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COMPACTIFICATION OF TOPOLOGICAL SPACES

TaxesH1 INAGAKI and Masaniro SUGAWARA

One of the writers® has given the compactification of a 7-space®
R as follows:

Let us denote by R* the totality of all ultrafilters in R. Then it
is proved that the family

{U*® | U is an open set in R}

can be taken as a basis of open sets in R* and R* becomes a compact®
T-space containing the set:

R = {%.° | x€R; [, is the ultrafilter containing x}
as a dense subset, moreover, R is homeomorphic with R by the mapping
¢ defined by
?(®) = Fa-

It is the purpose of this note to make clear some relations among
our compactification and Wallman’s of a 7,-space and Cech’s of a
completely regular space.

§1. An extension theorem of continuous functions. First of all
we shall prove the

- Theorem 1. Let f be a real valued bounded continuous function
defined on R. Then there exists a real valued bounded continuous
Sfunction f* defined on R* such that

f*(@) = inf sup f(x) = sup inf f(x) and f*(F,) = f(x).
AceF xec A xe A

€

1) T.Inagaki: Contribution 3 la topologie I, Math. Journ. of Okayama Univ., Vol.1
(1952), pp. 158 - 166.
" 2) A T'space is a topological space which satisfies the conditions :

1) ¢=¢; 2) M>DM; 3) MUN=MUyN; 4 M=/
where M and N are subsets of R and ¢ is the null set as usual.
3) M* is the totality of all ultrafilters in R, which contains M.
4) The notation {A | B} means the totality of all sets A satisfying the condition B.
5) A T-space R is called compact if each filter in R has at least one cluster point.

6) In future, we shall denote by & a ultrafilter in R and by &= the ultrafilter contain-
ing x.

85

Produced by The Berkeley Electronic Press, 2008



Mathematical Journal of Okayama University, Vol. 2[2008], Iss. 1, Art. 8

86 Takmsnr INAGAKI and Masanmmo SUGAWARA

Since ¢ is the homeomorphism of R on R, if we regard R as the
space K, then the theorem says that f can be extended on R*.

Proof. Let e R* and let

t = inf sup f(x) and # = sup inf f(x).
At xec A AeF xe A

Then it is clear that ¢>>#’, but we can show that #-==¢#. In fact, by
definition of £, for every positive number = there exists a set A,€H
such that t<sup fix) < t+ ¢ and hence for some point x,€ 4,

t—e <flx) < t + Therefore, if we denote by B the set {x | ¢ — =
< flx) < t+ <}, then Bz ¢. We now show that Be §. Since § is
an ultrafilter, if BE€®, then CBYef and A NnCBe%H. Let x be a
point of A,NCB, then f(x) < ¢+ : by definition of A, and flx)<t—e
or ! + ¢ < f(x) by definition of B. Therefore we can say that if
x€A,NnCB then f(¥) t— = and hence sup f(x)<?— e This

z €4 nCB

contradicts with the definition of #. Thus we have Be § and inf

ze

fix) >t — . Therefore, by definition of ¢, we have #— ¢< ¢, and
this shows that ¢<{?’; hence ¢t = ¢

From what we have just proved above, we can define a function
f¥ defined on R* by the equality

@ = mf sup flx) = sup inf f(x).
¥ xe AcFxc A }

It follows evidently that f* is boundéd and f*({.) = f(x).

To prove that f* is continuous, let = f*(®). In proving that
t<t’ above, we have shown that for every positive number ¢, the
set G={x|t— 5 <f(¥) <¢+ %} belongs to F. Since f is continu-
ous, G is open in R and so G* is open in R*. Now, it follows from
the definition of f* that f*(Glc[t~ &, I+ 5]t — ¢, ¢ +¢). This
shows that f* is continuous, Q.E.D.

Remark. As it is easily seen, if f is continuous, then for any
set A, sup f(x) = sup f(x¥) and mf flx) =inf f(x); therefore the func-

z ¢ A EX 2 ¢4

tion f* can be defined by the equahty

(1) A = inf sup flx) = sup inf fx).
A F xe A AcFxc A

1) CB denote the complement of B, that is, CB= R — B.
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§2. Compactification of a Twspace. In this plaEe, we suppose
that R is a 7,-space. For a point § € R* we define § by
= {F| Fe% and F is closed in R}.
For two points &, and §, of R*, we write
T~ T, I g‘l '—"%-‘2-

Obviously the relation ~ is an equivalence relation, hence the relation
~ divides R* into disjoint classes of equivalent points.

We introduce the notations:

R° = the totality of all classes of equivalent points;
[§] = the class of equivalent points, which contains $.

It is important to remark that if x %y then [¥.]=F[3F,). For,
since x &=y and R is a 7,-space, at least one of ¥ €y and y €% holds,
from which ¥ = ¥; hence it is not hard to see that §, =% F,.

We define the mapping 4, of the set R* on the set R° such that

[B] = o).
Then it is evident that ¢, is one-to-one mapping between R and E",
by setting

R° = ¢,(R).

Now it is not difficult to see that the family
= {F° | ¢;(F°) = F*, where F is closed in R}

can be taken as a basis of closed sets in R°, and, moreover, R° be-
comes a 7-space and ¢, is continuous.

From this definition, we can prove the
Theorem 2. R° is a compact T,-space and contains a dense sub-
set R° which is homeomorphic with R.

Proof. R° is compact, because R* is compact and ¢, is continu-
ous in the topology introduced in R°.

1) A Tg-space is a T-space such that, for any two different points x and y, at least
one of x¢y or y 7% holds.
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To show that R° is a 7,-sSpace, we shall prove first that
#7'(3{U*)) = U* for any open set U/ in R.

In fact, if Fe€¢ ' (6(U¥)), there exists a point ¥ € U* such that
% =73 .. Hence UeF, and CUEF,. Since CU is closed, we have
CUe%; and so Ue ¥ This shows that ¢;4¢,(U*))c U*. Since it is
evident that ¢4, (U*)) > U*, we have ¢;Yg,(U*)) = U*.

Under this remark, we shall show that R° is a 7,-space. Let
[¥.] and [F.] be two different points of R°, then &, % &,. Hence, at
least one of %, and 3., say §,, contains a closed set F such that
F€%,, and so CF€, and CFe g,. Since CF is open, we get
67 4(6:((CF)*)) = (CF)*, and clearly [§]€#.((CF)*) and [.]€ ¢,((CF)*).
Hence it follows that R° is a T,-space. ‘

In order to show that R and R° are homeomorphic, as it is
readily seen, it is sufficient to prove that the mapping ¢, sends an

open set in R to an open set in F°. Now let G be an open set in
R, then .

410(G) = 6(G*NB) = hi(UF) = U k@) = R n(GY),

from which ¢,0(G) is open in R°, because ¢,(G*) is open in R°,
Q.E.D.

Theorem 3. Let f be a real valued bounded continuous function
defined on R. Then there exists a real valued bounded continuous
SJunction ° defined on R° such that

@) = @,
Proof. Since f is continuous, the function f* defined by the
equation (1) in §1 takes the same value at each point which belongs

to an equivalence class in R*., Thus we can define a function f°
such that

P03 = *6@.

-To prove that f° is continuous, let [§] be a point of R° and
t=f°(%) = f*(¥. Since f* is continuous, for every neighborhood
U(t) of ¢, there exists an open set G in R such that Ge§ and
U)o f*(G*). On the other hand, as we proved in the proof of
Theorem 2, G € ¥ implies [§]c G* and 4,(G*) is open in R°. Hence

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 2/iss1/8



Inagaki and Sugawara: Compactification of Topological Spaces

COMPACTIFICATION OF TOPOLOGICAL SPACES 8¢

Ut) o f*(G*) = f°(:(G¥)), this shows that f° is continuous, Q.E.D.

Let us denote by. «(R) the totality of all dual prime ideals in
the lattice £ composed of all closed sets in R, then we have the

Lemma 1. There is an one-lo-one mapping of the set R° on a(R).

Proof. To a point [¥]€ R° we correspond the set %, and we ’
write

g = v(&)D.

First of all we prove that ¥ is a dual prime ideal. It is evident
that § is a dual ideal. In order to show that & is prime, let F, and
F, be closed sets in R such that F,uF,e%. If we suppose that
F,€§g, then, since F, is closed and & is an ultrafilter in R, we have
F,e$ and so CF, € §. Hence it follows that CF,n(F,uF,) € g, from
which F,€§ and F.€§, since CF, n(F,uF)cF, and F, is closed.
This shows that % is a dual prime ideal, and hence ¥ € a(R). More-
over, it is evident that if [§,] 2 [l then V(&) 3 v (F.D-.

We shall now prove that J(R°) = «(R). In fact, let IM be a
dual prime ideal in € and let

N = {G]| G is open in R and CGEM}.

Since Re M, we have ¢ €. Next, in order to show that R has the
finite intersection property, take two sets G, and G, of 9. Then
CG,EM, CG,eM and M3ICG,u CG, = C(G,nG,), since M is prime.
Therefore, G,N G, e N and G,NG.= ¢, from which we say that N
‘has the finite intersection property. Now let FeI® and Ged. If
we suppose that FnG = ¢, then Fc CG and so CG € M. This contra-
dicts with CG€MM, and hence FNnG %= ¢. From what we have proved
above, we can say that the totality of all sets FnG, where Fe It
and G e R, forms a basis of a filter. Hence there exists an ultrafilter
¥ which contains the above basis: My NcF. For this ultrafilter §F,
we can show that F = M. In fact, if Fe %, then Fe P and CFED,
from which CFe9. Hence Fe I by definition of N, and so Fc M.

From what we have just proved, it follows that (R°) = a(R)
and + is an one-to-one mapping between R° and «(R), Q.E.D.

We note here that a set F°c R° belongs to the closed basis I
of R°, if and only if there exists a closed set F in R such that
Y(F°) = a(F) by setting

a(F) = {M | M is a dual prime ideal in € and Fe M}.

Produced by The Berkeley Electronic Press, 2008



Mathematical Journal of Okayama University, Vol. 2[2008], Iss. 1, Art. 8

a0 Takesnt INAGAKI and Masauiro SUGAWARA

In fact, if F° belongs to I", there exists a closed set F in R such
that ¢;'(F°) = F*. Hence (F°) = »(6,(F*) = ¥([§] | FeF) = a(F).

Conversely, let F be a closed set in. R and y(F°) = «(F). Then,
since v is one-to-one, we have ¢ (F°) = o7 (Y (Y (F))) = 87 (¥ (a(F)))
= ¢7'({[&] | FeF} = F*, and hence F° is contained in the closed
basis 7" of R°.

Thus we have the

Lemma 2. If we introduce the topology in a(R) such that the
Sfamily {a(F) | F is closed in R} is a closed basis of a(R), then the
mapping V(T = F is a homeomorphism of the space R° on the space
a(R).

§3. Compactification of a T..space. In this section, we suppose
that R is a T\-space. Now let

B°(R) = {[%]| % is a maximal dual ideal in £},
B(R) = ¥(8°(R)).

Then, it is evident that B(R) is a subset of «(R) and consists of all
maximal dual prime ideals in 8 Moreover, since #°(R) and 5(R) are
regarded as the subspaces of R° and «(R) respectively, 8°(R) and 8(R)
are homeomorphic with each other. _

Since R is a 7i-space, it is important to remark that [¥,] is &,

itself and hence R = R°cg° (R).

Under these remarks, we have the well known
Wallman’s Theorem. The space B(R) is a compact T,-space and

contains a dense subset R° which is homeomorphic with R.

But we give a proof of this theorem for the purpose to make
clear the relation among the spaces considered in this note.

Proof. Let W, and M, be any two distinct points of 5(R). Then,
since they are maximal ideals in £, any one of them, say ,, con-
tains a closed set F in R such that Fe,. However, 3(R) — a(F)
is open in 3(R) and contains M, and not 9M,, hence BR) is a
T\-space.

To show that BS(R) is compact, we take an ultrafilter F in /(R).
Obviously, since F is a filter in a(®) which is compact, there is a
cluster point § of F. As we know, there is an ultrafilter %, in R
such that % € 8°(R) and FcF,. Since Fc T, for any closed set F in
R, a(R) — a(F) 3%, implies «(R) — «(F)3 %, and hence we can say
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that in the space a(R) each neighborhood of &, is also a neighbor-
hood of §. Hence §, is a cluster point of F, and therefore B(R) is
compact. _ _

It is almost evident that the subset R = R of B(R) is dense
and homeomorphic with R, Q.E.D.

By using Theorem 3, we can prove the

Theorem 4. A real valued bounded continuous function f defined
on R is extendable to a real valued bounded continuous function f, de-
fined on R(R) such that

£ = @
Finally we give the

Theorem 5. In order that B(R) be normal, it is necessary and
sufficient that R be normal. '

Proof.” Suppose that B(R) is normal, and let F, and F, be two
disjoint closed sets in R. Then, the sets F} = 8(R)na(F) and Fj}
= B(R) na(F,) are disjoint closed sets in 3(R). Hence there exists a
continuous function f, defined on 8(R) such that f;,=0 on Fj,f, =1
on Fj and 0 fpa<C1 on B(R). If we define a function f by the
equality f(x) = fs(®.), it is clear that f is continuous and 0<f<1
on R. Moreover, if x€ F,, then F.€B(R)na(F,) and hence f(x) =
fs(®) = 0. Similarly, if x € F., then f(x) = 1. This shows that R is
normal.

Conversely, let R be normal and let M, _and N, be two distinct
points in B(®). Then, as M, and IM; are maximal dual ideals in 2,
there exist disjoint closed sets F, and F, such that F,e, and
F,e M.. Since R is normal, there exists a continuous function f
such that f(x) =0 on F, f(x) =1 on F, and 0<f<1 on R. Let f,
be the function extended from f by Theorems 1l and 4, then it is
clear that f,(IM,) =0 since F,eM,, and similarly fg(M.) = 1. This
shows that f(R) is a Hausdorff space, and hence, as B(R) is compact,
B(R) is normal, Q.E.D.

§4. Compactification of a completely regular space. In this
section, we suppose first that R is a complete Hausdorff space.” By
considering the remark in §1, it is easily seen that, for two points

1) We means by a complete Hausdorff space the Hausdorff space such that, for any
two distinct points x and y, there exists a real valued bounded continuous function
taking different values at x and y.
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&, and F,, the following propositions are equivalent :
(«). There is no real valued continuous function f* defined on
R* such that f*@F) =0, f¥(F) =1 and 0<f* <1 on R*.
(B). Amny real valued bounded continuous function f* defined on
R* fakes the same value at %, and F,.

If two points ¥, and §, satisfies the proposition, we write §/ =~ ..
‘Evidently the relation = is an equivalence relation, hence the relation
divides. R* into disjoint classes of equivalent.points.

We introduce the notations:

r(R) = the totality of all classes of equivalent points;
{%} = thé class which contains .

Moreover, we define the mapping ¢, of R* on r(R) such that
¢2(%‘) = {%} .

We shall give the

Lemma 3. If 3.c., then &) =), for every real valued
bounded continuous function f* on R¥.

Proof. Let f(x) = f*(§.), then f is a real valued bounded con-
tinuous function and equality (1) in §1 holds. On the other hand,

since § < §., it follows that inf sup f(x) > inf sup f(r) and
A xe A Aecfo xc A

sup inf f(¥) < sup inf f(x). Therefore, it is clear that f*(%) =
AeFixe A AeFrxe A
I*(&), QE.D.

From the lemma, it is not difficult to see that:

(a). [§lc {§);

(b). {%} contains a point ¥, such that [¥,]€ 8°(R).

Since R is a complete Hausdorff space, for two distinct points x
and y, there exists a continuous function f such that f(x) =0, f(») =1
and 0<{f<1 on R. Then, by the equality (1) in §1, f*(%.) =0,
f*@) =1 and 0<f* 1. Thus we have

(c). If ¥y, then 4.(R.) % 4:(F,)-

Hence, if we put

F(R) = &(R),

then ¢, gives an one-to-one correspondence between R and T(R).
Moreover, if we take the set:

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 2/iss1/8
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{F, | ¢;(F,) is closed in R*},

as the totality of all closed sets in r(®), then r(R) is a 7-space and
¢, is a continuous mapping.

Thus we can prove more precisely the ‘

Thorem 6. The space y(R) is a compact Hausdorff space and
contains a dense subset 7 (R). Moreover, a real valued bounded con-
tinuous function f defined on R can be extended to the function f, de-
fined on r(R) such that

HU{BD = @)

Proof. Since ¢. is continuous, it follows that r(R) is compact.

Let {%:} and {%.} be two distinct points in r(R). Then F &= &
and, therefore, there exists a continuous function f* defined on R*
such that f*(%,) =0, f*(@.) =1 and 0<f* <1 on R*. Hence, if we
put U* = f*-[0, )) and U:* = f*~Y((3,1]), then U* and U# are
disjoint open sets in R*. Moreover, it is evident, from the definition
of the relation ~, that if §e U¥ then {F}e U*, from which it is
easily seen that Uf = ¢;48,(U¥)), (¢ =1, 2). Hence, it follows that
#,(Uf¥) and ¢,(U;) are disjoint open sets in 7(R) such that {,} € ¢.(UY)
and {%,}€ ¢,(U}). Thus r(R) is a Hausdorff space.

To prove that f, is the function extended from f, it is sufficient
to verify that f, is continuous. Now, let {} be a point of r(R),
t=f,({&}), and let U(f{) be an open set containing . Then, since
HUBYD = f4(§), the set U* = f*-Y(U(?)) is open in R* which contains
% As it is easily seen, from U* = f*-{(U(f)) and the definition of
fy, that fiHUE)) = 6.(f* "(U(2))) = #(U*). As we proved above,
@.(U*) is open in r(R), which contains {&}, thus f, is continuous,
Q.E.D. A
, Remark. In the same manner as we used above, we can define
two spaces r,(R) and r°(R) from R° and B°(R) respectively. That is,
if ¢, and ¢, are the mapping of R° on r,(R) and that of 3°(R) on
r°(R) respectively, then

¢:([%§]) = ¢1(¢2(¢f1([%]) ))s [8‘] € R° 5
6,(FD = a7 (FD)),  [Fl1€ BB

Therefore, if we denote by v~ and 4~ the mapping of #(®R) on r,(R)
and that of 7(R) on r°(R) respectively, such that v¥.({¥}) = ¢.({%)}).,
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v ({§}) = 6.({F)), then by considering the properties (a) and (b), we
can prove that r(R), r,(R) and 7°(R) are homeomorphic with each
other.

The space 7(R) in the Theorem 6 is a continuous image of R,
but not necessarily homeomorphic with . As the condition of that
7(R) and R be homeomorphic with each other, we have the

Lemma 4. In order that 7 (R) and R be homeomorphic, it is neces-
sary and sufficient that R be a completely regular space.

Proof. The necessity is evident.

Conversely, suppose that R be completely regular and we shall
show that the mapping ¢;' of 7(RK) on R is continuous.

Let F be a closed set of R and {{.} be a point of 7(R) — &,(F* nR).
Then x does not belong to F, and, since R is completely regular,
there exists a real valued continuous function defined on R such that
fx) =0, f(») =1 for every point y€ F and 0<f<1. Let f, be the
function extended from f by the Theorems 1 and 6, then it is clear
that £,({%.}) = 0 and f,({F}) =1 for every point {&}€ #.(F*). This
implies that the open set £,([0, =)) of 7(R) contains {%,} and does
not intersect with #,(F*), and hence the open set f,"'([0, 1)) n 7(R) of
7 (R) contains {{¥,} and is contained in 7 (R) — ¢,(F* nﬁ). This shows
that 7(R) — ¢,(F* nﬁ) is open in 7(R) and so ¢2(F*' nﬁ) is closed in
7(R), Q.E.D.

Thus, as we know, there is the well known

Cech’s Theorem. For a completely regular space R, there is a
space W satisfying the following conditions:

(1) W is a compact Hausdorff space;

(2) RcWand R=W;

(3) Any real valued bounded continuous function defined on R

can be extended on W.

Moreover, the spaces which satisfies the three conditions given above
are homeomorphic with each other.

In this place, we will give a proof of this theorem for the pur-
pose to make clear the structure of the space W.

Proof. The space r(R) is certainly a space satisfying the condi-
tions (1), (2) and (3), thinking 7(R) = R be R. Hence the existence
is true.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 2/iss1/8
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Let W be a space satisfying the conditions (1), (2) and (3), and
we will prove that W and 7(R) are homeomorphic, by dividing the
proof into seven parts.

(a). Let M be a subset of W. Then, by using the condition (1),

it is not difficult to see that an ultrafilter (M) in M converges to
only one point  which belongs to M, and conversely, if we M, then
there exists an ultrafilter §(M) in M such that F(M) converges
to w.
. (b). Let g(w) be a real valued bounded continuous function de-
fined on W. Let § be an ultrafilter in R such that § converges to
a point w and let g(w) =¢. Since g(w) is continuous, for every neigh-
borhood U(?) of t there exists a neighborhood V() such that
U(t) og(V(w)), and from which we have:

gw) = inf sup glx) = sup inf g(x).
AeF xe A AcT xe A

If we define a function f such that
fx) = glx), e Rc W,
then f(x) is continuous and the function f* defined by

f*(@®) = Inf sup f(x) = sup inf f(x)
Ac¢E xc A AcT xc A
is the function obtained in the Theorem 1. Hence it is evident that
if ¥ converges to w, then

gw) = ().

Conversely, let * be a continuous function defined on R*. Then
the function f defined by f(x) = f*(%,) is continuous on R. On the
other hand, by the condition (3), there exists a continuons function
g(w) defined on W such that f(x) = g(x) for x€ R. Since g(w) is
continuous, from what we have proved above, we have

gw) = f*@),

for any ultrafilter § in R, which converges to w.

(c). For a point we W, if we denote by {¥}., the family of all
ultrafilters § in R which converges to w in W, then R* is divided
into disjoint classes {§},. From (b), it follows that {¥)},c {&}.
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(d). Let w, and w, be two distinct points 'of W, then there
exists a real valued bounded continuous function g(w) defined on W
such that g(w,) & g(w.). On the other hand, by (a) and the condition
(2), there exist two ultrafilters §, and &. in R such that §, converges
to w, and %. converges to w,. Therefore, by (b), it follows that
X&) % f*(8.), from which F, 5 §.. This shows that {§}c {F}., for
every point we W. Then we have, for {¥} there exists a point
we W such that {F} = {§}l...

(e). By (d), we can define the function ¢, of W on 7r(R) such
that

¢(w) = {Fh-

It is evident that . is one-to-one.

(f). We shall prove that ¢, is continuous. Let ¢.(w) = {&}
and U, be an open set of r(R) containing {$%}. By the normality of
r(R), there exists a real valued continuous function f, defined on
r(R) such that f,({&} =0, fL({FD =1 on r(R) — U, and 0L £,<1
on 7(R). If we define the function f* on R* such that f*(®) =f,({F}>
then f* is a real valued bounded continuous function on R*, and, by
(b), we get a continuous function g defined on W.

We shall show that the open set V= g'(0, 1)) of W contains
w, and ¢;(V)c U,. By (b), glwy) =f*@) = £,({B}) =0 and so V con-
tains w,. Let w be a point of V, then fy(s(w)) = f*(p:'(#:(w)))
== gw) € [0, 1) and hence ¢,(w) does not belong to r(R) — U, and this
shows that ¢,(w)€ U,. Thus the proof of the continuity of 4, is
estab_lished.

(g). Since W is compact and r(R) is a Hausdorff space, from
(e) and (f), the mapping ¢, is a homeomorphism. Thus the theorem
is completely proved, Q.E.D.

Remark. Finally, if ¥(R) is homeomorphic with B(R), then B(R)
is normal., Then, by Theorem 5, the space R is normal.

Conversely, let R be normal and let %, and &, be two distinct
points of A(R). Since ¥, and F, are maximal dual ideals in ¢, there
exists two distinct closed sets F, and F, in R such that Fe7,,
F, €%, F,e%, and F,e§,. Hence it is evident that B(R) — «(F,) and
B(R) — a(F,) are disjoint open sets in 5(X) and the former contains
®., the latter ¥,. Then B(R) is a Hausdorff space. Hence B(R)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 2/iss1/8

12



Inagaki and Sugawara: Compactification of Topological Spaces

COMPACTIFICATION OF TOPOLOGICAL SPACES 97

satisfiés the three conditions (1), (2) and (3) given in the Cech’s
Theorem, and, therefore, r(R) is homeomorphic with 3(R).
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