U(t» and the definition of
f"" that fr-1(U(f» = ¢2(f*-I(U(t») = rP2(U*), As we proved· above,
¢2(U*) is open in r(R), which contains {%}, thus Ir is continuous,
Q.E.D.

R~mark. In the same manner as we used above, we can define
two spaces r 1(R) and rO (R) from RO and SO(R) respectively. That is,
if ¢3 and ¢4 are the mapping of RO on r I CR) and that of @O(R) on
rO(R) respectively, then

¢:l[%])
¢.!([%])

¢1(¢2(¢11([f!f]) ),

tPl(¢2(tP1 J ([B]» ),

[~JE RO ;

[BJ E (j0 (B).

Therefore, if we denote by '11'3 and V-l the mapping of r(R) on rl(R)
and that of r(R) on rO (R) respectively, such that 'fr::({~}) = cP 1({%}),

9
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'J'1'4({tJ}) = tPl({tJ}), then by considering the properties (a) and (b), we
can prove that r(R), rl(R) and rO(R) are homeomorphic with each
other.

The sPace r(R) in the Theorem 6 is a continuous image of R,
but not necessarily homeomorphic with R. As the condition of that
r(R) and Ii be homeomorphic with each other, we have the

Lemma 4. In order that r(R) and R be h01l1eomorphic, it is neces­
sary and sufficient that R be a completely regular space.

Proof. The necessity is evident.
Conversely, suppose that R be completely regular and we shall

show that the mapping ¢;;J of r (R) on if is continuous.

Let F be a closed set of Rand {{i..} be a point of r(R) - ¢2(P* nRj.
Then x does not belong to F, and, sinceR is completely regular,
there exists a real valued continuous function defined on R such that
!(x) = 0, f(y) = 1 for every point Y E F and 0 <'f<. 1. Let foy be the
function extended from f by the Theorems 1 and 6, then it is clear
that [r<{i!:li}) = 0 and fy{{~}) = 1 for every point {~} E tP2(F*). This
implies that the open set [.yl([O, -}» of r(R) contains {~:lI} and does
not intersect with ¢2(F*), and hence the open set fy-I([O, ~» n r(R) of

r(R) contains {~:ll} and is contained in r(R) .- ¢'J(F* nR). This shows
that r(R) - tP2(F* nR) is open in r(R) and so ¢2(F* nR) is closed in
r(R), Q.E.D.

Thus, as we know, there is the well known
tech's Theorem. For a completely regular space R, there is a

space W satisfying the following conditions:
( 1 ) W is a compact Hausdorff space;

(2) Rc Wand R = W;
( 3) Any real valued bounded continuous function defined on R

can be extended on W.
Moreover, the spaces which satisfies the three conditions given above

are homeomorphic with each other.
In this place, we will give a proof of this theorem for the pur­

pose to make clear the structure of the space W.
Proof. The space r (R) is certainly a space satisfying the condi ~

tions (1), (2) and (3), thinking r(R) = R be R. Hence the existence
is true.

10
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COMPACTIFICATIONOF TOPOLPGICAL SPACES 95

Let W be a space satisfying the conditions (1). (2) and (3), and
we will prove that Wand r(R} are homeomorphic, by dividing the
proof into seven parts.

( a). Let M be a subset of W. Then, by using the condition (1),
it is not difficult to see that an ultrafilter %(M) in M converges to
only one point w which belongs to M, and conversely, if wE M, then
there exists an ultrafilter B(M) in M such that ~(M)' converges
to w.

(b). Let g(w) be a real valued bounded continuous function de­
fined on W. Let %be an ultrafilter in R such that t! converges to
a point wand let g(w) = t. Since g(w) is continuous, for every neigh­
borhood U(t) of t there exists a neighborhood V(w) such that
U(t) :::Jg(V(w», and from which we have:

g(w) = inf sup g(x) = sup inf g{x).
AE~ xtA AE~ xtA

If we define· a function f such that

f(x) = g(x), x E R c W,

then f(x} is continuous and the function f* defined by

f* (if) = inf sup f(x) = sup inf f(x)
At~xtA At~xtA

is the function obtained in the Theorem 1. Hence it is evident that
if ~ converges to w, then

g(w) = 1* (~).

Conversely, let f* be a continuous function defined on R*. Then
the function I defined by I(x) = f*(lJif) is continuous on R. On the
other hand, by the condition (3), there exists a continuons function
g(w) defined on W such that f(x} = g(x) for x E R. Since g(w) is
continuous, from what we have proved above, we have

g(w) = f*(%),

for any ultrafilter ~ in R, which converges to w.
(c). For a point WE W, if we denote by H:J}w the family of all

ultrafilterS if in R which converges to w in W, then R* is divided
into disjoint classes {%}w' From (b), it follows that {~},oc{~}.
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(d). Let WI and W 2 be two distinct points 'of W, then there
exists a real valued bounded continuous function g(w) defined on W
such that g(w1) =\= g(w2). On the other hand, by (a) and the condition
(2), there exist two ultrafilters ~1 and ~2 in R such that ~L converges
to W 1 and W2 converges to w,p Therefore, by (b), it follows that
f* (~l) =\= f* (B2), from which ~1*~2. This sbows that {~}c {~}tv for
every point UJ E W. Then we have, for H.n there exists a point
WE Wsuch that {~} = {~}~'-,.

(e). By (d), we can define the function if>~ of W on r(R) sucQ
that

It is evident that 1>.; is one·to-one.
( f). We shall prove that ¢.i is continuous. Let ¢,i(WO) = {~()}

and U" be an open set of r(R) containing {~o}. By the normality of
r(R), there exists a real valued continuous function I" defined on
r(R} such that fr({~o}) = 0, f,,({~}) = 1 on r(R) - Uy and 0 <I"<1
on r(R). If we define the function f* on R* -such that f* (~) = fr({~})'

then f* is a real valued bounded continuous function on R*, and, by
(b), we get a continuous function g defined on W.

We shall show that the Ollen set V = $'-1([0, ;» of W contains
Wo and tP5(V) c Uy • By (b), g(wo) = f*(~f1) = fr({~(J}) = 0 and so V con·
tainswo • Let W be a point of V, then fy(¢,,(w»=f*(f/J;l(¢5(W)})

=-= g(w) E [0, f) and hence ¢5(W) does not belong to r (R) - U"I and this
shows that ¢5(W) E U-y. Thus the proof of the continuity of ¢:; is
established.

(g). Since W is compact and r(R) is a Hausdorff space, from
(e) and (f), the rnapping¢;; is a homeomorphism. Thus the theorem
is completely proved, Q.E.D.

Remark. Finally, if r (R) is homeomorphic with peR), then ~(R)

is normal. Then, by Theorem 5, the space R is normal.
Conversely, let R be normal and let ~1 and ~2 be two distinct

points of p(R). Since ~l and ~2 are maximal dual ideals in 2, there
exists two distinct closed sets F. and F; in Rsuch that FIE ifl ,
F1 Elf2,Fz Et§, and F2E~2. Hence it is evident that peR) -a(F1) and
(j(R) - a(F~) are disjoint open sets in p(R) and the former contains.
~2' the latter i51. Then p(R) is a Hausdorff space. Hence fj(R}
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'Satisfies the three conditions (I), (2) and (3) given in the Cech's
Theorem, and, therefore, r(R) is homeomorphic with $(R).
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