Mathematical Journal of Okayama University

Volume 13, Issue 2

1967 November 1968

Article 3

A note on group rings of p-groups

Atsushi Nakajima*

Hisao Tominaga[†]

*Okayama University †Okayama University

Copyright ©1967 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

A NOTE ON GROUP RINGS OF *p*-GROUPS

ATSUSHI NAKAJIMA and HISAO TOMINAGA

Following [1], a ring B (with 1) is called *left perfect* if B is semiprimary and the (Jacodson) radical $\Re(B)$ of B is left *T*-nilpotent. As was noted in [4], every left perfect primary ring is a complete matrix ring over a local ring, where we take the term "local ring" in the sense that the set of all non-units of the ring (with 1) forms an ideal. One may remark here that the characteristic of a left perfect local ring is either 0 or a power of a prime. The principal aim of the present note is to give a theorem concerning group rings of *p*-groups over a left perfect primary ring, which will play an important role in [4].

Let B be a left perfect local ring, and G a group different from $\{1\}$. Then, the mapping $\psi: \sum \sigma x_{\sigma} \longrightarrow \sum \bar{x}_{\sigma}$ defines a ring homomorphism of the group ring GB onto the division ring $\bar{B}=B/\Re(B)$, where \bar{x} means the residue class of x module $\Re(B)$. The kernel \varDelta of ψ coincides with $\sum (1-\sigma)B+G\cdot\Re(B)$, and will be called the *fundamental ideal* of GB. Under these notations, we shall prove the following, whose second assertion contains [2; Th, 2.2] and [3; Lemma 3].

Lemma. (a) Let G be a finite group. If α is a unit of GB whenever $\psi(\alpha)$ is non-zero, then the order of G and the characteristic of B are powers of a prime p.

(b) The following conditions are equivalent: (1) Δ is nilpotent, and (2) $\Re(B)$ is nilpotent and the order of G and the characteristic of B are powers of a prime p.

Proof. (a) Let G be of order n. If B is of characteristic 0 then $\psi(\sum_{\sigma \in G} \sigma) = n \cdot 1 \neq 0$, because $\Re(B)$ is a nil-ideal. But, for any $\tau \in G$ different from 1 we have $(\sum \sigma)(1-\tau)=0$. This contradiction shows that B is of characteristic $p^{c}(p \text{ a prime})$. Now, suppose that $n = p^{c}n'$ with (n', p) = 1 and n' > 1. Then, for any prime divisor p' of n' we can find a p'-Sylow group G' of G. Since $\psi(\sum_{\sigma' \in G'} \alpha')$ is a power of p', it is a non-zero element of \overline{B} . While, $(\sum \sigma')(1-\tau')=0$ for any $\tau' \in G'$ different from 1, which is a contradiction.

(b) $(1) \Longrightarrow (2)$: Suppose $\varDelta^{m-1} \neq 0$ and $\varDelta^m = 0$. Let $\sum \sigma x_{\sigma}$ be a non-zero element of \varDelta^{m-1} . Then, for any $\tau \in G$ we have $(\sum \sigma x_{\sigma})(1-\tau)=0$, namely, $\sum \sigma x_{\sigma} = \sum \sigma x_{\sigma\tau}^{-1}$. Hence, $x_{\sigma} = x_{\sigma\tau}^{-1}$ for every σ . Taking $\sigma = \tau$, if follows $x_{\tau} = x_{1}$. Consequently, G must be of finite order. Now, our implication is obvious by (a).

Atsushi NAKAJIMA and Hisao TOMINAGA

108

(2) \Rightarrow (1): Let G be of order p^e , B of characteristic p^e , and $\Re(B)^n = 0$. In case e=1, noting that $(1-\sigma)^{ne}=0$ for every $\sigma \in G$, it will be easy to see that $\Delta^{pe+n}=0$. We can proceed therefore with the induction with respect to e. Let e>1, and G' a subgroup of the center of G whose order is p. Then, $\lambda: \sum \sigma x_{\sigma} \longrightarrow \sum \overline{\sigma} \overline{x}_{\sigma}$ defines a ring homomorphism of GB onto \overline{GB} , where $\overline{G} = G/G'$. Obviously. Ker λ is the ideal generated by the fundamental ideal Δ' of G'B. Accordingly, if $\Delta'^{m'}=0$ then (Ker $\lambda)^{m'}=0$. Now, noting that $\lambda(\Delta)$ is contained in the fundamental ideal $\overline{\Delta}$ of \overline{GB} and $\overline{\Delta}^{\overline{m}}=0$ for some \overline{m} , we readily obtain $\Delta^{\overline{m}m'}=0$.

The next will be easily seen (cf. [2; Th. 2.3]).

Corollary. Let B be a local ring with the nilpotent radical, and G a group different from $\{1\}$. Then, Δ is locally nilpotent if and only if the characteristic of B is a power of a prime p and G is a locally finite p-Group.

If B is a left perfect primary ring, then the center Z of B is a perfect local ring. Now, we shall prove the following:

Theorem. Let B be a left perfect primary ring with the center Z, G a finite group, and $G' \neq \{1\}$ a normal subgroup of G. If $\overline{G} = G/G'$ then the following conditions are equivalent: (1) $\sum \sigma x_{\sigma}$ is a unit of GB whenever $\sum \overline{\sigma} x_{\sigma}$ is a unit of \overline{GB} , (2) G'Z is a local ring, and (3) the order of G' and the characteristic of B are powers of a prime p.

Proof. The mapping $\varphi: \sum \sigma x_{\sigma} \longrightarrow \sum \overline{\sigma} x_{\sigma}$ is a ring homomorphism of *GB* onto \overline{GB} and Ker $\varphi = \sum_{\substack{\sigma \in \mathcal{G} \\ \sigma' \in \mathcal{G}'}} \sigma(1-\sigma')B$. Further, the mapping $\psi': \sum \sigma' z_{\sigma'} \longrightarrow \sum \overline{z}_{\sigma'}$ is a ring homomorphism of G'Z onto the field $\overline{Z} = Z/\Re(Z)$ where \overline{z} means the residue class of z modulo $\Re(Z)$, and Ker $\psi' = \sum (1-\sigma')Z + G' \cdot \Re(Z)$.

(1) \Rightarrow (2): If α is an arbitrary element of Ker φ then $1-\alpha$ is a unit as an inverse image of 1 relative to φ , and so Ker φ is contained in $\Re(GB)$. Since *GB* is left perfect by [4; Prop. 3.3 (b)]. Ker φ is a nil-ideal, whence we see that $\sum (1-\sigma')Z$ is a nil-ideal of *G'Z*. On the other hand, it is known that $G' \cdot \Re(Z)$ is contained in $\Re(G'Z)$. Hence, Ker ψ' coincides with the radical of G'Z and G'Z is a local ring.

(2) \Longrightarrow (3): Since G'Z is a local ring, $\Re(G'Z)$ coincides with Ker ψ' . If follows therefore every inverse image relative to ψ' of a non-zero elemetr of Z is a unit of G'Z. Accordingly, it follows (3) by Lemma (a).

 $(3) \Longrightarrow (1)$: Let P be the subring of B generated by 1. Then, P is a local subring of Z with the nilpotent radical and $\sum (1-\sigma')P$ is a nilpotent ideal of G'P by Lemma (b). Now, one will readily see that Ker φ is nilpo-

A NOTE ON GROUP RINGS OF *p*-GROUPS

tent, and then our implication is obvious.

REFERENCES

- [1] H. BASS: Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [2] G. LOSEY: On group algebras of p-groups, Michigan Math. J. 7 (1960), 237-240.
- [3] H. TOMINAGA: A note on Galois theory of primary rings, Math. J. Okayama Univ. 8 (1958), 117-123.
- [4] H. TOMINAGA: Some results on normal bases, Math. J. Okayama Univ. 13 (1968), 111-118.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received April 1, 1968)

109