View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Okayama University Scientific Achievement Repository

Mathematical Journal of Okayama
University

Volume 39, Issue 1 1997 Article 6
JANUARY 1997

On Rings Having a Faithful Noetherian
Module

Hiroaki Komatsu™ Kazuyuki Tanabe'

*Okayama University
fOkayama University

Copyright (©1997 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou


https://core.ac.uk/display/12531916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Komatsu and Tanabe: On Rings Having a Faithful Noetherian Module

Math. J. Okayama Univ. 39 (1997), 57-59

ON RINGS HAVING A FAITHFUL NOETHERIAN MODULE
HiroakI KOMATSU and Kazuyuk: TANABE

It is well known that every commutative ring with an identity element
and having a faithful Noetherian module is Noetherian (cf. {1, p.261]). In
this paper, we consider a noncommutative ring with or without an identity
element which has a faithful Noetherian or Artinian module, and we shall
show that every nil ideal of bounded index of such a ring is nilpotent.

For a nil ideal I of a ring R, n(I) is defined to be the supremum of
the nilpotency indeces of the elements in I.

Theorem 1. If a ring R has a faithful Noetherian left R-module M,
then every nil ideal I of R with n(I) < oo s nilpotent.

Proof. For a R-submodule IV of M and an ideal A of R, Ax N is
defined to be the set of all m € M satisfying Am C N. It is easy to see
the following properties.

(a) Ax N is a R-submodule of M containing N.

(b) (AB)* N = B x (A x N) for any ideals A, B.

We shall prove the theorem by induction on n(I). If n(I) = 1 then I = 0.
Let k be a positive integer and assume that every nil ideal I with n(I) < k
is nilpotent. Let I be a nil ideal of R with n(I) = k+ 1. Let J be the ideal
of R generated by all z* where z € I. Since M is Noetherian, there exists
a positive integer n such that J® *0 = J**1 %0,

Now suppose that J™ * 0 # M. Then the set

{(J?K)*0| K is an ideal of R, (J"K) 0 # M} (3J)

has a maximal member (J"L) % 0, where L is an ideal of R. Let = be an
arbitrary element in I. For any r € R, we see that 0 = (zFr 4+ )kl =
z*rz* 4+ ¥rzky for some y € I. Since y is nilpotent, we have zFrz* = 0.
Therefore, the ideal (z*) of R generated by z* is nilpotent. It is obvious

that (z*)* ((J"L)%0) D (J"L)*0. If (z*)* ((J"L)*0) = (J"L)*0, then we
have (;rk)2* ((J"L)*0) = (z*) * ((:ck) «{((J"L) *0)) = (z*) = ((J"L)*0) =
(J”L) %0. Continuing this method, we have (z*)” * ((J"L)*0) = (J"L)*0
for any positive integer v, which implies a contradiction (J"L) * 0 = M,
because (z*) is nilpotent. Hence, we have (z¥) * ((J"L) * 0) 2 (J"L) * 0.
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Since (z¥)* ((J"L)*0) = (J"L(z*)) %0, the maximality of (J"L)*0 implies
that (J"L(z*)) 0 = M, i.e., J°L(z*) = 0. Hence, we have J"LJ = 0.
Let A denote the annihilator of M/ ((J "L x 0). Then we have J C 4, and
so n((I + A)/A) < k. Hence, by the assumption of our induction, there
exists a positive integer m such that I™ C A, ie., I™ % ((J”L) * 0) =M.
Therefore, we have I * ( (J*L) *O) 2 (J"L)*0, and again by the maximality
of (J"L) %0, we have (J*LI)*0 = M, i.e., JPLI = 0. Then, for any z € I
and a € J"L, we see that 0 = (z+a)**! = z¥a. Hence, we have J"*1L = 0.
This implies that (J?L)*0 = L% (J"+0) = L+(J™"1%0) = (J*F1L)x0 = M,
a contradiction. Thus we have shown that J* «0 = M, ie., J* =0.

Let A; denote the annihilator of J'"!M/J'M (i =1, ..., n). Since J C A;,
by the assumption of our induction, there exist positive integers m; such
that ™ J"IM C J*M (i =1, ..., n). Putting ] = m; +---+m,, we have
I'M =0, that is, I' = 0.

Theorem 2. If a ring R has a faithful Artinian left R-module M,
then every nil ideal I of R with n(I) < oo ts nilpotent.

Proof. We shall prove the theorem by induction on n([I). If n(I) =1
then I = 0. Let k& be a positive integer and assume that every nil ideal I
with n(I) < k is nilpotent. Let I be a nil ideal of R with n(I) = k+1. Let
J be the ideal of R generated by all z¥ where z € I. Since M is Artinian,
there exists a positive integer n such that J"AM = J"T1M.
Now suppose that J™ 7 0. Then the set

{KJ"M | K is an ideal of R, KJ"M #0} (3J)

has a minimal member LJ"M, where L is an ideal of R. Let z be an
arbitrary element in I. As was shown in the proof of Theorem 1, the ideal
(z¥) of R generated by z* is nilpotent. Since LJ"M # 0, it follows that
(z¥)LJ"M C LJ"M, and so (z¥)LJ™ = 0 by the minimality of LJ"M.
Hence, we have JLJ" = 0. Let A denote the annihilator of LJ"M. Then
we have J C A, and so n(( + A)/A) < k. Hence, by the assumption of
our induction, there exists a positive integer m such that I™ C A, i.e.,
I™LJ" = 0. Therefore, we have ILJ"AM C LJ"M, and the minimality of
LJ*M implies that ILJ™ = 0. Then, for any z € I and a € LJ", we see
that 0 = (a + z)**! = az*. Hence, we have LJ"t! = 0. This implies that
LJ"M = LJ* 1AL =0, a contradiction. Thus we have shown that J" = 0.
The rest of the proof is quite similar to the proof of Theorem 1.
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In [2], the second author of this paper established amen rings. Ac-
cording to [2], a ring R is said to be amen if every Artinian left R-module
is Noetherian and every Noetherian left R-module is Artinian. By making
use of Theorems 1 and 2, we can give an easy proof to [2, Proposition 2].

Corollary 3 ([2, Proposition 2]). Let R be a ring and I a nil ideal
of R with n(I) < co. If R/I is amen then R is amen.

Proof. Let M be an Artinian left R-module. By Theorem 2, we have
I"M = 0 for some positive integer n. Since R/I is amen, all I'"1M/I'M
are Noetherian (¢ = 1, ..., n). Hence, M is Noetherian. Similarly, every
Noetherian left R-module is Artinian.
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