Mathematical Journal of Okayama University

Volume 2, Issue 1 2008 Article 8
OCTOBER 1952

Compactification of Topological Spaces

Takashi Inagaki* Masahiro Sugawara[†]

*

COMPACTIFICATION OF TOPOLOGICAL SPACES

TAKESHI INAGAKI and MASAHIRO SUGAWARA

One of the writers¹⁾ has given the compactification of a T-space²⁾ R as follows:

Let us denote by R^* the totality of all ultrafilters in R. Then it is proved that the family

$$\{U^{*\,3}\mid U \text{ is an open set in } R\}^{4}$$

can be taken as a basis of open sets in R* and R* becomes a compact⁵⁾ T-space containing the set:

$$\widetilde{R} = \{ \mathfrak{F}_{x}^{(6)} \mid x \in R; \mathfrak{F}_{x} \text{ is the ultrafilter containing } x \}$$

as a dense subset, moreover, \widetilde{R} is homeomorphic with R by the mapping φ defined by

$$\varphi(x) = \mathcal{F}_x$$
.

It is the purpose of this note to make clear some relations among our compactification and Wallman's of a T_0 -space and Čech's of a completely regular space.

§1. An extension theorem of continuous functions. First of all we shall prove the

Theorem 1. Let f be a real valued bounded continuous function defined on R. Then there exists a real valued bounded continuous function f^* defined on R^* such that

$$f^*(\mathfrak{F}) = \inf_{A \in \mathfrak{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathfrak{F}} \inf_{x \in A} f(x) \text{ and } f^*(\mathfrak{F}_x) = f(x).$$

1)
$$\overline{\phi} = \phi$$
; 2) $\overline{M} \supset M$; 3) $\overline{M \cup N} = \overline{M} \cup \overline{N}$; 4) $\overline{\widetilde{M}} = \overline{M}$,

where M and N are subsets of R and ϕ is the null set as usual.

- 3) M^* is the totality of all ultrafilters in R, which contains M.
- 4) The notation $\{A \mid B\}$ means the totality of all sets A satisfying the condition B.
- 5) A T-space R is called compact if each filter in R has at least one cluster point.
- 6) In future, we shall denote by $\mathfrak F$ a ultrafilter in R and by $\mathfrak F_x$ the ultrafilter containing x.

¹⁾ T. Inagaki: Contribution à la topologie I, Math. Journ. of Okayama Univ., Vol. 1 (1952), pp. 158 - 166.

²⁾ A T-space is a topological space which satisfies the conditions:

Since φ is the homeomorphism of R on \widetilde{R} , if we regard \widetilde{R} as the space R, then the theorem says that f can be extended on R^* .

Proof. Let $\mathfrak{F} \in \mathbb{R}^*$ and let

$$t = \inf_{A \in \Re} \sup_{x \in A} f(x)$$
 and $t' = \sup_{A \in \Re} \inf_{x \in A} f(x)$.

Then it is clear that $t \geqslant t'$, but we can show that t = t'. In fact, by definition of t, for every positive number ε there exists a set $A_1 \in \mathfrak{F}$ such that $t \leqslant \sup_{x \in A_1} f(x) < t + \varepsilon$, and hence for some point $x_1 \in A_1$, $t - \varepsilon < f(x_1) < t + \varepsilon$. Therefore, if we denote by B the set $\{x \mid t - \varepsilon < f(x) < t + \varepsilon\}$, then $B \neq \phi$. We now show that $B \in \mathfrak{F}$. Since \mathfrak{F} is an ultrafilter, if $B \in \mathfrak{F}$, then $CB^{(1)} \in \mathfrak{F}$ and $A_1 \cap CB \in \mathfrak{F}$. Let x be a point of $A_1 \cap CB$, then $f(x) < t + \varepsilon$ by definition of A_1 and $f(x) \leqslant t - \varepsilon$ or $t + \varepsilon \leqslant f(x)$ by definition of B. Therefore we can say that if $x \in A_1 \cap CB$ then $f(x) \leqslant t - \varepsilon$, and hence $\sup_{x \in A_1 \cap CB} f(x) \leqslant t - \varepsilon$. This contradicts with the definition of t. Thus we have $B \in \mathfrak{F}$ and $\inf_{x \in B} f(x) \geqslant t - \varepsilon$. Therefore, by definition of t', we have $t - \varepsilon \leqslant t'$, and this shows that $t \leqslant t'$; hence t = t'.

From what we have just proved above, we can define a function f^* defined on R^* by the equality

$$f^*(\mathfrak{F}) = \inf_{A \in \mathfrak{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathfrak{F}} \inf_{x \in A} f(x).$$

It follows evidently that f^* is bounded and $f^*(\mathcal{F}_x) = f(x)$.

To prove that f^* is continuous, let $t = f^*(\mathfrak{F})$. In proving that $t \leqslant t'$ above, we have shown that for every positive number ε , the set $G = \{x \mid t - \frac{\varepsilon}{2} < f(x) < t + \frac{\varepsilon}{2}\}$ belongs to \mathfrak{F} . Since f is continuous, G is open in R and so G^* is open in R^* . Now, it follows from the definition of f^* that $f^*(G) \subset [t - \frac{\varepsilon}{2}, t + \frac{\varepsilon}{2}] \subset (t - \varepsilon, t + \varepsilon)$. This shows that f^* is continuous, Q.E.D.

Remark. As it is easily seen, if f is continuous, then for any set A, $\sup_{x \in A} f(x) = \sup_{x \in \bar{A}} f(x)$ and $\inf_{x \in \bar{A}} f(x) = \inf_{x \in \bar{A}} f(x)$; therefore the function f^* can be defined by the equality

(1)
$$f^*(\mathfrak{F}) = \inf_{A \, : \, \mathfrak{F}} \sup_{x \, \in \, \bar{A}} f(x) = \sup_{A \, \in \, \mathfrak{F}} \inf_{x \, \in \, \bar{A}} f(x).$$

¹⁾ CB denote the complement of B, that is, CB = R - B.

§2. Compactification of a T_0 -space¹⁾. In this place, we suppose that R is a T_0 -space. For a point $\mathfrak{F} \in R^*$ we define $\overline{\mathfrak{F}}$ by

$$\overline{\mathfrak{F}} = \{F \mid F \in \mathfrak{F} \text{ and } F \text{ is closed in } R\}.$$

For two points \mathfrak{F}_1 and \mathfrak{F}_2 of R^* , we write

$$\mathfrak{F}_1 \sim \mathfrak{F}_2$$
, if $\overline{\mathfrak{F}}_1 = \overline{\mathfrak{F}}_2$.

Obviously the relation \sim is an equivalence relation, hence the relation \sim divides R^* into disjoint classes of equivalent points.

We introduce the notations:

 R° = the totality of all classes of equivalent points;

 $[\mathfrak{F}]$ = the class of equivalent points, which contains \mathfrak{F} .

It is important to remark that if $x \neq y$ then $[\mathfrak{F}_x] \neq [\mathfrak{F}_y]$. For, since $x \neq y$ and R is a T_0 -space, at least one of $x \in \overline{y}$ and $y \in \overline{x}$ holds, from which $\overline{x} \neq \overline{y}$; hence it is not hard to see that $\overline{\mathfrak{F}}_x \neq \overline{\mathfrak{F}}_y$.

We define the mapping ϕ_1 of the set R^* on the set R° such that

$$\lceil \mathfrak{F} \rceil = \phi_{\mathfrak{I}}(\mathfrak{F}).$$

Then it is evident that ϕ_1 is one-to-one mapping between \widetilde{R} and \widetilde{R}° , by setting

$$\widetilde{R}^{\circ} = \phi_1(\widetilde{R}).$$

Now it is not difficult to see that the family

$$\Gamma = \{F^{\circ} \mid \phi_1^{-1}(F^{\circ}) = F^*, \text{ where } F \text{ is closed in } R\}$$

can be taken as a basis of closed sets in R° , and, moreover, R° becomes a T-space and ϕ_1 is continuous.

From this definition, we can prove the

Theorem 2. R° is a compact T_0 -space and contains a dense subset \widetilde{R}° which is homeomorphic with R.

Proof. R° is compact, because R^{*} is compact, and ϕ_{i} is continuous in the topology introduced in R° .

¹⁾ A T_0 -space is a T-space such that, for any two different points x and y, at least one of $x \in \vec{y}$ or $y \in \vec{x}$ holds.

To show that R° is a T_0 -space, we shall prove first that

$$\phi_1^{-1}(\phi_1(U^*)) = U^*$$
 for any open set U in R .

In fact, if $\mathfrak{F} \in \phi_1^{-1}(\phi_1(U^*))$, there exists a point $\mathfrak{F}_1 \in U^*$ such that $\overline{\mathfrak{F}} = \overline{\mathfrak{F}}_1$. Hence $U \in \mathfrak{F}_1$ and $CU \in \mathfrak{F}_1$. Since CU is closed, we have $CU \in \mathfrak{F}$; and so $U \in \mathfrak{F}$. This shows that $\phi_1^{-1}(\phi_1(U^*)) \subset U^*$. Since it is evident that $\phi_1^{-1}(\phi_1(U^*)) \supset U^*$, we have $\phi_1^{-1}(\phi_1(U^*)) = U^*$.

Under this remark, we shall show that R° is a T_0 -space. Let $[\mathfrak{F}_1]$ and $[\mathfrak{F}_2]$ be two different points of R° , then $\overline{\mathfrak{F}}_1 \neq \overline{\mathfrak{F}}_2$. Hence, at least one of \mathfrak{F}_1 and \mathfrak{F}_2 , say \mathfrak{F}_1 , contains a closed set F such that $F \in \mathfrak{F}_2$, and so $CF \in \mathfrak{F}_1$ and $CF \in \mathfrak{F}_2$. Since CF is open, we get $\phi_1^{-1}(\phi_1((CF)^*)) = (CF)^*$, and clearly $[\mathfrak{F}_1] \in \phi_1((CF)^*)$ and $[\mathfrak{F}_2] \in \phi_1((CF)^*)$. Hence it follows that R° is a T_0 -space.

In order to show that R and \widetilde{R}° are homeomorphic, as it is readily seen, it is sufficient to prove that the mapping $\phi_1 \varphi$ sends an open set in R to an open set in \widetilde{R}° . Now let G be an open set in R, then

$$\phi_1\varphi(G) = \phi_1(G^* \cap \widetilde{R}) = \phi_1(\bigcup_{x \in G} \mathfrak{F}_x) = \bigcup_{x \in G} \phi_1(\mathfrak{F}_x) = \widetilde{R}^{\circ} \cap \phi_1(G^*),$$

from which $\phi_1\varphi(G)$ is open in \widetilde{R}° , because $\phi_1(G^*)$ is open in R° , Q.E.D.

Theorem 3. Let f be a real valued bounded continuous function defined on R. Then there exists a real valued bounded continuous function f° defined on R° such that

$$f^{\circ}([\mathfrak{F}]) = f^{*}(\mathfrak{F}).$$

Proof. Since f is continuous, the function f^* defined by the equation (1) in §1 takes the same value at each point which belongs to an equivalence class in R^* . Thus we can define a function f° such that

$$f^{\circ}([\mathfrak{F}]) = f^{*}(\mathfrak{F}).$$

To prove that f° is continuous, let $[\mathfrak{F}]$ be a point of R° and $t = f^{\circ}([\mathfrak{F}]) = f^{*}(\mathfrak{F})$. Since f^{*} is continuous, for every neighborhood U(t) of t, there exists an open set G in R such that $G \in \mathfrak{F}$ and $U(t) \supset f^{*}(G^{*})$. On the other hand, as we proved in the proof of Theorem 2, $G \in \mathfrak{F}$ implies $[\mathfrak{F}] \subset G^{*}$ and $\phi_{1}(G^{*})$ is open in R° . Hence

 $U(t) \supset f^*(G^*) = f^{\circ}(\phi_1(G^*))$, this shows that f° is continuous, Q.E.D.

Let us denote by $\alpha(R)$ the totality of all dual prime ideals in the lattice $\mathfrak L$ composed of all closed sets in R, then we have the

Lemma 1. There is an one-to-one mapping of the set R° on $\alpha(R)$. Proof. To a point $[\mathfrak{F}] \in R^{\circ}$ we correspond the set $\overline{\mathfrak{F}}$, and we write

$$\overline{\mathfrak{F}} = \psi([\mathfrak{F}]).$$

First of all we prove that $\overline{\mathfrak{F}}$ is a dual prime ideal. It is evident that $\overline{\mathfrak{F}}$ is a dual ideal. In order to show that $\overline{\mathfrak{F}}$ is prime, let F_1 and F_2 be closed sets in R such that $F_1 \cup F_2 \in \overline{\mathfrak{F}}$. If we suppose that $F_1 \in \overline{\mathfrak{F}}$, then, since F_1 is closed and \mathfrak{F} is an ultrafilter in R, we have $F_1 \in \mathfrak{F}$ and so $CF_1 \in \mathfrak{F}$. Hence it follows that $CF_1 \cap (F_1 \cup F_2) \in \mathfrak{F}$, from which $F_2 \in \mathfrak{F}$ and $F_2 \in \overline{\mathfrak{F}}$, since $CF_1 \cap (F_1 \cup F_2) \subset F_2$ and F_2 is closed. This shows that $\overline{\mathfrak{F}}$ is a dual prime ideal, and hence $\overline{\mathfrak{F}} \in \alpha(R)$. Moreover, it is evident that if $[\mathfrak{F}_1] \neq [\mathfrak{F}_2]$, then $\psi([\mathfrak{F}_1]) \neq \psi([\mathfrak{F}_2])$.

We shall now prove that $\psi(R^{\circ}) = \alpha(R)$. In fact, let \mathfrak{M} be a dual prime ideal in \mathfrak{L} and let

$$\mathfrak{N} = \{G \mid G \text{ is open in } R \text{ and } CG \in \mathfrak{M}\}.$$

Since $R \in \mathbb{M}$, we have $\phi \in \mathbb{R}$. Next, in order to show that \mathfrak{N} has the finite intersection property, take two sets G_1 and G_2 of \mathfrak{N} . Then $CG_1 \in \mathfrak{M}$, $CG_2 \in \mathfrak{M}$ and $\mathfrak{M} \ni CG_1 \cup CG_2 = C(G_1 \cap G_2)$, since \mathfrak{M} is prime. Therefore, $G_1 \cap G_2 \in \mathfrak{N}$ and $G_1 \cap G_2 \neq \phi$, from which we say that \mathfrak{N} has the finite intersection property. Now let $F \in \mathfrak{M}$ and $G \in \mathfrak{N}$. If we suppose that $F \cap G = \phi$, then $F \subset CG$ and so $CG \in \mathfrak{M}$. This contradicts with $CG \in \mathfrak{M}$, and hence $F \cap G \neq \phi$. From what we have proved above, we can say that the totality of all sets $F \cap G$, where $F \in \mathfrak{M}$ and $G \in \mathfrak{N}$, forms a basis of a filter. Hence there exists an ultrafilter \mathfrak{F} which contains the above basis: $\mathfrak{M} \cup \mathfrak{N} \subset \mathfrak{F}$. For this ultrafilter \mathfrak{F} , we can show that $\overline{\mathfrak{F}} = \mathfrak{M}$. In fact, if $F \in \overline{\mathfrak{F}}$, then $F \in \mathfrak{F}$ and $CF \in \mathfrak{F}$, from which $CF \in \mathfrak{N}$. Hence $F \in \mathfrak{M}$ by definition of \mathfrak{N} , and so $\overline{\mathfrak{F}} \subset \mathfrak{M}$.

From what we have just proved, it follows that $\psi(R^{\circ}) = \alpha(R)$ and ψ is an one-to-one mapping between R° and $\alpha(R)$, Q.E.D.

We note here that a set $F^{\circ} \subset R^{\circ}$ belongs to the closed basis Γ of R° , if and only if there exists a closed set F in R such that $\psi(F^{\circ}) = \alpha(F)$ by setting

 $\alpha(F) = \{\mathfrak{M} \mid \mathfrak{M} \text{ is a dual prime ideal in } \mathfrak{L} \text{ and } F \in \mathfrak{M}\}.$

In fact, if F° belongs to Γ , there exists a closed set F in R such that $\phi_1^{-1}(F^{\circ}) = F^*$. Hence $\psi(F^{\circ}) = \psi(\phi_1(F^*)) = \psi(\{[\mathfrak{F}] \mid F \in \mathfrak{F}\}) = \alpha(F)$.

Conversely, let F be a closed set in R and $\psi(F^{\circ}) = \alpha(F)$. Then, since ψ is one-to-one, we have $\phi_1^{-1}(F^{\circ}) = \phi_1^{-1}(\psi^{-1}(\psi(F^{\circ}))) = \phi_1^{-1}(\psi^{-1}(\alpha(F))) = \phi_1^{-1}(\{[\mathfrak{F}] \mid F \in \mathfrak{F}\}) = F^*$, and hence F° is contained in the closed basis Γ of R° .

Thus we have the

Lemma 2. If we introduce the topology in $\alpha(R)$ such that the family $\{\alpha(F) \mid F \text{ is closed in } R\}$ is a closed basis of $\alpha(R)$, then the mapping $\psi([\mathfrak{F}]) = \overline{\mathfrak{F}}$ is a homeomorphism of the space R° on the space $\alpha(R)$.

§3. Compactification of a T_1 -space. In this section, we suppose that R is a T_1 -space. Now let

$$\beta^{\circ}(R) = \{ [\mathfrak{F}] \mid \overline{\mathfrak{F}} \text{ is a maximal dual ideal in } \mathfrak{L} \},$$

$$\beta(R) = \psi(\beta^{\circ}(R)).$$

Then, it is evident that $\beta(R)$ is a subset of $\alpha(R)$ and consists of all maximal dual prime ideals in \mathfrak{L} . Moreover, since $\beta^{\circ}(R)$ and $\beta(R)$ are regarded as the subspaces of R° and $\alpha(R)$ respectively, $\beta^{\circ}(R)$ and $\beta(R)$ are homeomorphic with each other.

Since R is a T_1 -space, it is important to remark that $[\mathfrak{F}_*]$ is \mathfrak{F}_* itself and hence $\widetilde{R} = \widetilde{R}^{\circ} \subset \beta^{\circ}(R)$.

Under these remarks, we have the well known

Wallman's Theorem. The space $\beta(R)$ is a compact T_1 -space and contains a dense subset \widetilde{R}° which is homeomorphic with R.

But we give a proof of this theorem for the purpose to make clear the relation among the spaces considered in this note.

Proof. Let \mathfrak{M}_1 and \mathfrak{M}_2 be any two distinct points of $\beta(R)$. Then, since they are maximal ideals in \mathfrak{L} , any one of them, say \mathfrak{M}_1 , contains a closed set F in R such that $F \in \mathfrak{M}_2$. However, $\beta(R) - \alpha(F)$ is open in $\beta(R)$ and contains \mathfrak{M}_2 and not \mathfrak{M}_1 , hence $\beta(R)$ is a T_1 -space.

To show that $\beta(R)$ is compact, we take an ultrafilter F in $\beta(R)$. Obviously, since F is a filter in $\alpha(R)$ which is compact, there is a cluster point \mathfrak{F} of F. As we know, there is an ultrafilter \mathfrak{F}_1 in R such that $\mathfrak{F}_1 \in \beta^{\circ}(R)$ and $\mathfrak{F} \subset \overline{\mathfrak{F}}_1$. Since $\mathfrak{F} \subset \overline{\mathfrak{F}}_1$, for any closed set F in R, $\alpha(R) - \alpha(F) \ni \mathfrak{F}_1$ implies $\alpha(R) - \alpha(F) \ni \mathfrak{F}_2$, and hence we can say

that in the space $\alpha(R)$ each neighborhood of \mathfrak{F}_1 is also a neighborhood of \mathfrak{F} . Hence \mathfrak{F}_1 is a cluster point of F, and therefore $\beta(R)$ is compact.

It is almost evident that the subset $\widetilde{R}^c = \widetilde{R}$ of $\beta(R)$ is dense and homeomorphic with R, Q.E.D.

By using Theorem 3, we can prove the

Theorem 4. A real valued bounded continuous function f defined on R is extendable to a real valued bounded continuous function f_{β} defined on $\beta(R)$ such that

$$f_{\mathfrak{g}}(\overline{\mathfrak{H}}) = f^*(\mathfrak{H}).$$

Finally we give the

Theorem 5. In order that $\beta(R)$ be normal, it is necessary and sufficient that R be normal.

Proof. Suppose that $\beta(R)$ is normal, and let F_1 and F_2 be two disjoint closed sets in R. Then, the sets $F_{\beta}^1 = \beta(R) \cap \alpha(F_1)$ and $F_{\beta}^2 = \beta(R) \cap \alpha(F_2)$ are disjoint closed sets in $\beta(R)$. Hence there exists a continuous function f_{β} defined on $\beta(R)$ such that $f_{\beta} = 0$ on F_{β}^1 , $f_{\beta} = 1$ on F_{β}^2 and $0 < f_{\beta} < 1$ on $\beta(R)$. If we define a function f by the equality $f(x) = f_{\beta}(\overline{\mathfrak{F}}_x)$, it is clear that f is continuous and 0 < f < 1 on R. Moreover, if $x \in F_1$, then $\overline{\mathfrak{F}}_x \in \beta(R) \cap \alpha(F_1)$ and hence $f(x) = f_{\beta}(\overline{\mathfrak{F}}_x) = 0$. Similarly, if $x \in F_2$, then f(x) = 1. This shows that R is normal.

Conversely, let R be normal and let \mathfrak{M}_1 and \mathfrak{M}_2 be two distinct points in $\beta(R)$. Then, as \mathfrak{M}_1 and \mathfrak{M}_2 are maximal dual ideals in \mathfrak{L} , there exist disjoint closed sets F_1 and F_2 such that $F_1 \in \mathfrak{M}_1$ and $F_2 \in \mathfrak{M}_2$. Since R is normal, there exists a continuous function f such that f(x) = 0 on F_1 , f(x) = 1 on F_2 and 0 < f < 1 on R. Let f_β be the function extended from f by Theorems 1 and 4, then it is clear that $f_\beta(\mathfrak{M}_1) = 0$ since $F_1 \in \mathfrak{M}_1$, and similarly $f_\beta(\mathfrak{M}_2) = 1$. This shows that $\beta(R)$ is a Hausdorff space, and hence, as $\beta(R)$ is compact, $\beta(R)$ is normal, Q.E.D.

§4. Compactification of a completely regular space. In this section, we suppose first that R is a complete Hausdorff space.¹³ By considering the remark in §1, it is easily seen that, for two points

¹⁾ We means by a complete Hausdorff space the Hausdorff space such that, for any two distinct points x and y, there exists a real valued bounded continuous function taking different values at x and y.

TAKESHI INAGAKI and MASAHIRO SUGAWARA

 \mathfrak{F}_1 and \mathfrak{F}_2 , the following propositions are equivalent:

- (a). There is no real valued continuous function f^* defined on R^* such that $f^*(\mathfrak{F}_1) = 0$, $f^*(\mathfrak{F}_2) = 1$ and $0 \leqslant f^* \leqslant 1$ on R^* .
- (β). Any real valued bounded continuous function f^* defined on R^* takes the same value at \mathfrak{F}_1 and \mathfrak{F}_2 .

If two points \mathfrak{F}_1 and \mathfrak{F}_2 satisfies the proposition, we write $\mathfrak{F}_1 \approx \mathfrak{F}_2$. Evidently the relation \approx is an equivalence relation, hence the relation divides R^* into disjoint classes of equivalent points.

We introduce the notations:

r(R) = the totality of all classes of equivalent points;

 $\{\mathfrak{F}\}\ =\$ the class which contains \mathfrak{F} .

Moreover, we define the mapping ϕ_2 of R^* on r(R) such that

$$\phi_2(\mathfrak{F}) = \{\mathfrak{F}\}.$$

We shall give the

92

Lemma 3. If $\overline{\mathfrak{F}}_1 \subset \overline{\mathfrak{F}}_2$, then $f^*(\mathfrak{F}_1) = f^*(\mathfrak{F}_2)$, for every real valued bounded continuous function f^* on R^* .

Proof. Let $f(x) = f^*(\mathfrak{F}_x)$, then f is a real valued bounded continuous function and equality (1) in §1 holds. On the other hand, since $\overline{\mathfrak{F}}_1 \subset \overline{\mathfrak{F}}_2$, it follows that $\inf_{A \in \mathfrak{F}_1} \sup_{x \in \overline{A}} f(x) \geqslant \inf_{A \in \mathfrak{F}_2} \sup_{x \in \overline{A}} f(x)$ and $\sup_{A \in \mathfrak{F}_1} \inf_{x \in \overline{A}} \sup_{A \in \mathfrak{F}_2} \inf_{x \in \overline{A}} f(x) = \lim_{A \in \mathfrak{F}_1} \inf_{x \in \overline{A}} \inf_{A \in \mathfrak{F}_2} \inf_{x \in \overline{A}} f(x)$. Therefore, it is clear that $f^*(\mathfrak{F}_1) = f^*(\mathfrak{F}_2)$, Q.E.D.

From the lemma, it is not difficult to see that:

- (a). $[\mathfrak{F}] \subset {\mathfrak{F}};$
- (b). $\{\mathfrak{F}\}\$ contains a point \mathfrak{F}_1 such that $[\mathfrak{F}_1] \in \beta^{\circ}(R)$.

Since R is a complete Hausdorff space, for two distinct points x and y, there exists a continuous function f such that f(x) = 0, f(y) = 1 and $0 \le f \le 1$ on R. Then, by the equality (1) in §1, $f^*(\mathfrak{F}_x) = 0$, $f^*(\mathfrak{F}_y) = 1$ and $0 \le f^* \le 1$. Thus we have

(c). If $x \neq y$, then $\phi_2(\mathfrak{F}_x) \neq \phi_2(\mathfrak{F}_y)$.

Hence, if we put

$$\widetilde{r}(R) = \phi_2(\widetilde{R}),$$

then ϕ_2 gives an one-to-one correspondence between \widetilde{R} and $\widetilde{r}(R)$. Moreover, if we take the set:

http://escholarship.lib.okayama-u.ac.jp/mjou/vol2/iss1/8

8

$${F_{\gamma} \mid \phi_2^{-1}(F_{\gamma}) \text{ is closed in } R^*},$$

as the totality of all closed sets in r(R), then r(R) is a T-space and ϕ_2 is a continuous mapping.

Thus we can prove more precisely the

Thorem 6. The space $\gamma(R)$ is a compact Hausdorff space and contains a dense subset $\widetilde{\gamma}(R)$. Moreover, a real valued bounded continuous function f defined on R can be extended to the function f_{γ} defined on $\gamma(R)$ such that

$$f_{\gamma}(\{\mathfrak{F}\}) = f^{*}(\mathfrak{F}).$$

Proof. Since ϕ_2 is continuous, it follows that r(R) is compact.

Let $\{\mathfrak{F}_1\}$ and $\{\mathfrak{F}_2\}$ be two distinct points in r(R). Then $\mathfrak{F}_1 \not\approx \mathfrak{F}_2$ and, therefore, there exists a continuous function f^* defined on R^* such that $f^*(\mathfrak{F}_1) = 0$, $f^*(\mathfrak{F}_2) = 1$ and $0 \leqslant f^* \leqslant 1$ on R^* . Hence, if we put $U_1^* = f^{*-1}([0,\frac{1}{2}))$ and $U_2^* = f^{*-1}((\frac{1}{2},1])$, then U_1^* and U_2^* are disjoint open sets in R^* . Moreover, it is evident, from the definition of the relation \approx , that if $\mathfrak{F} \in U_i^*$ then $\{\mathfrak{F}_i\} \in U_i^*$, from which it is easily seen that $U_i^* = \phi_2^{-1}(\phi_2(U_i^*))$, (i = 1, 2). Hence, it follows that $\phi_2(U_1^*)$ and $\phi_2(U_2^*)$ are disjoint open sets in r(R) such that $\{\mathfrak{F}_1\} \in \phi_2(U_1^*)$ and $\{\mathfrak{F}_2\} \in \phi_2(U_2^*)$. Thus r(R) is a Hausdorff space.

To prove that f_{γ} is the function extended from f, it is sufficient to verify that f_{γ} is continuous. Now, let $\{\mathfrak{F}\}$ be a point of r(R), $t = f_{\gamma}(\{\mathfrak{F}\})$, and let U(t) be an open set containing t. Then, since $f_{\gamma}(\{\mathfrak{F}\}) = f^{*}(\mathfrak{F})$, the set $U^{*} = f^{*-1}(U(t))$ is open in R^{*} which contains \mathfrak{F} . As it is easily seen, from $U^{*} = f^{*-1}(U(t))$ and the definition of f_{γ} , that $f_{\gamma}^{-1}(U(t)) = \phi_{2}(f^{*-1}(U(t))) = \phi_{2}(U^{*})$. As we proved above, $\phi_{2}(U^{*})$ is open in r(R), which contains $\{\mathfrak{F}\}$, thus f_{γ} is continuous, Q.E.D.

Remark. In the same manner as we used above, we can define two spaces $r_1(R)$ and $r^{\circ}(R)$ from R° and $\beta^{\circ}(R)$ respectively. That is, if ϕ_3 and ϕ_4 are the mapping of R° on $r_1(R)$ and that of $\beta^{\circ}(R)$ on $r^{\circ}(R)$ respectively, then

$$\begin{array}{lll} \phi_{3}([\mathfrak{F}]) & = & \phi_{1}(\phi_{2}(\phi_{1}^{-1}([\mathfrak{F}]))), & [\mathfrak{F}] \in R^{\circ}; \\ \phi_{4}([\mathfrak{F}]) & = & \phi_{1}(\phi_{2}(\phi_{1}^{-1}([\mathfrak{F}]))), & [\mathfrak{F}] \in \beta^{\circ}(\mathfrak{F}). \end{array}$$

Therefore, if we denote by ψ_3 and ψ_4 the mapping of $\tau(R)$ on $\tau_1(R)$ and that of $\tau(R)$ on $\tau^{\circ}(R)$ respectively, such that $\psi_3(\{\S\}) = \phi_1(\{\S\})$,

 $\psi_{i}(\{\mathfrak{F}\}) = \phi_{i}(\{\mathfrak{F}\})$, then by considering the properties (a) and (b), we can prove that r(R), $r_{i}(R)$ and $r^{\circ}(R)$ are homeomorphic with each other.

The space $\widetilde{r}(R)$ in the Theorem 6 is a continuous image of \widetilde{R} , but not necessarily homeomorphic with \widetilde{R} . As the condition of that $\widetilde{r}(R)$ and \widetilde{R} be homeomorphic with each other, we have the

Lemma 4. In order that $\widetilde{r}(R)$ and \widetilde{R} be homeomorphic, it is necessary and sufficient that R be a completely regular space.

Proof. The necessity is evident.

Conversely, suppose that R be completely regular and we shall show that the mapping ϕ_2^{-1} of $\widetilde{\tau}(R)$ on \widetilde{R} is continuous.

Let F be a closed set of R and $\{\mathfrak{F}_x\}$ be a point of $\widetilde{r}(R) - \phi_2(F^* \cap \widetilde{R})$. Then x does not belong to F, and, since R is completely regular, there exists a real valued continuous function defined on R such that f(x) = 0, f(y) = 1 for every point $y \in F$ and $0 \leqslant f \leqslant 1$. Let f_γ be the function extended from f by the Theorems 1 and 6, then it is clear that $f_\gamma(\{\mathfrak{F}_x\}) = 0$ and $f_\gamma(\{\mathfrak{F}_x\}) = 1$ for every point $\{\mathfrak{F}_x\} \in \phi_2(F^*)$. This implies that the open set $f_\gamma^{-1}([0,\frac{1}{2}))$ of r(R) contains $\{\mathfrak{F}_x\}$ and does not intersect with $\phi_2(F^*)$, and hence the open set $f_\gamma^{-1}([0,\frac{1}{2})) \cap \widetilde{r}(R)$ of $\widetilde{r}(R)$ contains $\{\mathfrak{F}_x\}$ and is contained in $\widetilde{r}(R) - \phi_2(F^* \cap \widetilde{R})$. This shows that $\widetilde{r}(R) - \phi_2(F^* \cap \widetilde{R})$ is open in $\widetilde{r}(R)$ and so $\phi_2(F^* \cap \widetilde{R})$ is closed in $\widetilde{r}(R)$, Q.E.D.

Thus, as we know, there is the well known

Čech's Theorem. For a completely regular space R, there is a space W satisfying the following conditions:

- (1) W is a compact Hausdorff space;
- (2) $R \subset W$ and $\overline{R} = W$;
- (3) Any real valued bounded continuous function defined on R can be extended on W.

Moreover, the spaces which satisfies the three conditions given above are homeomorphic with each other.

In this place, we will give a proof of this theorem for the purpose to make clear the structure of the space W.

Proof. The space r(R) is certainly a space satisfying the conditions (1), (2) and (3), thinking $\tilde{r}(R) = \tilde{R}$ be R. Hence the existence is true.

Let W be a space satisfying the conditions (1), (2) and (3), and we will prove that W and r(R) are homeomorphic, by dividing the proof into seven parts.

- (a). Let M be a subset of W. Then, by using the condition (1), it is not difficult to see that an ultrafilter $\mathfrak{F}(M)$ in M converges to only one point w which belongs to \overline{M} , and conversely, if $w \in \overline{M}$, then there exists an ultrafilter $\mathfrak{F}(M)$ in M such that $\mathfrak{F}(M)$ converges to w.
- (b). Let g(w) be a real valued bounded continuous function defined on W. Let \mathfrak{F} be an ultrafilter in R such that \mathfrak{F} converges to a point w and let g(w) = t. Since g(w) is continuous, for every neighborhood U(t) of t there exists a neighborhood V(w) such that $U(t) \supset g(V(w))$, and from which we have:

$$g(w) = \inf_{A \in \mathcal{F}} \sup_{x \in A} g(x) = \sup_{A \in \mathcal{F}} \inf_{x \in A} g(x).$$

If we define a function f such that

$$f(x) = g(x), x \in R \subset W$$

then f(x) is continuous and the function f^* defined by

$$f^*(\mathfrak{F}) = \inf_{A \in \mathfrak{F}} \sup_{x \in A} f(x) = \sup_{A \in \mathfrak{F}} \inf_{x \in A} f(x)$$

is the function obtained in the Theorem 1. Hence it is evident that if \Re converges to w, then

$$g(w) = f^*(\mathfrak{F}).$$

Conversely, let f^* be a continuous function defined on R^* . Then the function f defined by $f(x) = f^*(\mathfrak{F}_x)$ is continuous on R. On the other hand, by the condition (3), there exists a continuous function g(w) defined on W such that f(x) = g(x) for $x \in R$. Since g(w) is continuous, from what we have proved above, we have

$$g(w) = f^*(\mathfrak{F}),$$

for any ultrafilter \mathfrak{F} in R, which converges to w.

(c). For a point $w \in W$, if we denote by $\{\mathfrak{F}\}_w$ the family of all ultrafilters \mathfrak{F} in R which converges to w in W, then R^* is divided into disjoint classes $\{\mathfrak{F}\}_w$. From (b), it follows that $\{\mathfrak{F}\}_w \subset \{\mathfrak{F}\}$.

TAKESHI INAGAKI and MASA IRO SUGAWARA

- (d). Let w_1 and w_2 be two distinct points of W, then there exists a real valued bounded continuous function g(w) defined on W such that $g(w_1) \neq g(w_2)$. On the other hand, by (a) and the condition (2), there exist two ultrafilters \mathfrak{F}_1 and \mathfrak{F}_2 in R such that \mathfrak{F}_1 converges to w_1 and \mathfrak{F}_2 converges to w_2 . Therefore, by (b), it follows that $f^*(\mathfrak{F}_1) \neq f^*(\mathfrak{F}_2)$, from which $\mathfrak{F}_1 \not\approx \mathfrak{F}_2$. This shows that $\{\mathfrak{F}\} \subset \{\mathfrak{F}\}_w$ for every point $w \in W$. Then we have, for $\{\mathfrak{F}\}$ there exists a point $w \in W$ such that $\{\mathfrak{F}\} = \{\mathfrak{F}\}_w$.
- (e). By (d), we can define the function ϕ_5 of W on $\gamma(R)$ such that

$$\phi_{\mathfrak{s}}(w) = \{\mathfrak{F}\}_{v}.$$

It is evident that ϕ_3 is one-to-one.

96

(f). We shall prove that ϕ_5 is continuous. Let $\phi_5(w_0) = \{\mathfrak{F}_0\}$ and U_γ be an open set of r(R) containing $\{\mathfrak{F}_0\}$. By the normality of r(R), there exists a real valued continuous function f_γ defined on r(R) such that $f_\gamma(\{\mathfrak{F}_0\}) = 0$, $f_\gamma(\{\mathfrak{F}\}) = 1$ on $r(R) - U_\gamma$ and $0 \leqslant f_\gamma \leqslant 1$ on r(R). If we define the function f^* on R^* such that $f^*(\mathfrak{F}) = f_\gamma(\{\mathfrak{F}\})$, then f^* is a real valued bounded continuous function on R^* , and, by (b), we get a continuous function g defined on W.

We shall show that the open set $V = g^{-1}([0, \frac{1}{2}))$ of W contains w_0 and $\phi_5(V) \subset U_\gamma$. By (b), $g(w_0) = f^*(\mathfrak{F}_0) = f_\gamma(\{\mathfrak{F}_0\}) = 0$ and so V contains w_0 . Let w be a point of V, then $f_\gamma(\phi_5(w)) = f^*(\phi_2^{-1}(\phi_5(w))) = g(w) \in [0, \frac{1}{2})$ and hence $\phi_5(w)$ does not belong to $r(R) - U_\gamma$ and this shows that $\phi_5(w) \in U_\gamma$. Thus the proof of the continuity of ϕ_5 is established.

(g). Since W is compact and r(R) is a Hausdorff space, from (e) and (f), the mapping ϕ_3 is a homeomorphism. Thus the theorem is completely proved, Q.E.D.

Remark. Finally, if r(R) is homeomorphic with $\beta(R)$, then $\beta(R)$ is normal. Then, by Theorem 5, the space R is normal.

Conversely, let R be normal and let $\overline{\mathfrak{F}}_1$ and $\overline{\mathfrak{F}}_2$ be two distinct points of $\beta(R)$. Since $\overline{\mathfrak{F}}_1$ and $\overline{\mathfrak{F}}_2$ are maximal dual ideals in \mathfrak{L} , there exists two distinct closed sets F_1 and F_2 in R such that $F_1 \in \overline{\mathfrak{F}}_1$, $F_1 \in \overline{\mathfrak{F}}_2$, $F_2 \in \overline{\mathfrak{F}}_1$ and $F_2 \in \overline{\mathfrak{F}}_2$. Hence it is evident that $\beta(R) - \alpha(F_1)$ and $\beta(R) - \alpha(F_2)$ are disjoint open sets in $\beta(R)$ and the former contains \mathfrak{F}_2 , the latter \mathfrak{F}_1 . Then $\beta(R)$ is a Hausdorff space. Hence $\beta(R)$

http://escholarship.lib.okayama-u.ac.jp/mjou/vol2/iss1/8

12

COMPACTIFICATION OF TOPOLOGICAL SPACES

97

satisfies the three conditions (1), (2) and (3) given in the Čech's Theorem, and, therefore, r(R) is homeomorphic with $\beta(R)$.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received May 26, 1952)