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ON REAL HYPERSURFACES OF
A COMPLEX SPACE FORM

U-Hane KI* and Younc Jin SUH

Introduction. A complex n-dimensional Kaehler manifold of constant
holomorphic sectional curvature ¢ is called a complex space form, which is
denoted by M,(c). Let F be its complex structure. The complete and simply
connected complex space form consists of a complex projective space CP", a
complex Euclidean space C” or a complex hyperbolic space CH", according
asc >0, c=0o0rc<o.

In the study of real hypersurfaces of a complex projective space CP",
Takagi [11] classified all homogeneous real hypersurfaces of CP™ He
showed also that real hypersurfaces of CP™ with 2 or 3 distinct constant
principal curvatures are homogeneous.

On the other hand, Cecil and Ryan [2] studied pseudo-Einstein real
hypersurfaces of CP" on which ¢ = — FC is principal, where C is the unit
normal vector field on M. They showed that if ¢ is principal, then M lies on
a tube over a Kaehler submanifold. By making use of this notion and the
results of Takagi’s classification, Kimura [3] proved the following.

Theorem A. Let M be a connected real hypersurface of CP™. Then M
has constant principal curvatures and & is principal if and only if M is locally
congruent to one of the following

(A,) a tube over a hyperplane CP™ !,

(A;) a tube over a totally geodesic CP*(1 < k< n—2).

(B) a tube over a complex quadric Q,_..

(C) @ tube over CP'X CP™ %' gnd n(= 5) is odd.

(D) a tube over a complex Grassmann G,5(C) and n = 9.

(E) a tube over a Hermitian symmetric space SO(10)/U(5), and

n=15.

According to Takagi's classification [11], the principal curvatures and
their multiplicities of the above homogeneous real hypersurfaces are given.

On the other hand, real hypersurfaces of a complex hyperbolic space
CH™ have also been investigated by Berndt [1], Montiel [8], Montiel and
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Romero [9]. In particular, by using the notion of the tube in Cecil and Ryan
(2], Montiel [8] also classified the real hypersurface of complex hyperbolic
space with at most two distinct principal curvatures. Recently, Berndt [1]
classified all real hypersurfaces with constant principal curvature of CH"
under the condition such that ¢ is principal. Namely he proved the following.

Theorem B. Let M be a connected real hypersurface of CH (n = 2).
Then M has constant principal curvatures and & is principal if and only if M
is locally congruent to one of the following

(A,) a horosphere in CH™

(A;) atube over CH® for ak=10,1,...,n—1.

(B) a tube over RH™.

For the principal curvatures and their multiplicities of the above
hypersurfaces are also given in [1].

The purpose of this paper is to characterize some real hypersurfaces of
Myc), ¢ =0, by using above classification theorems. The authors would
like to express their thanks to the referee for his valuable comments.

1. Preliminaries. Let M be a real hypersurface of a complex n di-
mensional complex space form M,(c), and let C be a unit normal vector field
on a neighborhood of a point x in M. Let us denote by F the almost complex
structure of M,(c). For any local vector field X on a neighborhood of x in
M, the transformations of X and C under F can be given by

FX= ¢X+9(X)C, FC=—§,

where ¢ defines a skew-symmetric transformation on the tangent bundle TM
of M, while » and & denote a 1-form and a vector field on a neighborhood of X
in M respectively. Then it is seen that g(£, X) = 5(X), where g denotes
the induced Riemannian metric on M. The set of tensors (¢, £, 7, g) is called
an almost contact structure on M. They satisfy the following

(1.1) #=—I+n® & ¢ =0, 7(¢X) =0, (&) =1,

where I denotes the identity transformation. Furthermore, the covariant
derivatives of the structure tensors are given by

(1.2) (Pxp) Y= n(Y)AX—g(AX, Y)E, Vx &= ¢AX,

where V is the Riemannian connection of g and A denotes the shape operator
with respect to the unit normal C on M.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/issl/24
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Since the ambient space is of constant holomorphic sectional curvature
¢, the equations of Gauss and Codazzi are respectively given as follows

1.3) RX Y)Z=clglY, Z)X—g(X, Z)Y+g(¢Y, Z)pX—g(¢X, Z)$Y
' —2g(¢X, Y)pZ1/4+ gAY, Z)AX—g(AX, Z)AY,
(1.4) (FxA)Y—(PyA)X= cInp(X)pY—n(Y)pX—2g(¢X, Y)EI/4,

where R denotes the Riemannian curvature tensor of M and V', A denotes the
covariant derivative of the shape operator A with respect to X.

The Ricci tensor S* of M is the tensor of type (0, 2) given by S{X, Y)
= tr{ Z— R(Z, X)Y|. Also it may be regarded as the tensor of type (1,1)
and denoted by S: TM — TM; it satisfies S{X, Y) = g(SX, Y). From
(1.3) we see that the Ricci tensor S of M is given by

(1.5) = cl(2n+1)[-37p ® £1/4+ hA— A%,

where we have put h = trA. A real hypersurface M of M,(c) is said to be
pseudo-Einstein if the Ricci tensor S satisfies

(1.6) SX= aX+bp(X)¢
for any vector field X tangent to M and some functions a and b on M.

2. Certain Lemmas. Let M be a real hypersurface of a complex space
form My(c). The shape operator A of M can be considered as a symmetric

(2n—1, 2n—1)-matrix. Now we assume that the structure vector £ is an
eigenvector of A, that is, A§ = af. Then the second formula of (1.2) gives

(PxA)E = (Xa)é+ apAX— APAX,
from which it follows that
(2.1) g(PxA)Y, &) = (Xa)n(Y)+ag( Y, pAX)—g( Y, ApAX).
By using equation of Codazzi to (2.1) we have

cg(X, ¢Y)/2 = (Xa)7(Y)—(Ya)n(X)+ ag((gpA+ Ag) X, Y)

(2.2) — 2g(AgAX, Y).

Putting X= £ or Y= £ in (2.2), then we see that Xa = (£a)p(X), or
Yo = (€a)n(Y) and hence (2.2) reduces to

(2.3) cg(X, ¢Y)/2 =og((pA+ A¢) X, Y)—2g(ApAX, Y).

First of all we prove the following.
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Lemma 2.1. Let M be a real hypersurface of a complex space form
M,(c). If A+ Ap= 0, thenc = 0.

Proof. By the assumption we have that £ is an eigenvector of A. From
this assumption, and the almost contact structure (¢, & », g) and (2.3) it
follows that

(2.4) A= —cl/4+(a’+c/4)p ® &

We notice here that the holomorphic sectional curvature ¢ is non-positive.
Thus (2.1) and (2.3) imply

(2.5)  g((VA)Y, &) = —cglY, ¢X)/4+ag(Y, AX)+(Xa)n(Y).
Differentiating (2.4) covariantly along M, we find

(PyAYAY+ APy A)Y) = 2a(€a)n(X)p(Y) E+(a*+ c/4)
X1g(Vxé& Y)E+n(Y)PxEL,

from which, taking the skew-symmetric part and using the equation of
Codazzi, we have

(Vx A)AY—(Vy A)AX = cag(¢X, Y)&/2+ o’ n(Y)pAX—n(X) gAY |,
where we have used the fact A+ Ap = 0. Equivalently it follows that

gAY, (P A)X)—g(AZ, (Vv A)X) = can(X)g(¢Z, Y)/2
+a{9(Y)g(pAZ X)—n(Z)g(gAY, X) 1,

(2.6)

from which, also using the equation of Codazzi, we have

g(AY, (PxA)Z)—g(AZ, (P A)Y) = ca/2{n(X)g(Y, ¢Z)
(2.7) +9(Y)g(X, ¢Z)+n(Z)g(Y, ¢X)|
+(a*— /)i n(Y)g(gAZ X)—n(Z) g(¢AY, X)1.

Summing up (2.6) and (2.7), we have

(PyA)AY = a(£a)n(X)n(Y)E+a® n(Y) pAX+ cg(pAY, X) /4
+cal = p(X)gpY—n(Y) X+ g(Y, ¢X)£1/4.

From which, substituting AY into Y and using (2.4) and (2.5), we have that

d(VxA)Y = c(£a)n(X)n(Y)E+ Pl g(oY, X)E—n(Y)oX1/4
+ealp(X)PrE+g(Pv € X)E+n(Y)PEL

Now we take an orthonormal frame | E;| of Ty (M) such that Fg, E; = 0
(i,j,....=1,2,...,2n—1). Differentiating (2.8) with respect to E; and using

(2.8)

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/issl/24
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the fact that E; o = (£a)p(E;), it follows from the almost contact structure
that we have

5 cal(E, E)(7e,75,A) Y = 5 1 ¢(4Y, $EIV:, 6~ (75,6, V) $E]
(2.9)  +ca X 16(Ve & SEIVvE+ gV VrE— Vo, v $ENE
+8(Pe &, Y) Vo, 6+ 8( Ve &, $EIVe, 64 9( V)V e, Ve, €.
On the other hand, we have

2. 8(Ve €, ¢E) = 31 g(AE, E)—g(AE, n(E)EN=0,

where in the last step we have used the fact that the mean curvature of A
coincides with a because of the assumption A¢+ ¢A = 0. From the almost
contact structure and the fact £ is principal the following formula also
vanishes,

;lg(?mf, Y)V¢E;§+g(7y'§. ¢Ei) VE;E} = —VAY§+ Varé = 0.

If we use the formula ¢35 (Vs A)E = c(éa)€ and cg((F. A)Y, &) = c(£a)-
7(Y) which come from (2.8), then we get
2l 8V, Vyé—Vy . vé ¢E) = ol 3 g(Y.(P5 A)E)—g((Fe A) Y. £)} = 0.

Also using the formula c;', (Pe; AYE, = c(€a)€&, we have
C}; VE( V¢£; f = C‘YT: {(VE[A )E.—g(f( VE.' A )Et)EI = 0.
Thus from these equations we see that (2.9) reduces to the following

2
2 g($E, E) (Ve Ve, A)Y =T S 16(8Y. $E)V e, 6~ (Vi &, V)¢ B
(2. 10) cz cz
=7 [Vyé+ ; gV & Y)E | = > ¢ AY,
where in the last equality we have used the assumption Ag+ ¢A = 0.
If we use the Ricci-formula to (2.10) for the shape operator A, then

we get

(2.11) ¢ g(¢E;, E)IR(E. E)AY—A(R(E,, E)Y)| = ¢* AY.
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On the other hand, from the equations of Gauss and the assumption
Ap+¢A = 0 it follows that

Y e(¢E, E)R(E, E) Y= 3{e(¢E, Y)E—g(E, Y)¢E,
+g(¢* E, Y)pE,—g(¢E;, Y)¢* E.—2g(¢E;, ¢E)pY |
+ 2 18(AQE,, Y)AE, — g(AE,, Y)AQE} = —cnpY+2 A% 4Y,
from which together with (2.4), (2.11) reduces to
¢ gAY = 0.

If ¢ + 0, then pAY = 0. It follows from the almost contact structure that
we have AY=an(Y)€. The rank of A at a point x in M is called the type
number and is denoted by #(x). Thus it means that the type number #(x) of
any point x in M is at most 1. It is however seen that (cf. Yano and Kon
[13]) t(x) > 1 at some point x of M for ¢ = 0. So it is contradiction.
Hence we have ¢ = 0. This completes the above proof.

From Lemma 2.1. we have the following.

Proposition 2.2. Let M be a real hypersurface of a complex space form
M,(c). If A+ Ap = 0, then M is cylinderical.

Proof. From the assumption it follows that A¢ = o£. Since ¢ = 0 by
Lemma 2.1, (2.3) implies AgA = 0, from which it follows that (¢A)* =
¢AA = —pAAp = pA(pA). Thus tr(gA)' (gA) =0, that is, ¢A= 0.
Then AX = an{X)£. Hence M is cylinderical.

Also by using Lemma 2.1 we get the following.

Lemma 2.3. Let M be a real hypersurface of a complex space form
My(c), ¢+ 0. If £ is an eigenvector of A, then a = n(A€) is locally

constant.

Proof. Since Xa = gn{X), we have Vx grad a = (XB) £+ SV« &, where
we have put # = £e. From which together with the fact g(Vygrad o, Y) =
g(Vygrad a, X) it follows that

(2.12) (XB)n(Y)—(Y8)n(X)+Be((gA+ Ag) X, Y) = 0.

Putting X= £ or Y= £ in(2.12), we get X8 = (£68)7(X) or Y8 = (&B)
n(Y). Thus (2.12) reduces to

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/issl/24
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Pe((pA+ Ag) X, Y) = 0.

By Lemma 2.1 there are no points on M at which gA+ A¢ = 0, which yields
that # = 0 on M. This means a is constant on M.

Remark. For a real hypersurface of a complex projective space CP"
Maeda proved that o is constant ([7]).

3. Real hypersurfaces of CH” satisfying certain commutative condition.
A characterization of the class of hypersurfaces with more than 3 distinct
principal curvatures of CP" is studied by Kimura [4], who proves the
following.

Theorem C. Let M be a real hypersurface of CP(n=3). Then M
satisfies S¢ = ¢S if and only if M lies on a tube of radius r over one of the
Jollowing Kaehler submanifolds ;

(A) atotally geodesic CP*, (1 £ k= n—1), where0 < r < n/2,

(B) a complex quadric @', where 0 < r < 7/4 andcot’ 27 = n—2,

(C) CP'XCP™VY? where 0 < r < n/4, cot’ 2r = 1/(n—2) and

n(= 5) is odd,

(D) complex Grassmann G, s(C), where 0 < r < n/4, cot’ 2r = 3/5

andn =9, 4
(E) Hermitian symmetric space SO(10)/U(5), where 0 < r < /4,
cot? 27 = 5/9 and n = 15.

This section is devoted to the investigation about certain real hypersur-
faces of CH™ under the condition such that the Ricei tensor and the structure
tensor are commutative. Now we introduce the following.

Lemma 3.1. Let M be a real hypersurface of CH" (n = 3) and P= A?
— fA such that fis a smooth function on M. If M satisfies the condition

(3.1) Pg= ¢P,
then £ is a principal vector ai each point of M.

For the real hypersurface of CP(n = 3) Kimura [4] proved that ¢ is
principal under the condition (3.1) by using Cecil-Ryan’s method in the paper
[2]. If we use the same method as used in [4], we can obtain the above

Lemma. Thus we omit the proof of the Lemma 3.1.
By the above Lemma and Lemma 2.3 we get the following
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Lemma 3.2. Let M be a real hypersurface of CH™(n = 3) satisfying
S¢= ¢S. Then the principal curvature o corresponding to & is locally
constant.

By Lemma 3.1 we have (2.3). Thus for the complex hyperbolic space
CH™(2.3) implies that 2¢+2A¢A = o( Ap+ ¢A). From which, for a unit
vector X orthogonal to ¢ such that AX = AX we get

(3.3) (2 A—a) ApX= (aA—2) ¢X.

Let V be an open set consisting of points x of M at which (2A—a)x =+ 0.
Then ApX = ugX on V, where we have put u= (aA—2)/(2A—a). Fr_om
(1.5) and (3.1) it follows that

(3.4) (=) (et A)—h| =0,

where h means the trace of A. Thus = Aor A= A+ holds on V.

For the case = A, it is a root of a quadratic equation ¥ —ax+1 =0
with constant coefficients, which means that A is constant. Since o* = 4,
weput a = +2 or @ = 2 coth28. Then it is seen that A = +1 for ¢ = £2
and A = coth 8 or tanh 8 for o = 2 coth24. This means that we have at most
of five kinds of principal curvatures e, coth 4, tanh §, and A, & such that
A+ = h. Since (3.3) implies that multiplicities of A and g are equal, say
m., we can put

h = (A+ ) mi+ m, coth 6+ m; tanh 6+ a,
from which together with A = A4y it follows that
(3.5) (l_ml)h: m; Coth 0+m3 tanh G+ a.

Since the right hand side of (3.5) is positive or negative according as § > 0
or § < 0, respectively, we have m, # 1, and A is constant.

On the other hand, it follows from h= A+ pthat 2A*—2hA+ah—2 = 0.
Thus all principal curvatures are constant on V. Since V is open and the
constancy of principal curvatures gives that V is closed, V coincides with M
itself or it is empty. If V is empty, then 2A = a gives aA = 2 because of
(3.3). Thus A = +1. Together with this fact we conclude that all principal
curvatures are constant on M. Thus we have the following,

Theorem 3.3. Let M be a real hypersurface of CH"(n = 3). Then the
Riceci tensor of M commutes with the almost contact structure of M induced
from CH" if and only if M is of type A,, A..

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/issl/24
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Proof. By the classification Theorem of Berndt M is of type A, A;
or B.

On the other hand, Montiel and Romero show that the real hypersurface
M of CH™ is of type A,, A, if and only if the almost contact structure tensor
commutes with the second fundamental form. Hence the type A,, A, naturally
satisfy S¢ = ¢S.

Now we suppose that M is of B-type. Then the table of Berndt [1] gives
that « = 2 tanh 24, A = tanh § and x = coth §. Since multiplicities of A
and u are equal, (3.4) gives A= a+(n—1)(A+u) = a+(n—1)h Thus
(n—2)h+a = 0, from which together with the fact that « = 4A/(1+ %) it
follows that 4 *+(n—2) (1 + A?)2 = 0. This contradicts.

Remark. For the real hypersurface of CP*(n = 3) Kimura [4] proved
that S¢ = @S if and only if M is of type A, A,, or M is locally congruent to
one of a certain hypersurface of type B, C, D or E.

4. Real hypersurfaces of M,(c), ¢+ 0. Let M be a pseudo-Einstein
real hypersurface of a complex space form M,(c), ¢ = 0. Then the Ricci
tensor S of M is given by SX = aX+b7(X)€ where a and b are C=functions.

From which it naturally satisfies the following.
4.2) R(X, Y)(SZ)+R(Y, Z)(SX)+ R(Z X)(SY) = 0,

for any X, Y, and Z in £, where we have put £é* the orthogonal complement
of £ in T,(M) for any x in M.

In this section, we are concerned with the converse problem. Namely
we will give another characterization of pseudo-Einstein real hypersurfaces
of My(c), ¢ #+ 0, with(4.1) and (4.2). From (4.1) it follows that p(AX)
= 0 for any X in £¢* By taking account of (1.3) and (1.5), the above equa-
tion (4.2) is equivalent to

g(QZ Y)oX+g(QX, Z)pY+g(QY, X)¢Z

U L 2g(4Y, Z)6PX+ 26(4Z. X)$PY+ 26(8X. Y)pPZ= 0

for any X, Y and Z in ¢4 where we have put P= A’—hA, h = trA, and
Q = Pg¢+ ¢P. Since ¢ is non-degenerate on £, (4.3) reduces to

8(QZ Y)X+g(QX Z)Y+g(QX. Y)Z

WA ol e(gY, 2) PX+ g(92, X) PY+glgX, Y)PZ] = 0.
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For a symmetric transformation P= A’— hA let X, Y, and Z be ortho-
normal eigenvectors such that

(4.5) PX= 0o, X, PY= 05 Y, and PZ= o, Z.
Thus, from which together with (4.4) it follows that

g(QZ Y)—2a,g(¢Z Y) = 0,
(4.6) g(QX, Z)—2es g(¢X, Z) = 0,
g(QY, X)—2a g(¢Y. Z) = 0.

Using (4.5) again to (4.6), we have

(es+a—2a,)g(9Y, Z) = 0,
(4.7) (ar+ar—20s)g(¢X, Z) = 0,
(a'r+as_202)g(¢y.- X) = 0.

Let us now decompose T (M) as following: TAM)= Pla,) ®--®
Plap), where P(a,) ={ X € T(M)|PX= o, X|(r=1,...,p), &,...,ap are
all distinct, and € in P(e).

Lemma 4.1. If p= 2 and dimP(a,) = 2, then dim P(e,) = 2, and
dimP(ar) = 1(r = 2).

Proof. Suppose dimP(a;) =3 or dimP(a,) =2 for some r= 2.
Then for any s = p, s # r, and any linearly independent vectors X, Y in
Ple;)(r=1,...,p), and Z in Pas), (4.7) give rise to

(as—ar)g(gY, Z) = 0,
(4.8) (as_ar)g(¢X, Z): O’
(ar_ﬂ’s)g(¢y: X) = O-

Since ar ¥ as. g(¢Y, Z) = g(¢X, Z) = g(¢Y, X) = 0, from which it fol-
lows that ¢X is orthogonal to P(as) for any s different from r. Thus ¢X
is contained in P(e,). In particular, if we put Y= X, then g(¢X, Y) =
g(¢X, $X) #+ 0. This contradicts. Thus we have the above Lemma.

Lemma 4.2, Ifp =2, then dim P(a,) = 1.

Proof. 1f we suppose dimP(a;) #+ 1, then by Lemma 1, we get dim
P(ay) = 2. Thus we can take a vector X in P(a,) orthogonal to £ Since
dim P(a,) = 2, ¢X is not contained in P{a;). Thus ¢X is in Pla;) ®---®
P(a,). Hence we can assume that there exists an element Y in P(a;) such

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 32/issl/24
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that g(¢X, Y) + 0.

Now let P= 3. Then let us take X, Y, and Z be orthonormal vectors in
P(a), Plas), and P(a,)(r = 3), respectively. From which and (4.7) it
follows that (ay+a:—2ar)g(¢X, Y) = 0. Thus, we get 2a, = oy +a for
r 2 3 because of g(¢X, Y) + 0. Hence we have p = 3. This implies that
dim P{a;)+ dim P(a,)+ dim P(a;) = 4 by virtur of Lemma 1. This contra-
dicts the fact dim T,(M) =5 for n = 3. Thus we should have p= 2.
But in this case we also have dim P(a;) + dim P(e;) = 3 by Lemma 1. This
also makes contradiction. Thus we get the above Lemma.

Lemma 4.3. p= 2.

Proof. Firstly we now consider for the case p= 3. Then by Lemma
4.2. dimP(a;) = 1. And we will show dim P(e;) =1 (r 2 2) for p = 3.
Thus, if we suppose dim P(a,) = 2 for some r = 2, then for any linearly
independent vectors X, Y in P(a,) and Z in P(as), r ¥+ s, s = 2, we get
g(¢X, Y)= g(oY, Z) = g(¢Z, X) = 0 by virture of (4.8). Hence we evoke
the same contradiction as LLemma 4.1. Thus we have dim P(e,) = 1 for any
r= 2,

Now we consider for p = 4. Then from above facts dim P(a,) = 1 for
any r = 2. Thus for X in P(a;), ¢X is contained in P(a;) ®:--® Pla,).
Hence we can take an element Y in P(q,) such that g(¢X, Y) #+= 0. For Zin
Pla,), r = 4, we have

(e:+a—20r)8(¢X, Y) = 0.
Since g(¢X, Y) #+ 0, we get 2o = a,+a; for r= 4. Thus p= 4. This
implies gl dim P(a,) = 4. This contradicts. Hence p = 3. For this case
we can also have Z‘,l dim P(e,) = 3. This also makes contradiction. Thus we
should have p = 2.

From Lemmas 4.1, 4.2 and 4.3 we get the following.

Theorem 4.4, Let M be a real hypersurface of a complex space form
M,(c), c = 0. IfM satisfies (4.1) and (4.2), then M is pseudo- Einstein.

Proof. By Lemma 4.3 we have dim P(ey) = 1, and dim P(a.) = 22
—2. Thus
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[44] 0
p=| *
0 az

This gives P= a; [+ (v — @) n ® £ From which and (1.5) it follows that
S=12n+1)c/4— | H(aez—ar—3¢c)n ® £ Hence M is pseudo-Einstein.

Remark. Recently Kimura and Maeda [5] introduced the notion of 7-
parallel second fundamental form A, that is, g((FxA)Y, Z) =0 for any
X, Y, and Zin £% And they showed that any real hypersurface M of CP"
with 7-parallel second fundamental form A and principal vector £ is of type
A, A; and B.

The condition £ is principal can not be omitted because a ruled real
hypersurface M in CP" has p-parallel second fundamental form A but £ is not
principal.

5. Real hypersurfaces of CP"” satisfying certain conditions. To give
another characterization of some type of real hypersurfaces of the complex
projective space CP" we now introduce the following.

Lemma 5.1. (Takagi [12]) If M is a connected complete totally 7-
umbilical real hypersurface in CP"(n = 2), then M is of type A,.

Lemma 5.2. (Yano and Kon [14]) Let M be a connected complete real
hypersurface in CP™(n = 3). If A+ Ap = k¢ for some constant k + 0, then
M is of type A, or B

By above Lemmas we can see that the type A, or B satisfies the
condition

(*) S¢+¢S= k¢ (k : constant).

And also pseudo-Einstein real hypersurfaces of CP" satisfy (*). As the
converse problem in this section we are devoted to the investigation of the
real hypersurfaces of CP" satisfying (*) and with principal structure
vector field £.

By (1.5), (*) is equivalent to

(5.1) A ¢+ pA — W Ap+ ¢A) = k¢,

where we have put £ = 2(2n+1)— k;, and b means the trace of A.
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Since CP™ has the Fubini-Study metric and the constant holomorphic
sectional curvature ¢ = 4, (2.3) implies that

(5.2) a(gA+ Ap)—2ApA+2¢ = 0.

From which it follows that if X is an eigenvector of A with eigenvalue A and
if X is orthogonal to ¢, then ¢X is an eigenvector of A with eigenvalue
u= (aA+2)/(2A—a). With this fact (5.1) implies

(5.3) L Rkt 2) = k.
Substituting x = (aA+2)/(2A—«a) into (5.3), we get

AN —4{at+ R) X +2(a*+ ha—2k) X

5.4
(5.4) +4(a— h+ ka)A+44+2ah—a* k= 0.

Let A1, Az, A3 and A, be the roots of the above equation. Then from the
roots and coefficient of (5.4) it follows that

)\1+;\2+/\3+I\4 = a+h,

Adet A As+ A At A Ast A Act As Ac = (o®+ ha—2k)/2,
A Az AsF A As s Az As A+ A Az Ay = —(a— b+ ka),

111 /lz As A.g = (4+20h_‘02 k)/4.

(5.5)

Substituting A = e+ m; A+ ms Ao+ mi(edi+2) /(24— o) +me(ade +2) /(2 A,
— @) into the above equation, and noticing ¢ and k are constant, we can see
that (5.5) consists of 4 linearly independent equation, where m; denotes the
(constant) multiplicities of pricipal curvatures (j= 1,2). Thus M has at
most five distinct constant principal curvatures. Hence by Theorem A, M is
homogeneous. Then by Takagi’s classification of homogeneous real hypersur-
faces we can suppose M is of type A, A:, B, C, D, and E.

Firstly, we suppose that M is one of type B, C, D and E. Then from the
table given in [11] its type has the following roots : A = cot (r—n/4), u=
— tan(r— n/4), and a = 2 cot 2r. Hence A+u= —4/a, Au= —1. Thus,
by (5.3) we get k= (4/a)*+ H4/a)+2. From which, (5.4) can be re-
written as following

202 M —2a(a+ W)X +|a*+ ha®—4a’—8ha— 32| X

(5.6) +2(3a®+3ha’*+162)A—a*(e*+ah+6) =0

Then (5.6) can be decomposed into
(5.7) (aX+4r—a)(2aX?—2(a?+ ha+4) A+ (a®+ ha*+64a)) = 0.
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Since cot (r—n/4), — tan (r— 7/4) satisfy aA’+4A—a = 0, another roots
cot 7, — tan r of C, D, and E should satisfy

(5.8) 2a)—2(a*+ ha+4) A+ o+ ha*+6a = 0.

On the other hand, cot r, — tan r are roots of A*—aA—1 = 0. From this
fact and the root and coefficient of of (5.8), it follows that

ha+4 = 0, and ¢*+ ha+8 = 0.

Thus a*+4 = 0. This contradicts. Thus the type of C, D, and E can not
occur.,
Next we consider for the type A,, A,. Then we introduce the following.

Lemma 5.3. (Okumura [10]) Let M be a real hypersurface of CP™ Then
M is of type A, or A; if and only if Agp = @A.

Since by Lemma 5.1. the type A, naturally satisfies { *) and its struc-
ture vector ¢ is principal, we restrict our attention to the type A,. Then
using Lemma 5.3 to (5.1), we get

(5.9) A g— hAg = kg/2.

From the table of type A, given in [11] it follows that for an eigenvector X
such that AX= — tan r X

(5.10) 2 cot® r—2hcot r = k.
Also for the case AX= cot rX, ApX = — tan r¢X we get
(5.11) 2 tan’ r+2htan r = k.

From(5.10) and (5.11) it follows that (cot r+ tan r) (cot r— tan r— &) = 0.
Since cot r+ tan r =0, h= cot r— tan r = a. Thus k = 2. Then(*) im-
plies S¢+ ¢S = 4np. From which and Lemma 5.3, it follows S¢ = ¢S =
2n¢. Hence S= 2nl—27 ® £ Thus the type of A, satisfying (*) is pseudo-
Einstein and M is M(2n—1, m,(m—1)/(n—m)) (cf. Yano and Kon [13]).
Hence we have the following.

Theorem 5.4. Lei M be a connected complete real hypersurface of CP"
and assume that £ is principal vector field on M. If M satisfies (*), then M
is of type Ay, Bor M is locally congruent to one of a certain hypersurface of
type A,.
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