Mathematical Journal of Okayama University

Volume 39, Issue 1

1997

Article 9

JANUARY 1997

On Rings of Certain Type Associated With Simple Ring-extensions

Mitsuo Kanemitsu[†] Susumu Oda* Ken-Ichi Yoshida[‡]

Copyright ©1997 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Matsusaka Commercial High School

[†]Aichi University

[‡]Okayama University

Math. J. Okayama Univ. 39 (1997), 81-87

ON RINGS OF CERTAIN TYPE ASSOCIATED WITH SIMPLE RING-EXTENSIONS

SUSUMU ODA, MITSUO KANEMITSU and KEN-ICHI YOSHIDA

Let R be a Noetherian domain (which is commutative and has a unit), let R[X] be a polynomial ring, let α be an element of an algebraic extension field of the quotient field K of R and let $\pi: R[X] \to R[\alpha]$ be the R-algebra homomorphism sending X to α . Let $\varphi_{\alpha}(X)$ be the monic minimal polynomial of α over K with deg $\varphi_{\alpha}(X) = d$ and write $\varphi_{\alpha}(X) = d$ $X^d + \eta_1 X^{d-1} + \cdots + \eta_d$. Then $\eta_i \in K$ $(1 \le i \le d)$ are uniquely determined by α . Put $d = [K(\alpha):K]$, $I_{\eta_i} := R:_R \eta_i$ and $I_{[\alpha]} := \bigcap_{i=1}^d I_{\eta_i}$. If $\operatorname{Ker}(\pi) = \prod_{i=1}^d I_{\eta_i}$ $I_{[\alpha]}\varphi_{\alpha}(X)R[X]$, we say that α is anti-integral over R (cf. [3]). Put $J_{[\alpha]}:=$ $I_{[\alpha]}(1,\eta_1,\ldots,\eta_d)$. Then $J_{[\alpha]}=\mathsf{c}(I_{[\alpha]}\varphi_\alpha(X)),$ where $\mathsf{c}(\)$ denotes the ideal generated by the coefficients of the polynomials in (), that is, the content ideal of (). If $J_{[\alpha]} \not\subseteq p$ for all $p \in \mathrm{Dp}_1(R) := \{ p \in \mathrm{Spec}(R) \mid \mathrm{depth} R_p = 1 \}$, the element α is called a super-primitive element over R. A super-primitive element over R is anti-integral over R (cf. [3, Theorem 1.12]). It is also known that any algebraic element over a Krull domain R is super-primitive over R (cf. [3, Theorem 1.13]), and hence α is anti-integral over R. We also note here that $I_{[\alpha]} = R \Leftrightarrow R[\alpha]$ is integral over R and that $J_{[\alpha]} = R \Leftrightarrow$ $R[\alpha]$ is flat over R, provided that α is anti-integral over R.

Assume that α is an anti-integral element of degree $d \geq 2$ over R. We have seen in [1] that $R[\alpha] \cap R[\alpha^{-1}] = R \oplus I_{[\alpha]}\zeta_1 \oplus \cdots \oplus I_{[\alpha]}\zeta_{d-1}$ as an R-module, where $\zeta_i := \alpha^i + \eta_1 \alpha^{i-1} + \cdots + \eta_i$ $(1 \leq i \leq d)$. Note that $\zeta_d = \varphi_\alpha(\alpha) = 0$. Put $\zeta_0 := 1$ and $\eta_0 := 1$ for convenience. It is easy to see that $\alpha\zeta_i = \zeta_{i+1} - \eta_{i+1}$ $(0 \leq i \leq d-1)$ by definition. Note that $R[\alpha] \cap R[\alpha^{-1}]$ and $R[\alpha]$ are birational and their quotient fields are equal to $K(\alpha)$. Let H be an ideal of R and put $C_H := R + H\zeta_1 + \cdots + H\zeta_{d-1}$, which is an R-submodule in $K(\alpha) = K \oplus K\zeta_1 \oplus \cdots \oplus K\zeta_{d-1}$. Our objective of this paper is to investigate when C_H forms a subring of $K(\alpha)$ (R-algebra).

Throughout this paper, we use the above notation and conventions unless otherwise specified. Our general reference for unexplained terminology is [2].

We start with the following lemma, which is obviousely seen.

Lemma 1. Assume that α is an anti-integral element of degree d

over R. Let H denote an ideal of R. Then C_H forms a subring of $K(\alpha)$ if and only if $H^2\zeta_i\zeta_j\subseteq C_H$ for all $i,j\in\{1,2,\ldots,d-1\}$ with $j\leq i$.

Proposition 2. Let H denote an ideal of R. Assume that α is an anti-integral element over R of degree d=2. Then C_H forms a subring of $K(\alpha)$ if and only if $H^2\eta_1 \subseteq H$ and $H^2\eta_2 \subseteq R$.

Proof. Note $\zeta_1 = \alpha + \eta_1$ and hence $\zeta_1^2 = \zeta_1(\alpha + \eta_1) = \alpha\zeta_1 + \eta_1\zeta_1 = \zeta_2 - \eta_2 + \eta_1\zeta_1 = \eta_1\zeta_1 - \eta_2$ (here $\zeta_2 = 0$). Assume that C_H is a subring of $K(\alpha)$. Then $H^2\zeta_1^2 \in C_H$ yields that for any $h \in H$, $h^2\eta_1\zeta_1 - h^2\eta_2 \in R + H\zeta_1 \subseteq K \oplus K\zeta_1$. Consequently, $H^2\eta_1 \subseteq H$ and $H^2\eta_2 \subseteq R$. Conversely, take $a + h_1\zeta_1, b + h_2\zeta_1 \in C_H$ with $h_1, h_2 \in H$ and $a, b \in R$. Then $(a + h_1\zeta_1)(b + h_2\zeta_1) = ab + (ah_2 + bh_1)\zeta_1 + h_1h_2\zeta_1^2 \in R + H\zeta_1$ because $h_1h_2\zeta_1^2 \in H^2\zeta_1^2 = H^2(\eta_1\zeta_1 - \eta_2) \subseteq R + H\zeta_1 = C_H$.

We consider the case d=3, and compute $\zeta_i\zeta_j$ by a definite calculation.

Example 3. Assume that α is an anti-integral element of degree d=3 over R. Note $\zeta_1=\alpha+\eta_1,\ \zeta_2=\alpha\zeta_1+\eta_2$ and $\zeta_3=\alpha\zeta_2+\eta_3$. Thus

$$\begin{split} &\zeta_1^2 = \zeta_1(\alpha + \eta_1) = \alpha\zeta_1 + \eta_1\zeta_1 = \zeta_2 - \eta_2 + \eta_1\zeta_1, \\ &\zeta_2\zeta_1 = \zeta_2(\alpha + \eta_1) = \alpha\zeta_2 + \zeta_2\eta_1 = \zeta_3 - \eta_3 + \eta_1\zeta_2 = -\eta_3 + \eta_1\zeta_2 \quad \text{and} \\ &\zeta_2^2 = \zeta_2(\alpha\zeta_1 + \eta_2) = (\alpha\zeta_2)\zeta_1 + \zeta_2\eta_2 = (\zeta_3 - \eta_3)\zeta_1 + \zeta_2\eta_2 = -\eta_3\zeta_1 + \eta_2\zeta_2 \\ \text{because } \zeta_3 = 0. \end{split}$$

Assume that C_H is a subring of $K(\alpha)$. Then we have $H^2\eta_1 \subseteq H$, $H^2\eta_2 \subseteq H$ and $H^2\eta_3 \subseteq H$ since $\zeta_1^2, \zeta_2\zeta_1$ and ζ_2^2 are in C_H .

Conversely, if $H^2\eta_1 \subseteq H$, $H^2\eta_2 \subseteq H$ and $H^2\eta_3 \subseteq H$, then ζ_1^2 , $\zeta_2\zeta_1$ and ζ_2^2 are in C_H . So we conclude that C_H is a subring of $k(\alpha)$ by Lemma 1.

Lemma 4. Assume that α is an anti-integral element of dgree $d(\geq 3)$ over R and that $1 \leq j \leq i < d$.

(i) If i + j < d, then

(*)
$$\zeta_{i}\zeta_{j} = \zeta_{i+j} - \sum_{t=1}^{j} \eta_{i+t}\zeta_{j-t} + \sum_{s=0}^{j-1} \eta_{j-s}\zeta_{i+s}.$$

(ii) If $i + j \ge d$, then

$$(**) \zeta_{i}\zeta_{j} = -\sum_{t=1}^{d-i} \eta_{i+t}\zeta_{j-t} + \sum_{s=0}^{d-i-1} \eta_{j-s}\zeta_{i+s}.$$

(Note that d-i > 0 and $d-i-1 \ge 0$ because $1 \le j \le i < d$.)

Proof. Note first that $\eta_0 := 1$, $\zeta_0 := 1$, $\zeta_d = 0$ and $\zeta_{i+1} = \alpha \zeta_i + \eta_{i+1}$. Now we compute $\zeta_i \zeta_j$ as follows:

(i) Repeat the above process, we have

$$\zeta_i \zeta_j = \zeta_{i+j} \zeta_0 - \sum_{t=1}^j \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s},$$

that is,

$$\zeta_i \zeta_j = \zeta_{i+j} - \sum_{t=1}^j \eta_{i+t} \zeta_{j-t} + \sum_{s=0}^{j-1} \eta_{j-s} \zeta_{i+s}.$$

(ii) Put $\ell := i + j - d$. Then $j \le i < d$ yields $\ell < d - 1$ and $j - \ell \ge 1$. Thus continuing the above process yields

$$\zeta_i\zeta_j=\zeta_d\zeta_\ell-\sum_{t=1}^{j-\ell}\eta_{i+t}\zeta_{j-t}+\sum_{s=0}^{j-\ell-1}\eta_{j-s}\zeta_{i+s},$$

that is,

$$(**) \zeta_{i}\zeta_{j} = -\sum_{t=1}^{d-i} \eta_{i+t}\zeta_{j-t} + \sum_{s=0}^{d-i-1} \eta_{j-s}\zeta_{i+s}.$$

Remark 5. Assume that α is an anti-integral element of dgree $d(\geq 3)$ over R and that $1 \leq j \leq i < d$. For (i,j) with i+j < d, let $\Delta_1^{(j)} := \{ j-t \mid t=1,\ldots,j \}$ and $\Delta_1^{(i,j)} := \{ i+s \mid s=0,\ldots,j-1 \}$. For (i,j) with $i+j \geq d$, let $\Delta_2^{(j,i)} := \{ j-t \mid t=1,\ldots,d-i \}$ and $\Delta_2^{(i)} := \{ i+s \mid s=0,\ldots,d-i-1 \}$.

83

S. ODA, M. KANEMITSU and K. YOSHIDA

(i) If i + j < d, then $\Delta_1^{(i,j)} \cap \Delta_1^{(j)} = \emptyset$ because j - t < i + s, and $\bigcup_{i+i < d} (\Delta_1^{(i,j)} \cup \Delta_1^{(j)}) = \{0, 1, 2, \dots, d-1\}.$

(ii) Assume $i+j \geq d$. Then $\Delta_2^{(i)} \cap \Delta_2^{(j,i)} = \emptyset$ because j-t < i+s. Put $e_k := -1$ if $k \in \Delta_2^{(j,i)}$ and $e_k := 1$ if $k \in \Delta_2^{(i)}$. Then

$$(**) \zeta_i \zeta_j = \sum_{k \in \Delta_2^{(j,i)} \cup \Delta_2^{(i)}} e_k \eta_{i+j-k} \zeta_k.$$

Consider ζ_{d-1}^2 . Then we have

$$\begin{aligned} \zeta_{d-1}^2 &= \zeta_{d-1} (\alpha \zeta_{d-2} + \eta_{d-1}) \\ &= \alpha \zeta_{d-1} \zeta_{d-2} + \eta_{d-1} \zeta_{d-1} \\ &= (\zeta_d - \eta_d) \zeta_{d-2} + \eta_{d-1} \zeta_{d-1} \\ &= -\eta_d \zeta_{d-2} + \eta_{d-1} \zeta_{d-1}. \end{aligned}$$

Hence if $\zeta_{d-1}^2 \in C_H$, then $H^2 \eta_d \in H$.

Theorem 6. Assume that α is an anti-integral element of degree $d(\geq 3)$ over R. Let H be an ideal of R. Then $C_H := R + H\zeta_1 + \cdots + H\zeta_{d-1}$ is a subring of $K(\alpha)$ if and only if $H^2\eta_i \subseteq H$ for all i $(1 \leq i \leq d)$.

Proof. Our conclusion follows Lemmas 1 and 4 and Remark 5.

Corollary 7. Assume that α is an anti-integral element of degree $d(\geq 3)$ over R. Let H be an ideal of R. If C_H is a subring of $K(\alpha)$, then every element in $H\eta_i$ is integral over R for all i $(1 \leq i \leq d)$.

Proof. We have $H^2\eta_i\subseteq H$ for all i $(1\leq i\leq d)$ by Theorem 6. So $H\eta_i\subseteq H:_KH$. Since H is a finitely generated ideal, any element in $H:_KH$ is integral over R. Thus every element of $H\eta_i$ is integral over R for all i $(1\leq i\leq d)$.

Corollary 8. Assume that R is normal and that α is of degree $d(\geq 3)$ over R. Let H be an ideal of R. If C_H is a subring of $K(\alpha)$, then $H \subseteq I_{[\alpha]}$ and hence $C_H \subseteq R[\alpha] \cap R[\alpha^{-1}]$.

Proof. Since R is normal, the element α is anti-integral over R by [3]. We have $H\eta_i \subseteq H :_K H = R$ for all $i \ (1 \le i \le d)$, that is, $H \subseteq I_{[\alpha]}$.

84

Theorem 9. Let H be an ideal of R. Assume that α is an anti-integral element of degree $d(\geq 2)$ over R.

- (1) If C_H is a subring of $K(\alpha)$, then $H^2 \subseteq I_{[\alpha]}$.
- (2) Assume that grade(H) > 1. Then C_H is a subring of $K(\alpha)$ if and only if $\eta_i \in R$ for all i if and only if α is integral over R.
 - (3) If $I_{[\alpha]} \neq R$ and if C_H is a subring of $K(\alpha)$, then $grade(H) \leq 1$.
- (4) When H is an invertible ideal and $d \geq 3$, $H \subseteq I_{[\alpha]}$ if and only if C_H is a subring of $K(\alpha)$.
- *Proof.* (1) Assume that $d \geq 3$. Since C_H is a ring, we have $H^2\eta_i \subseteq H$ for all $(1 \leq i \leq d)$ by Theorem 6. Hence $H^2\eta_i \subseteq H \subseteq R$, which means that $H^2 \subseteq I_{\eta_i}$ for all $(1 \leq i \leq d)$. Thus $H^2 \subseteq I_{[\alpha]}$. Next assume that d = 2. Then Proposition 2 yields our conclusion.
- (2) Assume that C_H is a subring of $K(\alpha)$. Then $H^2 \subseteq I_{[\alpha]}$ by (1). Hence $1 < \operatorname{grade}(H) \le \operatorname{grade}(I_{[\alpha]})$, which means that $I_{[\alpha]} = R$ because $I_{[\alpha]}$ is a divisorial ideal of R. So we have $I_{\eta_i} = R$ for all i $(1 \le i \le d)$, that is, $\eta_i \in R$ for all i $(1 \le i \le d)$. Furthermore α is integral over R by [3]. Conversely, assume that α is integral over R. Then $I_{[\alpha]} = R$ (cf. [3]), and hence $\eta_i \in R$ for all $(1 \le i \le d)$. So if $d \ge 3$, $H^2\eta_i \subseteq H$ yields that C_H is a ring by Theorem 6. If d = 2, C_H is a ring by Proposition 2.
- (3) Our conclusion follows the result (2).
- (4) Since $d \geq 3$, C_H is a subring if and only if $H^2\eta_i \subseteq H$ for all $i \ (1 \leq i \leq d)$. Since H is invertible, $H^2\eta_i \subseteq H$ for all $i \ (1 \leq i \leq d)$ if and only if $H\eta_i \subseteq R$ for all $i \ (1 \leq i \leq d)$ if and only if $H \subseteq I_{[\alpha]}$.

Theorem 10. Assume that α is an anti-integral element of degree $d(\geq 2)$ over R. Let H be an ideal of R. If $H \subseteq I_{[\alpha]}$, then C_H is a subring of $K(\alpha)$.

Proof. The inclusion $H \subseteq I_{[\alpha]}$ yields that $H^2 \eta_i \subseteq H \subseteq R$ for all i $(1 \le i \le d)$. Hence C_H is a ring by Proposition 2 and Theorem 6.

Corollary 11. Assume that R is a locally factorial domain and that α is an element of degree $d(\geq 2)$. The collection $\Delta := \{C_H \mid H \text{ is an ideal of } R \text{ and } C_H \text{ is a subring of } K(\alpha)\}$ has the maximum member $C_{I_{[\alpha]}}(=R[\alpha] \cap R[\alpha^{-1}])$.

Proof. Note first that α is anti-integral over R because R is a Krull domain (cf. [3]). Take $C_H \in \Delta$. Then $H^2 \subseteq I_{[\alpha]}$ by Theorem 9(1). Since $I_{[\alpha]}$ is a divisorial ideal, we have $\operatorname{grade}(H) = \operatorname{grade}(H^2) = 1$. Since R is locally factorial, every non-zero ideal of grade one is invertible. So H is invertible. Hence $H \subseteq I_{[\alpha]}$ by Theorem 9(4).

Finally we close this paper by the following results concerned with the ring $R[\alpha] \cap R[\alpha^{-1}]$.

Proposition 12. Assume that α is an anti-integral element of degree d. If an element a in R is a non-zero-divisor on $R/I_{[\alpha]}$, then $R[a\alpha] \cap R[\alpha^{-1}] = R + I_{[\alpha]}(a\zeta_1) + \cdots + I_{[\alpha]}(a^{d-1}\zeta_{d-1})$.

Proof. We have only to show the inclusion (\subseteq) because $a^iI_{[\alpha]}\zeta_i\subseteq R[a\alpha]\cap R[\alpha^{-1}]$. Take an element $\beta\in R[a\alpha]\cap R[\alpha^{-1}]$ and write $\beta=x_n(a\alpha)^n+\dots+x_1(a\alpha)+x_0=y_0+y_1(\alpha^{-1})+\dots+y_m(\alpha^{-1})^m$ with $x_i,y_j\in R$. Then we have $\alpha^m\beta=x_na^n\alpha^{n+m}+\dots+x_0\alpha^m=y_0\alpha^m+y_1\alpha^{m-1}+\dots+y_m$. Put $f(X):=x_na^nX^{n+m}+\dots+x_0X^m-(y_0X^m+y_1X^{m-1}+\dots+y_m)\in Ker(\pi)$, where $\pi\colon R[X]\to R[\alpha]$ denotes the canonical R-homomorphism. Since α is an anti-integral element over R, $Ker(\pi)=I_{[\alpha]}\varphi_\alpha(X)R[X]$. Hence $x_na^n\in I_{[\alpha]}$. Since a is a non-zero-divisor of $R/I_{[\alpha]}$, we have $x_n\in I_{[\alpha]}$. Put $\beta_*(X):=x_na^nX^n+\dots+x_1aX+x_0$. Since $x_n\varphi_\alpha(X)\in R[X]$, considering $\deg(\beta_*(X)-x_n\varphi_\alpha(X)X^{n-d})< n$ if $n\geq d$, we can use the induction on n and assume that n< d. So considering $\beta-x_na^n\zeta_n$ instead of β , we an conclude that $\beta\in R+I_{[\alpha]}(a\zeta_1)+\dots+I_{[\alpha]}(a^{d-1}\zeta_{d-1})$ by induction on n.

Proposition 13. Assume that α is an anti-integral element of degree d over R. If an element a in R is a non-zero-divisor on $R/I_{[\alpha^{-1}]}$, then $R[a^{-1}\alpha] \cap R[\alpha^{-1}] = R[\alpha] \cap R[\alpha^{-1}]$.

Proof. We have only to show the inclusion (\subseteq). Take an element $\beta \in R[a^{-1}\alpha] \cap R[\alpha^{-1}]$ and write $\beta = x_n(a^{-1}\alpha)^n + \dots + x_1(a^{-1}\alpha) + x_0 = y_0 + y_1(\alpha^{-1}) + \dots + y_m(\alpha^{-1})^m$ with $x_i, y_j \in R$. Then $a^n\beta = x_n\alpha^n + \dots + a^nx_0 = a^ny_0 + a^ny_1(\alpha^{-1}) + \dots + a^ny_m(\alpha^{-1})^m$. Since α is anti-integral over R, so is α^{-1} (cf. [1]). Putting $f(X) := a^ny_mX^{m+n} + \dots + a^nX^n - (a^nx_0X^n + \dots + x_n)$, we have $f(\alpha^{-1}) = 0$ and hence $f(X) \in I_{[\alpha^{-1}]}\varphi_{\alpha^{-1}}(X)$. Thus we have $a^ny_m \in I_{[\alpha^{-1}]}$. Since a is a non-zero-divisor on $R/I_{[\alpha^{-1}]}$, we have $y_m \in I_{[\alpha^{-1}]}$. Hence $y_m\varphi_{\alpha^{-1}}(X) \in R[X]$. Put $\beta_*(X) := y_0 + y_1X + \dots + y_mX^m$. Considering $\deg(\beta_*(X) - y_m\varphi_{\alpha^{-1}}(X)) < m$, we can assume that m < d by induction. Let $\varphi_{\alpha^{-1}}(X) := X^d + \eta_1'X^{d-1} + \dots + \eta_d'$ be the monic minimal

ON RINGS OF CERTAIN TYPE

polynomial of α^{-1} over K and let $\zeta_i' := (\alpha^{-1})^i + \eta_1'(\alpha^{-1})^{i-1} + \cdots + \eta_i'$ $(1 \leq i \leq d)$. Considering $\beta - y_m \zeta_m'$ instead of β , we obtain that $\beta - y_m \zeta_m' \in R + I_{[\alpha^{-1}]}\zeta_1' + \cdots + I_{[\alpha^{-1}]}\zeta_{d-1}' = R[\alpha^{-1}] \cap R[\alpha]$ (cf. [1]) by induction on m. Thus $\beta \in R[\alpha^{-1}] \cap R[\alpha]$. Therefore we have $R[a^{-1}\alpha] \cap R[\alpha^{-1}] \subseteq R[\alpha] \cap R[\alpha^{-1}]$.

REFERENCES

- [1] M. KANEMITSU and K. YOSHIDA: Some properties of extensions $R[\alpha] \cap R[\alpha^{-1}]$ over Noetherian domains R, Comm. Algebra 23 (1995), 4501–4507.
- [2] H. MATSUMURA: Commutative Algebra (2nd ed.), Benjamin, New York, 1980.
- [3] S. Oda, J. Sato and K. Yoshida: High degree anti-integral extensions of Noetherian domains, Osaka J. Math. 30 (1993), 119-135.

Susumu Oda Matsusaka Commercial High School Toyohara, Matsusaka, Mie 515-0205 Japan

E-mail: oda@po.inetmie.or.jp

MITSUO KANEMITSU
DEPARTMENT OF MATH.
AICHI UNIVERSITY OF EDUCATION
HIROSAWA, IGAYA, KARIYA 448-8542
JAPAN

E-mail: mkanemit@auecc.aichi-edu.ac.jp

KEN-ICHI YOSHIDA
DEPARTMENT OF APPLIED MATH.
OKAYAMA UNIVERSITY OF SCIENCE
RIDAI-CHO, OKAYAMA 700-0005
JAPAN

E-mail: yoshida@galaxy.xmath.ous.ac.jp

(Received June 11, 1998)