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the generalized zeta function due to Erdélyi Φ(x; z; a) together with related sums, integral repre-
sentations, generating relations and N-fractional calculus. A number of (known and new) results
shown to follow as special cases of our theorems.



Math. J. Okayama Univ. 49 (2007), 37–52

SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES

ASSOCIATED WITH THE GENERALIZED ZETA

FUNCTION AND THEIR N-FRACTIONAL CALCULUS

Maged G. BIN-SAAD

Abstract. An attempt is made here to introduce and study a pair of
double power series associated with the generalized zeta function due to
Erdélyi Φ(x, z, a) together with related sums, integral representations,
generating relations and N -fractional calculus. A number of (known and
new) results shown to follow as special cases of our theorems.

1. Introduction

An interesting definition of the zeta function, due to Erdélyi [1, p.27 (1)],
is recalled here, which is of the form:

(1.1) Φ(y, z, a) =

∞
∑

n=0

yn

(a + n)z
, |y| < 1, a 6= 0,−1,−2, . . . .

This is expressed as the integral form

(1.2) Φ(y, z, a) =
1

Γ(z)

∫

∞

0
tz−1e−at(1 − ye−t)−1 dt,

for Re a > 0, and either |y| ≤ 1, y 6= 1, Re z > 0 or y = 1, Re z > 1,
where Γ(z) denotes the gamma function. This function is continued to a
meromorphic function over the whole z-plane ([1, p.27, 1.11]). The Riemann
zeta function ζ(s) and the Hurwitz zeta function ζ(s, a) are special cases of
(1.1) ([1, p.32]):

Φ(1, z, 1) = ζ(z) =
∞
∑

n=1

1

nz
,(1.3)

Φ(1, z, a) = ζ(z, a) =

∞
∑

n=0

1

(a + n)z
.(1.4)

Erdélyi’s function (1.1) has since been extended by Goyal and Laddha [2,
p. 100 (1.5)] in the form:

(1.5) Φ∗

µ(y, z, a) =
∞
∑

n=0

(µ)n
(a + n)z

yn

n!
, |y| < 1, Re a > 0, µ ≥ 1,
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38 M. G. BIN-SAAD

where (λ)n = Γ(λ + n)/Γ(λ) and it is expressed as the integral form

(1.6) Φ∗

µ(y, z, a) =
1

Γ(z)

∫

∞

0
tz−1e−at(1 − ye−t)−µ dt.

Obviously, when µ = 1, (1.5) reduces to (1.1). Recently, Katsurada [4, p. 23]
introduced two hypergeometric–type generating functions of the Riemann
zeta function as follows:

ez(x) =
∞
∑

m=0

ζ(z + m)
xm

m!
, |x| < +∞,(1.7)

fz(ν;x) =
∞
∑

m=0

(ν)m ζ(z + m)
xm

m!
, |x| < 1,(1.8)

where ν and z are arbitrary fixed complex parameter s. Motivated by the
results of Erdélyi (1.1) and the work of Katsurada [4], we aim here at present-
ing two new type of generating functions associated with the zeta function
Φ(y, z, a) and at deriving their various properties and formulas including
their integral representations, generating functions, partial sums and N–
fractional calculus.

Definition Let a, a 6= 0,−1,−2, . . ., and z, Re z > 1, be complex param-
eters. We define

ζ(x, y; z, a) =

∞
∑

m=0

Φ(y, z + m,a)
xm

m!
, |y| < 1,(1.9)

ζν(x, y; z, a) =

∞
∑

m=0

(ν)m Φ(y, z + m,a)
xm

m!
, |y| < 1, |x| < |a|,(1.10)

where Φ is the generalized zeta function defined by (1.1).

It is important to note that the functions ζ(x, y; z, a) and ζν(x, y; z, a)
can be continued meromorphically to the whole z-plane. Clearly, for y = 1,
definitions (1.9) and (1.10) reduce to

ζ(x, 1; z, a) =

∞
∑

m=0

Φ(1, z + m,a)
xm

m!
=

∞
∑

m=0

ζ(z + m,a)
xm

m!
,

(1.11)

ζν(x, 1; z, a) =
∞
∑

m=0

(ν)m Φ(1, z + m,a)
xm

m!
=

∞
∑

m=0

(ν)m ζ(z + m,a)
xm

m!
,

(1.12)

respectively, where ζ(z, a) is the Hurwitz zeta function defined by (1.4).
Further, on putting a = 1 in equations (1.11) and (1.12), we get the above
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SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES 39

mentioned results (1.7) and (1.8). In fact, if we let ν = z in (1.8), this
formula reduces to a well-known result of Ramanujan [9]:

(1.13) ζ(z, 1 − x) =
∞
∑

m=0

(z)m ζ(z + m)
xm

m!
, |x| < 1.

As an immediate consequence from definitions (1.9) and (1.10), the following
Propositions are proved by substituting (1.1) and by changing the order of
summation.

Proposition 1.1. For any complex z, ν and a, a 6∈ {0,−1,−2, . . . }, we
have

ζ(x, y; z, a) =
∞
∑

m,n=0

xmyn

m!(a + n)z+m
=

∞
∑

n=0

ex/(a+n) yn

(a + n)z
,

for |y| < 1, and

ζν(x, y; z, a) =

∞
∑

m,n=0

(ν)m xmyn

m!(a + n)z+m
=

∞
∑

n=0

(

1 −
x

a + n

)−ν yn

(a + n)z
,

for |x| < |a| and |y| < 1.

The case y = 0 of this proposition gives

Proposition 1.2. Under the same assumptions as in Proposition 1.1, we
have

ζ(x, 0; z, a) = a−zex/a, |x| < +∞,

ζν(x, 0; z, a) = a−z
(

1 −
x

a

)−ν
, |x| < |a|,

ζ(0, y; z, a) = ζν(0, y; z, a) = Φ(y, z, a).

2. Integral Representations for the functions

ζ(x, y; z, a) and ζν(x, y; z, a)

By using Eulerian integral formula of second kind (see e.g. [2]):

(2.1) a−zΓ(z) =

∫

∞

0
e−attz−1 dt, Re z > 0, Re a > 0,

it is easy to derive the following integral representations:

3
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40 M. G. BIN-SAAD

Theorem 2.1. Let Re a > 0 and either

|x| < 1, |y| ≤ 1, y 6= 1, Re z > 0 or |x| < 1, y = 1, Re z > 1.

Then

(2.2) ζ(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

e−at

1 − ye−t

)

0F1[−; z;xt] dt,

and

(2.3) ζν(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

e−at

1 − ye−t

)

1F1[ν; z;xt] dt,

where 0F1[−;β; z] =
∞
∑

n=0

xn

(β)n n!
and

1F1[α;β; z] =

∞
∑

n=0

(α)n xn

(β)n n!
, β 6= 0,−1,−2, . . . .

Proof. Denote for convenience the right-hand side of equation (2.2) by I.
Then, it is easily seen that

I =

∞
∑

m=0

xm

m! (z)m

1

Γ(z)

∫

∞

0
tz+m−1e−at

(

1 − ye−t
)−1

dt.

Now, in view of the integral formula (1.2) and of the definition (1.9), we get
the left-hand side of formula (2.2). In the same manner, one can derive the
formula (2.3). 2

Moreover, by using the contour integral formula [1, p.14 (4)]:

2i sin(πz)Γ(z) = −

∫ (0+)

∞

(−t)z−1 e−t dt, |arg(−t)| ≤ π,

one can derive the following contour integral representations.

Theorem 2.2. Let Re a > 0 and |arg(−t)| ≤ π, then

(2.4) ζ(x, y; z, a) = −
Γ(1 − z)

2πi

∫ (0+)

∞

(−t)z−1

(

e−at

1 − ye−t

)

0F1[−; z;xt] dt,

and

(2.5) ζν(x, y; z, a) = −
Γ(1 − z)

2πi

∫ (0+)

∞

(−t)z−1

(

e−at

1 − ye−t

)

1F1[ν; z;xt] dt.

4

Mathematical Journal of Okayama University, Vol. 49 [2007], Iss. 1, Art. 2

http://escholarship.lib.okayama-u.ac.jp/mjou/vol49/iss1/2



SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES 41

If x = 0, equations (2.2) and (2.3) would immediately reduce to (1.2).
Whereas for x = 0, (2.4) and (2.5) reduce to another known result [1, p.28
(5)].

3. Integrals involving ζ(x, y; z, a) and ζν(x, y; z, a)

In this section we evaluate definite integrals involving the functions
ζ(x, y; z, a) and ζν(x, y; z, a) in terms of other kinds of zeta and hyperge-
ometric functions. First, we recall the Eulerian integral formula of first kind
(see e.g. [10]):

(3.1)

∫ 1

0
tx−1(1 − t)y−1 dt =

Γ(x)Γ(y)

Γ(x + y)
, Rex > 0, Re y > 0.

From the term-by-term integration, we can derive the following formulas:

Theorem 3.1. Let Re (c − b) > 0 and Re b > 0. Then

Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
tb−1(1 − t)c−b−1ζ(xt, y; z, a) dt(3.2)

=
∞
∑

n=0

1F1[b; c;x/(a + n)]
yn

(a + n)z
,

Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
tb−1(1 − t)c−b−1ζν(xt, y; z, a) dt(3.3)

=

∞
∑

n=0

2F1[ν, b; c;x/(a + n)]
yn

(a + n)z
.

Proof. Denote for convenience the left-hand side of equation (3.2) by I.
Then in view of Proposition 1, it is easily seen that

I =
Γ(c)

Γ(c − b)Γ(b)

∞
∑

m,n=0

xmyn

m! (a + n)z+m

∫ 1

0
tb+m−1(1 − t)c−b−1 dt.

Upon using (3.1) and the relation Γ(b + m) = (b)mΓ(b), we are finally led
to relation (3.2). The derivation of the integral formula (3.3) runs parallel
to that of (3.2). 2

On putting y = a = 1 in (3.2) and (3.3) and noting (1.3), (1.7) and (1.8),
the assertions (3.2) and (3.3) reduce to

(3.4)
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
tb−1(1 − t)c−b−1ez(xt) dt = Gz(b, c;x)

5
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42 M. G. BIN-SAAD

and

(3.5)
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0
tb−1(1 − t)c−b−1fz(ν;xt) dt = Gz(ν, b, c;x),

respectively, where

(3.6) Gz(b, µ; c;x) =

∞
∑

m=0

(b)m(µ)m
(c)m

ζ(z + m)
xm

m!
, |x| < 1,

and

(3.7) Gz(b; c;x) =

∞
∑

m=0

(b)m
(c)m

ζ(z + m)
xm

m!
.

Note that the integral formulas (3.4) and (3.5) are known results (see [4, p.24
(5.5) and (5.6)]). Now, if we use the integral formula (2.1), other integral
formula would occur as follows:

Theorem 3.2. Let Re|, z > 0, Reµ > 0 and Reλ < 1. Then

1

Γ(µ)Γ(z)

∫

∞

0

∫

∞

0
uµ−1νz−1e−u−aν ζ(xue−ν , y; z, a) du dν(3.8)

=

∞
∑

n=0

Φ∗

µ[x/(a + n), z, a]
yn

(a + n)z
,

1

Γ(z)

∫

∞

0
tz−1e−at ζν(xe−t, y; z, a) dt(3.9)

=

∞
∑

n=0

Φ∗

ν[x/(a + n), z, a]
yn

(a + n)z
,

1

Γ(1 − λ)

∫

∞

0
t−λe−at ζ(x/t, ye−t; z, a) dt(3.10)

= Φ(y, z − λ + 1, a) 0F1[−;λ;−x],

1

Γ(1 − λ)

∫

∞

0
t−λe−at ζν(x/t, ye−t; z, a) dt(3.11)

= Φ(y, z − λ + 1, a) 1F1[ν;λ;−x],

(3.12)
1

Γ(ν)

∫

∞

0
tν−1e−t ζ(xt, y; z, a) dt = ζν(x, y; z, a).

6
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SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES 43

Proof. Denote for convenience the left-hand side of equation (3.8) by I.
Then, in view of (1.9), it is easily seen that

I =
∞
∑

m, n=0

xmyn

m! (a + n)z+m

1

Γ(µ)

∫

∞

0
uµ+m−1e−µ du;

×
1

Γ(z)

∫

∞

0
νz−1e−ν(a+m) dν.

Upon using the integral formula (2.1) and the definition (1.5), we are finally
led to right-hand side of formula (3.8). Proceeding in the same manner, it
is equally straightforward to derive the formulae (3.9) to (3.12). 2

Now some special cases of Theorem 3.2 are of interest. First, if we let
y = 0 in (3.8), in view of Proposition 1.2, we get an integral representation
for the zeta function defined by (1.5) in the form

(3.13) Φ∗

µ(x, z, a) =
1

Γ(µ)Γ(z)

∫

∞

0

∫

∞

0
uµ−1νz−1e−u−aνe(xue−ν) du dν.

Secondly, for y = 0, equation (3.9) reduces to (1.6) with x and ν replaced
by xa and µ respectively. Moreover, for x = 0 and y = 1, equations (3.10)
and (3.11) reduce to an integral relation between the Hurwitz zeta function
defined by (1.4) and Erdélyi zeta function defined by (1.1) as follows:

(3.14)
1

Γ(1 − λ)

∫

∞

0
t−λe−atΦ(e−t, z, a) dt = ζ(z − λ + 1, a).

4. Sums of series

First we derive the following basic sums of series.

Theorem 4.1. Let z 6= 1, 2, 3, . . .. Then

∞
∑

k=0

ζ(x, y; z − k, a)
wk

k!
= eaw ζ(x, yew; z, a), |y| < 1,(4.1)

∞
∑

k=0

ζν(x, y; z − k, a)
wk

k!
= eaw ζν(x, yew; z, a), |x| < |a|, |y| < 1.(4.2)

Proof. If in formula (1.9) we replace z by z − k, k 6∈ Z+ ∪ {0}, multiply
throughout by wk/k! and sum up, then we get (4.1). The proof of (4.2) is
similar to that of (4.1). 2

7
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44 M. G. BIN-SAAD

Again, starting from (1.9) and (1.10), substituting the series expression
for Φ(y, z, a) into (1.9) and (1.10), and changing the order of summations,
we get the following theorem.

Theorem 4.2. Let Re z > 0 and a 6= 0,−1,−2. Then
∞
∑

k=0

(b)k
(c)k

ζ(x, y; z + k, a)
wk

k!
(4.3)

=

∞
∑

n=0

e(x/(a+n))
1F1[b; c;w/(a + n)]

yn

(a + n)z
,

for |w| < 1 and |x| < 1, and
∞
∑

k=0

(b)k(f)k
(c)k

ζν(x, y; z + k, a)
wk

k!
(4.4)

=
∞
∑

n=0

(

1 −
x

a + n

)−ν

2F1[b, f ; c;w/(a + n)]
yn

(a + n)z

for |w| < 1 and |x| < |a|.

If we let x = 0, y = a = 1 in (4.3) and (4.4) and use (1.3), then we
obtain the two Dirichlet series expressions due to Katsurada [4, p.24 (5.3)
and (5.4)]:

Gz(b; c;w) =

∞
∑

n=1

1F1[b; c;w/n]n−z ,(4.5)

Gz(b, f ; c;x) =
∞
∑

n=1

2F1[b, f ; c;w/n]n−z .(4.6)

Next, we set f = c, b = z and let x = 0 in (4.4). Upon noting that

2F1[z, c; c;w/(a + n)] = (a + n)z(a + n − w)−z,

the assertion (4.4) reduces to

(4.7)

∞
∑

k=0

(z)kΦ(y; z + k, a)
wk

k!
= Φ(y; z, a − w),

which for y = 1 and b = z reduces to a known result [8, p.396 (6)]:

(4.8)

∞
∑

k=0

(z)k ζ(z + k, a)
wk

k!
= ζ(z, a − w).

Further, from definitions (1.9) and (1.10), we easily have the following in-
teresting series relations.

8
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SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES 45

Theorem 4.3. Let |x| < 1, |y| < 1, |w| < |a| and |t| < |a|. Then, for any
complex number z and |b|,

ζ(x, y; z, a − w) =

∞
∑

k=0

ζz+k(w, y; z + k, a)
xk

k!
,(4.9)

ζb(x, y; b, a − w) =
∞
∑

k=0

(b)k ζb+k(x, y; b + k, a)
wk

k!
,(4.10)

∞
∑

k=0

(b)k ζ(x, y; z + k, a − t)
wk

k!
(4.11)

=

∞
∑

n=0

3ϕ
(1)
G

[

z, 1, b; 1, z;
t

a + n
,

w

a + n
,

x

a + n

]

yn

(a + n)z
,

∞
∑

k=0

ζν(x, y; z + k, a − t)
wk

k!
(4.12)

=
∞
∑

n=0

3ϕ
(1)
G

[

z, 1, ν; 1, z;
t

a + n
,

w

a + n
,

x

a + n

]

yn

(a + n)z
,

where 3ϕ
(1)
G is Jain’s confluent hypergeometric function of three variables

([3]):

3ϕ
(1)
G (a, b, c; e, f ;x, y, z) =

∞
∑

m,n,p=0

(a)m+n+p(b)m(c)nxmynzp

(e)m(f)n+pm!n!p!
.

Proof. Starting from (1.9), we have

ζ(x, y; z, a − w) =
∞
∑

k,n=0

xkyn

k!(a + n − w)z+k
.

Now, on using the binomial theorem, the above equation gives us

ζ(x, y; z, a − w) =

∞
∑

k=0

∞
∑

m,n=0

(z + k)mwmynxk

k!(a + n)z+m+km!
,

which, in view of (1.10), gives the left hand side of (4.9). This complete the
proof of relation (4.9). In the same manner one can prove relations (4.10)
to (4.12). 2

Now some special cases of Theorem 4.3 are of interest. First for w = 0 ,
equation (4.9) reduces to (1.9). Whereas for x = 0, equation (4.9) yields

(4.13) Φ(y, z, a − w) = ζz(w, y; z, a).

9
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46 M. G. BIN-SAAD

If we further put x = 0, y = 1 and b = z in (4.10), then (4.10) reduces to a
particular case of formula (4.8). Finally from (4.11) and (4.12), we find that

(4.14)

∞
∑

k=0

(b)k ζ(x, y; z + k, a − t)
wk

k!
=

∞
∑

m=0

ζb(w, y; z + m,a − t)
xm

m!
.

5. Partial sums

Let

[r]Φ(y, z, a) =
r
∑

n=0

yn

(a + n)z

be the truncation of (1.1), and

[r+1]Φ(y, z, a) =

∞
∑

n=r+1

yn

(a + n)z
, r = 0, 1, 2, . . . ,

be its remainder. Motivated by the above mentioned definitions, we here
aim at further investigating the functions ζ and ζν in their truncated forms

[r]ζ and [r]ζν and reminders [r+1]ζ and [r+1]ζν.

Definition. Let a and z be complex parameters such that
a 6= 0,−1,−2, . . ., Re z > 1 and r = 0, 1, 2, . . .. We define

[r]ζ(x, y; z, a) =

∞
∑

m=0

r
∑

n=0

xmyn

m!(a + n)z+m
,(5.1)

[r+1]ζ(x, y; z, a) =

∞
∑

m=0

∞
∑

n=r+1

xmyn

m!(a + n)z+m
,(5.2)

[r]ζν(x, y; z, a) =
∞
∑

m=0

r
∑

n=0

(ν)mxmyn

m!(a + n)z+m
,(5.3)

[r+1]ζν(x, y; z, a) =

∞
∑

m=0

∞
∑

n=r+1

(ν)mxmyn

m!(a + n)z+m
.(5.4)

Theorem 5.1. Let Re a > 0 and either |x| < 1, |y| ≤ 1, y 6= 1, Re z > 0 or
|x| < 1, y = 1, Re z > 1. Then

(5.5)

[r]ζ(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

1 − (ye−t)r+1

et − y

)

e(1−a)t
0F1[−; z, xt] dt,
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[r+1]ζ(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

yr+1e−(a+r)t

et − y

)

0F1[−; z, xt] dt,

(5.6)

[r]ζν(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

1 − (ye−t)r+1

et − y

)

e(1−a)t
1F1[ν; z, xt] dt,

(5.7)

[r+1]ζν(x, y; z, a) =
1

Γ(z)

∫

∞

0
tz−1

(

yr+1e−(a+r)t

et − y

)

1F1[ν; z, xt] dt,

(5.8)

[r]ζ(x, y; z, a) + [r+1]ζ(x, y; z, a) = ζ(x, y; z, a),

(5.9)

[r]ζν(x, y; z, a) + [r+1]ζν(x, y; z, a) = ζν(x, y; z, a).

(5.10)

Proof. Using (5.1) and (2.1), we get

[r]ζ(x, y; z, a) =
∞
∑

m=0

r
∑

n=0

xmyn

m!Γ(z + m)

∫

∞

0
tz+m−1e−(a+n)t dt

=

∞
∑

m=0

xm

m!Γ(z + m)

∫

∞

0
tz+m−1

(

r
∑

n=0

yne−(a+n)t

)

dt

=
1

Γ(z)

∞
∑

m=0

xm

m!(z)m

∫

∞

0
tz+m−1e(1−a)t

(

1 − (ye−t)r+1

et − y

)

dt

=
1

Γ(z)

∫

∞

0
tz−1e(1−a)t

(

1 − (ye−t)r+1

et − y

)

dt
∞
∑

m=0

(xt)m

m!(z)m
dt.

Consequently, we get (5.5). The derivation of the equations (5.6) to (5.8)
runs parallel to that of (5.5) and we skip the details. The proofs of (5.9)
and (5.10) are obtained clearly by the definitions (1.9), (1.10) and (5.1) –
(5.4), respectively. 2

Theorem 5.2. Let pj ≥ 1, Re z > 1 and Re pjz > 1, j = 1, 2, . . . , n. Then

n
∏

j=1

[rj ]ζ(xj, yj; pjz, aj) =

n
∏

j=1







rj
∑

kj=0

y
kj

j eBj







1

Γ(z)

∫

∞

0
tz−1e−At dt,

11
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n
∏

j=1

[rj+1]ζ(xj , yj; pjz, aj)(5.11)

=

n
∏

j=1







∞
∑

kj=rj+1

y
kj

j eBj







1

Γ(z)

∫

∞

0
tz−1e−At dt,

n
∏

j=1

[rj ]ζν(xj , yj ; pjz, aj)(5.12)

=
n
∏

j=1







rj
∑

kj=0

y
kj

j (1 − xj/(aj + kj))
−ν







1

Γ(z)

∫

∞

0
tz−1e−At dt,

n
∏

j=1

[rj+1]ζν(xj , yj ; pjz, aj)(5.13)

=
n
∏

j=1







∞
∑

kj=rj+1

y
kj

j (1 − xj/(aj + kj))
−ν







1

Γ(z)

∫

∞

0
tz−1e−At dt,

where Bj = xj/ (aj + kj) and A =

n
∏

j=1

(aj + kj)
pj .

Proof. To prove (5.11), let I denote the right hand side of (5.11). Then,
from (2.1) and (5.11), we find that

I =







∞
∑

m1=0

r1
∑

k1=0

xm1

1 yk1

1

m1!(a1 + k1)m1

· · ·

∞
∑

mn=0

rn
∑

kn=0

xmn
n ykn

n

mn!(an + kn)mn







A−z

(5.14)

=







∞
∑

m1=0

r1
∑

k1=0

xm1

1 yk1

1

m1!(a1 + k1)m1+p1z
· · ·

∞
∑

mn=0

rn
∑

kn=0

xmn
n ykn

n

mn!(an + kn)mn+pnz







.

Therefore, we have (5.11) from (5.15). To prove formulas (5.12) to (5.14),
we refer to the proof of (5.11). 2

It is important to note that Theorem 5.2 includes a number of known
results due to Nishimoto ([6, Theorems 2–5 and 6] and [7, Theorems 2–5
and 6]) as special cases.

12

Mathematical Journal of Okayama University, Vol. 49 [2007], Iss. 1, Art. 2

http://escholarship.lib.okayama-u.ac.jp/mjou/vol49/iss1/2



SUMS AND PARTIAL SUMS OF DOUBLE POWER SERIES 49

6. N–fractional calculus

There are many definitions of a differ-integral of arbitrary order. In this
work we use the definition of fractional calculus given by Nishimoto [5].

Definition(by Nishimoto): Let C = {C−, C+} and D = {D−, D+}, where
C− is a curve surrounding in the positive direction the cut joining two the
points z and −∞+i Im z, C+ is a curve surrounding in the negative direction
the cut joining the two points z and ∞ + i Im z, and D∓ is the domain
surrounded by C∓ respectively. (Here D contains the points over the curve
C ) . Moreover, let f = f(z) be analytic (regular) function in z ∈ D. Then
we define

(6.1) fν = (f)ν (z) = C (f)ν (z) =
Γ(ν + 1

2πi

∫

C

f(ζ)

(ζ − z)ν+1
dζ, ν 6∈ Z

−,

(f)
−n (z) = lim

ν→−n
(f)ν (z), n ∈ Z

+,

where −π ≤ arg(ζ−z) ≤ π for ζ ∈ C−, 0 ≤ arg(ζ−z) ≤ 2π for ζ ∈ C+, ζ 6= z
and z ∈ C. Then (f)ν is the fractional differ–integration for arbitrary order
ν (derivation of order ν for Re ν > 0 and integral of order -ν for Re ν < 0)
with respect to z of the function f , if |(f)ν | < ∞.

Obeying the above definition of N–fractional calculus, Nishimoto ob-
tained the following result.

Lemma 6.1. We have

(eaz)α (z) = aαeaz , a 6= 0,(6.2)
(

zβ
)

α
(z) = e−πα Γ(α − β)

Γ(−β)
zβ−α,

∣

∣

∣

∣

Γ(α − β)

Γ(−β)

∣

∣

∣

∣

< ∞.(6.3)

We shall now use this Lemma in order to derive certain transformation
formulas and relationships for the functions ζ and ζν .

Theorem 6.1. Let α, β ∈ R, a > 0, a 6= 1 and Re z > 1. Then

(ζ(x, y; z, a))α (z) = eiπα
∞
∑

n=0

(log(a + n))α ex/(a+n) yn

(a + n)z
,(6.4)

(ζν(x, y; z, a))α (z)(6.5)

= eiπα
∞
∑

n=0

(log(a + n))α (1 − x/(a + n))−ν yn

(a + n)z
,

13
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((ζ(x, y; z, a))α (z))β (z) =
(

(ζ(x, y; z, a))β (z)
)

α
(z)(6.6)

= (ζ(x, y; z, a))β+α (z),

((ζν(x, y; z, a))α (z))β (z) =
(

(ζν(x, y; z, a))β (z)
)

α
(z)(6.7)

= (ζν(x, y; z, a))β+α (z).

Proof. From (1.9), we have

(ζ(x, y; z, a))α (z) =

∞
∑

m=0

∞
∑

n=0

xmyn

m!(a + n)m

(

ezlog(a+n)−1
)

α
(z),

which, on using (6.2), yields

(6.8) (ζ(x, y; z, a))α (z) =

∞
∑

m=0

∞
∑

n=0

xmyn

m!(a + n)m

(

log(a + n)−1
)α

.

Therefore, we have (6.4) from (6.8) under the conditions. The proof of the
result (6.5) is similar to that of (6.4). To prove (6.6), we start from (6.4)
and have

((ζ(x, y; z, a))α (z))β (z)(6.9)

= eiπα
∞
∑

n=0

(log(a + n))α ex/(a+n)yn
(

ez log(a+n)−1
)

β

= eiπ(α+β)
∞
∑

n=0

(log(a + n))α+β ex/(a+n)yn yn

(a + n)z
.(6.10)

In the same way, we have
(

(ζ(x, y; z, a))β (z)
)

α
(z)(6.11)

= eiπ(α+β)
∞
∑

n=0

(log(a + n))α+β ex/(a+n)yn yn

(a + n)z
,

and replacing α by α + β in (6.4), we get
(6.12)

(ζ(x, y; z, a))β+α (z) = eiπ(α+β)
∞
∑

n=0

(log(a + n))α+β ex/(a+n)yn yn

(a + n)z
.

Clearly, we have (6.6) from (6.10), (6.11) and (6.12). Similarly, one can
prove (6.7). 2
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Theorem 6.2. Let α, β ∈ R, Re a > 0, Re z > 1 and |Γ(1 − β)/Γ(1 − α)| <
∞. Then

(

xα−1ζ(x, y; z, a)
)

(α−β)
(x)(6.13)

= e−iπ(α−β) Γ(1 − β)

Γ(1 − α)
xβ−1

∞
∑

m=0

(α)m
(β)m

Ψ(y, z + m,a)
xm

m!
,

(

xα−1ζν(x, y; z, a)
)

(α−β)
(x)(6.14)

= e−iπ(α−β) Γ(1 − β)

Γ(1 − α)
xβ−1

∞
∑

m=0

(ν)m(α)m
(β)m

Φ(y, z + m,a)
xm

m!
.

Proof. By (1.9), we have

(

xα−1ζ(x, y; z, a)
)

(α−β)
(x) =

∞
∑

m=0

Φ(y, z + m,a)

(

xα+m−1
)

(α−β)
(x)

m!
,

which is immediately derived from (1.9) by applying the term-by-term frac-
tionally differential operation. Next, on using (6.3) and (1.1), we are led to
the right–hand side of equation (6.13). Similarly, one can prove (6.14). 2

An interesting special cases arise form the relations (6.13) and (6.14) when
y = a = 1 in the forms:

(6.15)
(

xα−1fz(ν;x)
)

(α−β)
(x) = e−iπ(α−β) Γ(1 − β)

Γ(1 − α)
xβ−1Gz(ν, α;β;x),

and

(6.16)
(

xα−1ez(ν;x)
)

(α−β)
(x) = e−iπ(α−β) Γ(1 − β)

Γ(1 − α)
xβ−1Gz(α;β;x).

Equations (6.15) and (6.16) exhibit the fact that Gz(ν, α;β;x)
and Gz(α;β;x) are essentially the fractional differ–integral of the functions
fz(ν;x) and ez(x), respectively. Finally, when ν = β, formula (6.14) gives
the elegant result

(6.17)
(

xα−1ζβ(x, y; z, a)
)

(α−β)
(x) = e−iπ(α−β) Γ(1 − β)

Γ(1 − α)
xβ−1ζα(x, y; z, a).
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