Mathematical Journal of Okayama University

The Spiegelungssatz for $\mathrm{p}=5$ from a Constructive Approach

Yasuhiro Kishi*

*Fukuoka University of Education

Copyright © 2005 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

The Spiegelungssatz for $\mathrm{p}=5$ from a Constructive Approach

Yasuhiro Kishi

Abstract

We describe explicitly the relation between the 5 -ranks of the ideal class groups of two quadratic fields with conductors m and 5 m , respectively, and that of the associated cyclic quartic field.

KEYWORDS: Class Groups, Quadratic Fields, Quartic Fields

Math. J. Okayama Univ. 47 (2005), 1-27

THE SPIEGELUNGSSATZ FOR $p=5$ FROM A CONSTRUCTIVE APPROACH

Yasuhiro KISHI

Abstract

We describe explicitly the relation between the 5 -ranks of the ideal class groups of two quadratic fields with conductors m and $5 m$, respectively, and that of the associated cyclic quartic field.

1. Introduction

The "Spiegelungssatz" gives the relation between the p-ranks of the ideal class groups of two different number fields. The first "Spiegelungssatz" was given by Scholz [10] in 1932 for $p=3$. He gave a relation between the 3-rank of the ideal class group of an imaginary quadratic field $\mathbb{Q}(\sqrt{d})$ and that of the associated real quadratic field $\mathbb{Q}(\sqrt{-3 d})$: Let r denote the former and s the latter. Then we have the inequalities $s \leq r \leq s+1$. Some extensions were given by several authors; for example, Leopoldt [6], Kuroda [5], and recently Gras [2]. According to them, the associated field of a quadratic field for $p=5$ is a cyclic quartic field. Moreover, the associated field of $\mathbb{Q}(\sqrt{d})$ and that of $\mathbb{Q}(\sqrt{5 d})$ are the same. In the present paper, we extend Scholz's inequalities to $p=5$ by constructing polynomials with data of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{5 d})$ which generate unramified cyclic quintic extensions of the associated quartic field; as a consequence, we describe explicitly the relation between the 5 -ranks of the ideal class groups of $\mathbb{Q}(\sqrt{d})$ and $\mathbb{Q}(\sqrt{5 d})$, and that of the associated quartic field.

Let $d(\neq 1)$ be a square free integer prime to 5 , and let ζ be a primitive fifth root of unity. We define two quadratic fields $k_{1}=\mathbb{Q}(\sqrt{d})$ and $k_{2}=\mathbb{Q}(\sqrt{5 d})$. Then there exists a unique proper subextension of the bicyclic biquadratic extension $k_{1}(\zeta) / \mathbb{Q}(\sqrt{5})$ other than $k_{1}(\sqrt{5})$ and $\mathbb{Q}(\zeta)$. We denote it by M. Then M is a cyclic quartic field, and $M(\zeta)$ coincides with $k_{1}(\zeta)$.

Let $\mathrm{Cl}\left(k_{i}\right)$ be the ideal class group of k_{i}, and let $\mathrm{Syl}_{5}^{\text {el }} \mathrm{Cl}\left(k_{i}\right)$ denote the elementary Sylow 5-subgroup of $\mathrm{Cl}\left(k_{i}\right)$. Moreover, let r_{i} be the 5 -rank of $\mathrm{Cl}\left(k_{i}\right)$. Then we can express

$$
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{i}\right)=\left\langle\left[\mathfrak{a}_{i 1}\right]\right\rangle \times \cdots \times\left\langle\left[\mathfrak{a}_{i r_{i}}\right]\right\rangle
$$

where $\mathfrak{a}_{i j}, 1 \leq j \leq r_{i}$, are non-principal prime ideals of k_{i} of degree 1 and prime to 5 . Then $\mathfrak{a}_{i j}^{5}$ is principal. Fix an integer $\alpha_{i j} \in \mathcal{O}_{k_{i}}$ with $\left(\alpha_{i j}\right)=\mathfrak{a}_{i j}^{5}$

[^0]for each $j ; \alpha_{i j}$ is not a fifth power in k_{i}. We define the sets $S\left(k_{i}\right)(i=1,2)$ as follows:
\[

S\left(k_{i}\right):= $$
\begin{cases}\left\{\alpha_{i j} \mid 1 \leq j \leq r_{i}\right\} \cup\left\{\varepsilon_{i}\right\} & \text { if } d>0 \\ \left\{\alpha_{i j} \mid 1 \leq j \leq r_{i}\right\} & \text { if } d<0\end{cases}
$$
\]

where ε_{i} is the fundamental unit of k_{i}, if $d>0$.
For $\alpha \in \mathcal{O}_{k_{1}}$ and for $\beta \in \mathcal{O}_{k_{2}}$, we define six conditions, (A-i) through (A-v) and (B), as follows:

$$
\begin{aligned}
(\mathrm{A}-\mathrm{i}) & \operatorname{Tr}_{k_{1}}(\alpha)^{2} \equiv 4 N_{k_{1}}(\alpha)\left(\bmod 5^{3}\right) ; \\
(\mathrm{A}-\mathrm{ii}) & \operatorname{Tr}_{k_{1}}(\alpha) \equiv 0\left(\bmod 5^{2}\right) ; \\
(\mathrm{A}-\mathrm{iii}) & \operatorname{Tr}_{k_{1}}(\alpha)^{2} \equiv N_{k_{1}}(\alpha)\left(\bmod 5^{2}\right) ; \\
\text { (A-iv) } & \operatorname{Tr}_{k_{1}}(\alpha)^{2} \equiv 2 N_{k_{1}}(\alpha)\left(\bmod 5^{2}\right) ; \\
(\mathrm{A}-\mathrm{v}) & \operatorname{Tr}_{k_{1}}(\alpha)^{2} \equiv 3 N_{k_{1}}(\alpha)\left(\bmod 5^{2}\right) ; \\
\text { (B) } & \operatorname{Tr}_{k_{2}}(\beta)^{2} \equiv 4 N_{k_{2}}(\beta)\left(\bmod 5^{2}\right),
\end{aligned}
$$

where $N_{k_{i}}$ and $\operatorname{Tr}_{k_{i}}$ are the norm map and the trace map of k_{i} / \mathbb{Q}, respectively. Under the above notation, we define δ_{1} and δ_{2} respectively by

$$
\begin{aligned}
& \delta_{1}:= \begin{cases}1 & \begin{array}{l}
\text { if none of the five conditions (A-i) through (A-v) } \\
\text { holds for some } \alpha \in S\left(k_{1}\right),
\end{array} \\
0 & \text { if one of the five conditions (A-i) through (A-v) } \\
\text { holds for every } \alpha \in S\left(k_{1}\right),\end{cases} \\
& \delta_{2}:= \begin{cases}1 & \text { if the condition (B) does not hold for some } \beta \in S\left(k_{2}\right), \\
0 & \text { if the condition (B) holds for every } \beta \in S\left(k_{2}\right) .\end{cases}
\end{aligned}
$$

Main Theorem. Let the notation be as above. Moreover let r be the 5-rank of the ideal class group of M. Then we have

$$
r= \begin{cases}r_{1}+r_{2}+2-\delta_{1}-\delta_{2} & \text { if } d>0 \\ r_{1}+r_{2}-\delta_{1}-\delta_{2} & \text { if } d<0\end{cases}
$$

Remark 1.1. (1) The set $S\left(k_{i}\right)$ depends on the choice of generators of $\mathrm{Syl}_{5}^{\mathrm{el} \mathrm{l}} \mathrm{Cl}\left(k_{i}\right)$. However, δ_{i} does not so (cf. Proposition 5.1).
(2) Case (A-iv) occurs only when $d \equiv \pm 1(\bmod 5)$, and cases (A-iii), (A-v) occur only when $d \equiv \pm 2(\bmod 5)$ (cf. Proposition 5.5).

Remark 1.2. It follows from known results; for example, [11, Section 10] and [2, Théorème 7.7], and so on, that the difference between r and $r_{1}+r_{2}$ is at most equal to 2 .

For our proof of the main theorem, we give all of those unramified cyclic quintic extensions of M which are F_{5}-extensions of \mathbb{Q}, by constructing quintic polynomials with rational coefficients. Here for an odd prime p in general, F_{p} denotes the Frobenius group of order $p(p-1)$:

$$
F_{p}=\left\langle\sigma, \iota \mid \sigma^{p}=\iota^{p-1}=1, \iota^{-1} \sigma \iota=\sigma^{a}\right\rangle
$$

where a is a primitive root modulo p. According to class field theory, $\mathrm{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}(M)$ is isomorphic to the Galois group of the composite field of all unramified cyclic quintic extensions of M over M. However, in Section 2 we show that the 5 -rank of $\mathrm{Cl}(M)$ can be calculated by considering only unramified cyclic quintic extensions of M which are F_{5}-extensions of \mathbb{Q}. In Section 3, we study F_{p}-polynomials for a general odd prime p. By applying Section 3 to the case $p=5$, we construct unramified cyclic quintic extensions of M which are F_{5}-extensions of \mathbb{Q} in Section 4 . In Section 5 , we finish the proof of the main theorem. As an application of our main theorem, we give another proof of Parry's result on the 5 -divisibility of the class number of a certain imaginary cyclic quartic field in Section 6 . We give in the last Section 7, some numerical examples.

2. Classification of unramified cyclic quintic extensions

In this section, we will use the same notation as in Section 1.
Fix a generator ρ of $\operatorname{Gal}\left(M(\zeta) / k_{1}\right)$, and assume that $\zeta^{\rho}=\zeta^{2}$. We classify unramified cyclic quintic extensions E of M into the following three types:
(i) E / \mathbb{Q} is normal and its Galois group is

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\langle\sigma, \iota \mid \sigma^{5}=\iota^{4}=1, \iota^{-1} \sigma \iota=\sigma^{2}\right\rangle
$$

with $\left.\iota\right|_{M}=\left.\rho\right|_{M}$;
(ii) E / \mathbb{Q} is normal and its Galois group is

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\langle\sigma, \iota \mid \sigma^{5}=\iota^{4}=1, \iota^{-1} \sigma \iota=\sigma^{3}\right\rangle
$$

with $\left.\iota\right|_{M}=\left.\rho\right|_{M}$;
(iii) E / \mathbb{Q} is not normal.

Remark 2.1. As is observed in [7], every unramified cyclic quintic extension of M is normal over $\mathbb{Q}(\sqrt{5})$. From the fact that the only primitive roots modulo 5 are 2 and 3, and the fact that the class number of $\mathbb{Q}(\sqrt{5})$ is not divisible by 5 , every unramified cyclic quintic extension of M satisfies one of the above three conditions.

Definition 2.2. An unramified cyclic quintic extension E of M is said to be of Type (I), (II) or (III) if E satisfies the condition (i), (ii) or (iii), respectively.

Proposition 2.3. Let E be an unramified cyclic quintic extension of M of Type (III). Then there exist unramified cyclic quintic extensions E_{1} / M and E_{2} / M of Type (I) and Type (II), respectively, so that we have $E \subset E_{1} E_{2}$.

For our proof of this proposition we need the following two lemmas.
Lemma 2.4. Let E be an unramified cyclic quintic extension of M. If E is of Type (III), then the Galois closure of E over \mathbb{Q} is of degree 100 , and has two subfields of degree 20 which are normal over \mathbb{Q}.

Proof. Assume that E is of Type (III). Since E / M is an unramified extension, E is normal over $\mathbb{Q}(\sqrt{5})$. Let $h(X) \in \mathbb{Q}(\sqrt{5})[X]$ be a polynomial of degree 5 which generates E over $\mathbb{Q}(\sqrt{5})$. Since E / \mathbb{Q} is not normal, we have $h(X) \notin \mathbb{Q}[X]$. Let ν be a generator of $\operatorname{Gal}(\mathbb{Q}(\sqrt{5}) / \mathbb{Q})$. Then $h^{\nu}(X)$ is irreducible over $\mathbb{Q}(\sqrt{5})$. Denote the minimal splitting field of $h^{\nu}(X)$ over $\mathbb{Q}(\sqrt{5})$ by E^{\prime}. Then $E E^{\prime}$ is the minimal splitting field of $h(X) h^{\nu}(X)$ over $\mathbb{Q}(\sqrt{5})$. Since $h(X) h^{\nu}(X) \in \mathbb{Q}[X], E E^{\prime} / \mathbb{Q}$ is normal. Hence the Galois closure \bar{E} of E over \mathbb{Q} is contained in $E E^{\prime}$. On the other hand, E^{\prime} contains M because M / \mathbb{Q} is normal. Since $E^{\prime} / \mathbb{Q}(\sqrt{5})$ is normal, E^{\prime} is a cyclic quintic extension of M. Hence $E E^{\prime}$ is a bicyclic biquintic extension of M; that is, $\operatorname{Gal}\left(E E^{\prime} / M\right) \simeq C_{5} \times C_{5}$. Since the extension $E E^{\prime} / E$ has no proper subfield, $E E^{\prime}$ coincides with \bar{E}. Then we have

$$
[\bar{E}: \mathbb{Q}]=[\bar{E}: M][M: \mathbb{Q}]=25 \cdot 4=100 .
$$

Let us write $G=\operatorname{Gal}(\bar{E} / \mathbb{Q})$ for simplicity. Let $H_{1}:=\left\langle\sigma_{1}\right\rangle$ and $H_{2}:=\left\langle\sigma_{2}\right\rangle$ be the subgroups of G corresponding to E and E^{\prime}, respectively, and put $A:=H_{1} \times H_{2}$. Moreover, let $B:=\langle\iota\rangle$ be the subgroup of G of order 4. By $(|A|,|B|)=1$, we have

$$
G=A B=\left\langle\sigma_{1}, \sigma_{2}, \iota\right\rangle .
$$

We now consider a subgroup $\operatorname{Gal}(\bar{E} / \mathbb{Q}(\sqrt{5}))$ of G. Since E and E^{\prime} are both D_{5}-extensions of $\mathbb{Q}(\sqrt{5})$, we can express

$$
\operatorname{Gal}(\bar{E} / \mathbb{Q}(\sqrt{5}))=\left\langle\begin{array}{l|l}
\sigma_{1}, \sigma_{2}, \iota^{2} & \begin{array}{l}
\sigma_{1}^{5}=\sigma_{2}^{5}=\left(\iota^{2}\right)^{2}=1, \sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1} \\
\iota^{-2} \sigma_{1} \iota^{2}=\sigma_{1}^{-1}, \iota^{-2} \sigma_{2} \iota^{2}=\sigma_{2}^{-1}
\end{array}
\end{array}\right\rangle
$$

Since $E^{\iota}=E^{\prime}$, we get

$$
\left(E^{\prime}\right)^{\iota-1} \sigma_{1} \iota=E^{\sigma_{1} \iota}=E^{\iota}=E^{\prime} .
$$

Therefore, we have $\iota^{-1} \sigma_{1} \iota=\sigma_{2}^{x}$ for some $x, 1 \leq x \leq 4$. With replacement of a generator σ_{2}, we may assume $x=1$. In a similar way, we get $\iota^{-1} \sigma_{2} \iota=\sigma_{1}^{y}$ for some $y, 1 \leq y \leq 4$. Then we have

$$
\sigma_{1}^{-1}=\iota^{-2} \sigma_{1} \iota^{2}=\iota^{-2}\left(\iota \sigma_{2} \iota^{-1}\right) \iota^{2}=\iota^{-1} \sigma_{2} \iota=\sigma_{1}^{y},
$$

and hence $y=4$. From this, we see that $\left\langle\sigma_{1} \sigma_{2}^{2}\right\rangle$ and $\left\langle\sigma_{1} \sigma_{2}^{3}\right\rangle$ are both normal subgroup of G. Indeed, we have

$$
\begin{aligned}
& \iota^{-1}\left(\sigma_{1} \sigma_{2}^{2}\right) \iota=\sigma_{2} \iota^{-1} \iota \sigma_{1}^{-2}=\sigma_{1}^{3} \sigma_{2}=\left(\sigma_{1} \sigma_{2}^{2}\right)^{3} \\
& \iota^{-1}\left(\sigma_{1} \sigma_{2}^{3}\right) \iota=\sigma_{2} \iota^{-1} \iota \sigma_{1}^{-3}=\sigma_{1}^{2} \sigma_{2}=\left(\sigma_{1} \sigma_{2}^{3}\right)^{2}
\end{aligned}
$$

Then the two subfields of \bar{E} corresponding to $\left\langle\sigma_{1} \sigma_{2}^{2}\right\rangle$ and $\left\langle\sigma_{1} \sigma_{2}^{3}\right\rangle$ are normal over \mathbb{Q} and of degree 20. The proof is completed.

Lemma 2.5. Let E_{1} and E_{2} be unramified cyclic quintic extensions of M. If both of them are of Type (I) (resp. of Type (II)), then all proper subextensions of $E_{1} E_{2} / M$ are of Type (I) (resp. of Type (II)).

Proof. We note that all proper subextensions of $E_{1} E_{2} / M$ are unramified cyclic quintic extensions of M.

Now express

$$
\operatorname{Gal}\left(E_{1} E_{2} / \mathbb{Q}\right)=\left\langle\sigma_{1}, \sigma_{2}, \iota \mid \sigma_{1}^{5}=\sigma_{2}^{5}=\iota^{4}=1, \sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}\right\rangle
$$

with $\left.\iota\right|_{M}=\left.\rho\right|_{M}$ and let $\left\langle\sigma_{1}\right\rangle$ and $\left\langle\sigma_{2}\right\rangle$ be the subgroups of $\operatorname{Gal}\left(E_{1} E_{2} / \mathbb{Q}\right)$ corresponding to E_{1} and E_{2}, respectively. Then we have

$$
\operatorname{Gal}\left(E_{1} / \mathbb{Q}\right)=\left\langle\left.\sigma_{2}\right|_{E_{1}},\left.\iota\right|_{E_{1}}\right\rangle \text { and } \operatorname{Gal}\left(E_{2} / \mathbb{Q}\right)=\left\langle\left.\sigma_{1}\right|_{E_{2}}, \iota \mid E_{2}\right\rangle
$$

Hence by the assumption, the relations $\iota^{-1} \sigma_{1} \iota=\sigma_{1}^{l}$ and $\iota^{-1} \sigma_{2} \iota=\sigma_{2}^{l}$ hold, where $l=2$ or 3 according to whether E_{1} and E_{2} are of Type (I) or of Type (II). Note that every proper subextensions of $E_{1} E_{2} / M$ except for E_{1} and E_{2} corresponds to a subgroup $\left\langle\sigma_{1}^{j} \sigma_{2}\right\rangle$ of $\operatorname{Gal}\left(E_{1} E_{2} / \mathbb{Q}\right)$ for some $j, 1 \leq$ $j \leq 4$. Since

$$
\iota^{-1}\left(\sigma_{1}^{j} \sigma_{2}\right) \iota=\left(\iota^{-1} \sigma_{1}^{j} \iota\right)\left(\iota^{-1} \sigma_{2} \iota\right)=\left(\iota^{-1} \sigma_{1} \iota\right)^{j}\left(\iota^{-1} \sigma_{2} \iota\right)=\left(\sigma_{1}^{l}\right)^{j} \sigma_{2}^{l}=\left(\sigma_{1}^{j} \sigma_{2}\right)^{l}
$$

we obtain the desired conclusion.
Proof of Proposition 2.3. Let E be an unramified cyclic quintic extension of M of Type (III), and let τ be a automorphism of E / \mathbb{Q} of order 2 . Since M is normal over \mathbb{Q}, E^{τ} contains M. By using Lemma 2.4 , the Galois closure \bar{E} of E over \mathbb{Q} has two subfields of degree 20 which are normal over \mathbb{Q}. We denote them by E_{1} and E_{2}. It is clear that $\bar{E}=E E^{\tau}=E_{1} E_{2}$. Since E and E^{τ} are both unramified over M, so is \bar{E}. Then E_{1} and E_{2} are both unramified over M also. By using Lemma 2.5, one is of Type (I) and the other is of Type (II).

Let \bar{E}_{1} (resp. \bar{E}_{2}) be the composite field of all unramified cyclic quintic extensions of M of Type (I) (resp. of Type (II)). Then by using Lemma 2.5, we have

$$
\begin{equation*}
\bar{E}_{1} \cap \bar{E}_{2}=M \tag{2.1}
\end{equation*}
$$

Put $\bar{E}:=\bar{E}_{1} \bar{E}_{2}$. It is clear that \bar{E} is unramified over M and contains all unramified cyclic quintic extensions of M of Types (I) or (II). Let E_{3} be an unramified cyclic quintic extension of M of Type (III). Then by Proposition 2.3, we have $E_{3} \subset \bar{E}_{1} \bar{E}_{2}=\bar{E}$. Hence the composite field of all unramified cyclic quintic extensions of M coincides with \bar{E}. From this, together with (2.1), we can prove

$$
\begin{equation*}
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}(M) \simeq \operatorname{Gal}(\bar{E} / M) \simeq \operatorname{Gal}\left(\bar{E}_{1} / M\right) \times \operatorname{Gal}\left(\bar{E}_{2} / M\right) \tag{2.2}
\end{equation*}
$$

We see therefore that the 5 -rank of $\mathrm{Cl}(M)$ can be calculated by considering only unramified cyclic quintic extensions of M of Types (I) and (II).

3. F_{p}-EXTENSIONS OF THE RATIONAL NUMBER FIELD

First we review a part of Imaoka and the author's work in [4].
Let p be an odd prime and let ζ be a primitive p-th root of unity. Let k be a quadratic field different from $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right)$. Then there exists a unique proper subextension of the bicyclic biquadratic extension $k(\zeta) / \mathbb{Q}\left(\zeta+\zeta^{-1}\right)$ other than $k\left(\zeta+\zeta^{-1}\right)$ and $\mathbb{Q}(\zeta)$. We denote it by M. Then M is a cyclic field of degree $p-1$.

Fix a generator τ of $\operatorname{Gal}(M(\zeta) / M)$. We define subsets $\mathcal{M}(M)$ and $\mathcal{N}(M)$ of $M(\zeta)^{\times}$as follows:

$$
\begin{aligned}
\mathcal{M}(M) & :=\left\{\gamma \in M(\zeta)^{\times} \mid \gamma^{-1+\tau} \notin M(\zeta)^{p}\right\} \\
\mathcal{N}(M) & :=M(\zeta)^{\times} \backslash \mathcal{M}(M)
\end{aligned}
$$

For $\alpha \in k$, we define the polynomial $f_{p}(X ; \alpha)$ by

$$
f_{p}(X ; \alpha):=\sum_{i=0}^{(p-1) / 2}(-N(\alpha))^{i} \frac{p}{p-2 i}\binom{p-i-1}{i} X^{p-2 i}-N(\alpha)^{(p-1) / 2} \operatorname{Tr}(\alpha)
$$

where N and Tr are the norm map and the trace map of k / \mathbb{Q}. Denote the minimal splitting field of $f_{p}(X ; \alpha)$ over \mathbb{Q} by K_{α}.

Proposition 3.1 ([4, Theorem 2.1, Corollary 2.6]). Let the notation be as above. Fix a generator ρ of $\operatorname{Gal}(M(\zeta) / k)$, and take an element $l(\rho) \in \mathbb{Z}$ so that we have $\zeta^{\rho}=\zeta^{l(\rho)}$. Then for $\alpha \in \mathcal{M}(M) \cap k, K_{\alpha}$ is an F_{p}-extension of \mathbb{Q} containing M. Furthermore, let σ and ι be generators of $\operatorname{Gal}\left(K_{\alpha} / \mathbb{Q}\right)$ which satisfy the following two relations:
(i) $\left.\iota\right|_{M}=\left.\rho\right|_{M}$;
(ii) $\sigma^{p}=\iota^{p-1}=1$.

Then we have

$$
\iota^{-1} \sigma \iota=\sigma^{l(\rho)}
$$

Conversely, every Galois extension E of \mathbb{Q} containing M with Galois group

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\langle\sigma, \iota \mid \sigma^{p}=\iota^{p-1}=1, \iota^{-1} \sigma \iota=\sigma^{l(\rho)}\right\rangle
$$

where $\left.\iota\right|_{M}=\left.\rho\right|_{M}$, is given as $E=K_{\alpha}$ for some $\alpha \in \mathcal{M}(M) \cap k$.
A criterion for two fields $K_{\alpha_{1}}$ and $K_{\alpha_{2}}$ with $\alpha_{1}, \alpha_{2} \in \mathcal{M}(M) \cap k$ to coincide with each other is given by the following proposition.

Proposition 3.2 ([4, Proposition 1.3]). For elements $\alpha_{1}, \alpha_{2} \in \mathcal{M}(M) \cap k$, the following statements are equivalent:
(a) $K_{\alpha_{1}}=K_{\alpha_{2}}$;
(b) $\alpha_{1}^{n} / \alpha_{2} \in \mathcal{N}(M)$ for some $n \in \mathbb{Z} \backslash p \mathbb{Z}$.

Remark 3.3. It follows from this proposition that we may replace $\mathcal{M}(M) \cap k$ by $\mathcal{M}(M) \cap \mathcal{O}_{k}$ in the statement of Proposition 3.1.

Next we show the following proposition with respect to the ramification. For a prime number p and for an integer m, we denote by $v_{p}(m)$ the greatest exponent μ of p such that $p^{\mu} \mid m$.

Proposition 3.4. Let q be a prime and θ be a root of $f_{p}(X ; \alpha)$ for $\alpha \in$ $\mathcal{M}(M) \cap \mathcal{O}_{k}$. Assume that $(N(\alpha), \operatorname{Tr}(\alpha))=1$. Then the condition

$$
v_{q}(N(\alpha)) \not \equiv 0(\bmod p)
$$

is a sufficient condition for the prime q to be totally ramified in $\mathbb{Q}(\theta)$. Moreover, if $q \neq p$, it is also necessary.

For the proof of this proposition, we need the following Sase's results.
Proposition 3.5 ([9, Proposition 2]). Let $p(\neq 2)$ and q be prime numbers. Suppose that the polynomial

$$
\varphi(X)=X^{p}+\sum_{j=0}^{p-2} a_{j} X^{j}, \quad a_{j} \in \mathbb{Z}
$$

is irreducible over \mathbb{Q} and satisfies the condition

$$
\begin{equation*}
v_{q}\left(a_{j}\right)<p-j \quad \text { for some } j, 0 \leq j \leq p-2 \tag{3.1}
\end{equation*}
$$

Let θ be a root of $\varphi(X)$.
(1) If q is different from p, then q is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ if and only if

$$
0<\frac{v_{q}\left(a_{0}\right)}{p} \leq \frac{v_{q}\left(a_{j}\right)}{p-j} \quad \text { for every } j, 1 \leq j \leq p-2
$$

(2) The prime p is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$ if and only if one of the following conditions (S-i), (S-ii) holds:
(S-i) $0<\frac{v_{p}\left(a_{0}\right)}{p} \leq \frac{v_{p}\left(a_{j}\right)}{p-j} \quad$ for every $j, 1 \leq j \leq p-2$;
(S-ii) $\quad(\mathrm{S}-\mathrm{ii}-1) v_{p}\left(a_{0}\right)=0$,
(S-ii-2) $v_{p}\left(a_{j}\right)>0 \quad$ for every $j, 1 \leq j \leq p-2$,
(S-ii-3) $\frac{v_{p}\left(\varphi\left(-a_{0}\right)\right)}{p} \leq \frac{v_{p}\left(\varphi^{(j)}\left(-a_{0}\right)\right)}{p-j} \quad$ for every $j, 1 \leq j \leq p-2$, and
$(\mathrm{S}-\mathrm{ii}-4) v_{p}\left(\varphi^{(j)}\left(-a_{0}\right)\right)<p-j \quad$ for some $j, 0 \leq j \leq p-1$,
where $\varphi^{(j)}(X)$ is the j-th differential of $\varphi(X)$.
Proof of Proposition 3.4. Let α be an element of $\mathcal{M}(M) \cap \mathcal{O}_{k}$. It follows from Proposition 3.1 that $f_{p}(X ; \alpha)$ is irreducible over \mathbb{Q}. Let q be a prime number. Express

$$
v_{q}\left(N(\alpha)^{(p-1) / 2}\right)=p u+v, \quad u, v \in \mathbb{Z}, \quad 0 \leq v \leq p-1, \quad u \geq 0
$$

and put

$$
N(\alpha)=q^{2(p u+v) /(p-1)} w, \quad w \in \mathbb{Z}, \quad q \nmid w .
$$

Then we have

$$
\begin{aligned}
f_{p}(X ; \alpha)=\sum_{i=0}^{(p-1) / 2} & \left(-q^{2(p u+v) /(p-1)} w\right)^{i} \frac{p}{p-2 i}\binom{p-i-1}{i} X^{p-2 i} \\
& -q^{p u+v} w^{(p-1) / 2} \operatorname{Tr}(\alpha) .
\end{aligned}
$$

Divide both sides of this equation by $q^{p u}$, and put $X=q^{u} Y$; then we have

$$
\begin{aligned}
g_{p}(Y ; \alpha): & =\frac{f_{p}\left(q^{u} Y ; \alpha\right)}{q^{p u}} \\
= & \sum_{i=0}^{(p-1) / 2} q^{2 i(u+v) /(p-1)}(-w)^{i} \frac{p}{p-2 i}\binom{p-i-1}{i} Y^{p-2 i} \\
& \quad-q^{v} w^{(p-1) / 2} \operatorname{Tr}(\alpha)
\end{aligned}
$$

Since

$$
0 \leq \frac{2(u+v)}{p-1}=\frac{2(p u+v)}{p-1}-2 u \in \mathbb{Z}
$$

we have $g_{p}(Y ; \alpha) \in \mathbb{Z}[Y]$. Let denote the coefficient of Y^{j} in $g_{p}(Y ; \alpha)$ by a_{j}. When $q \nmid N(\alpha)$, we have $v_{q}\left(a_{1}\right)=0$ or 1 according to whether q is equal to p or not; and hence $v_{q}\left(a_{1}\right)<p-1$. When $q \mid N(\alpha)$, we have $v_{q}\left(a_{0}\right)=v<p$
because $(N(\alpha), \operatorname{Tr}(\alpha))=1$. Therefore, $g_{p}(Y ; \alpha)$ satisfies the condition (3.1) in any case. Hence we can apply Proposition 3.5 to $g_{p}(Y ; \alpha)$.

Assume that $v_{q}(N(\alpha)) \not \equiv 0(\bmod p)$. Then we have $v_{q}(\operatorname{Tr}(\alpha))=0$ by the assumption. Let us show the inequality

$$
\begin{equation*}
0<\frac{v_{q}\left(a_{0}\right)}{p} \leq \frac{v_{q}\left(a_{j}\right)}{p-j} \quad \text { for every } j, 1 \leq j \leq p-2 \tag{3.2}
\end{equation*}
$$

Since $v \neq 0$, the first inequality of the condition (3.2) holds. We see that, for every $j, 1 \leq j \leq p-2$,

$$
\begin{aligned}
\frac{v_{q}\left(a_{j}\right)}{p-j}-\frac{v_{q}\left(a_{0}\right)}{p} & \geq \frac{\frac{2(u+v)}{p-1} \cdot \frac{p-j}{2}+\varepsilon}{p-j}-\frac{v}{p} \\
& =\frac{p u+v}{p(p-1)}+\frac{\varepsilon}{p-j} \\
& >0
\end{aligned}
$$

here $\varepsilon=1$ or 0 according to whether q is equal to p or not. Hence the second inequality of (3.2) also holds. Therefore, q is totally ramified in $\mathbb{Q}(\theta)$.

Assume that $q \neq p$ and $v_{q}(N(\alpha)) \equiv 0(\bmod p)$. In this case, the inequality (3.2) does not hold. Indeed, we have $a_{p-2}=-p w \not \equiv 0(\bmod q)$ because $v=0$, if $q \nmid N(\alpha)$, and $a_{0}=w^{(p-1) / 2} \operatorname{Tr}(\alpha) \not \equiv 0(\bmod q)$ because $(N(\alpha), \operatorname{Tr}(\alpha))=1$, if $q \mid N(\alpha)$. Therefore, q is not totally ramified in $\mathbb{Q}(\theta)$. The proof is completed.

4. Construction of unramified cyclic Quintic extensions

In this section, we apply the previous section to the case $p=5$.
Let ζ be a primitive fifth root of unity, and let $k=\mathbb{Q}(\sqrt{D})$ be a quadratic field, where D is a square free integer and is different from 5 . Let M be the same definition as in Section 3; then M is a cyclic quartic field containing $\mathbb{Q}(\sqrt{5})$. Fix a generator ρ of $\operatorname{Gal}(M(\zeta) / k)$, and take an element $l(\rho) \in \mathbb{Z}$ so that we have $\zeta^{\rho}=\zeta^{l(\rho)}$. Moreover, we define subsets $\mathcal{M}_{5}(M)$ and $\mathcal{N}_{5}(M)$ of $M(\zeta)^{\times}$as follows:

$$
\begin{aligned}
\mathcal{M}_{5}(M) & :=\left\{\gamma \in M(\zeta)^{\times} \mid \gamma^{-1+\tau} \notin M(\zeta)^{5}\right\} \\
\mathcal{N}_{5}(M) & :=M(\zeta)^{\times} \backslash \mathcal{M}_{5}(M)
\end{aligned}
$$

where τ is a generator of $\operatorname{Gal}(M(\zeta) / M)$. Furthermore, we define a subset $U(k)$ of \mathcal{O}_{k} as follows:

$$
U(k):=\left\{\alpha \in \mathcal{O}_{k} \mid(N(\alpha), \operatorname{Tr}(\alpha))=1, N(\alpha) \in \mathbb{Z}^{5}, \alpha \notin\left(\mathcal{O}_{k}\right)^{5}\right\}
$$

We consider the polynomial

$$
\begin{aligned}
f(X ; \alpha) & :=f_{5}(X ; \alpha) \\
& =X^{5}-5 N(\alpha) X^{3}+5 N(\alpha)^{2} X-N(\alpha)^{2} \operatorname{Tr}(\alpha), \quad \alpha \in \mathcal{O}_{k}
\end{aligned}
$$

Denote the minimal splitting field of $f(X ; \alpha)$ over \mathbb{Q} by K_{α}.
First we show the following proposition.
Proposition 4.1. Let the notation be as above. Then the following statements hold.
(1) For $\alpha \in U(k), K_{\alpha}$ is normal over \mathbb{Q} and is a cyclic quintic extension of M unramified outside 5 . Moreover, let σ and ι be generators of $\operatorname{Gal}\left(K_{\alpha} / \mathbb{Q}\right)$ with $\sigma^{5}=\iota^{4}=1$ and $\left.\iota\right|_{M}=\left.\rho\right|_{M}$. Then we have

$$
\operatorname{Gal}\left(K_{\alpha} / \mathbb{Q}\right)=\left\langle\sigma, \iota \mid \sigma^{5}=\iota^{4}=1, \iota^{-1} \sigma \iota=\sigma^{l(\rho)}\right\rangle
$$

(2) Let E be an unramified cyclic quintic extension of M. Assume that E / \mathbb{Q} is normal and its Galois group is

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\langle\sigma, \iota \mid \sigma^{5}=\iota^{4}=1, \iota^{-1} \sigma \iota=\sigma^{l(\rho)}\right\rangle \quad \text { with }\left.\quad \iota\right|_{M}=\left.\rho\right|_{M} .
$$

Then there exists an element $\alpha \in U(k)$ so that we have $E=K_{\alpha}$.
To prove this proposition, we need the following two lemmas.
Lemma 4.2. The set $U(k)$ is included in $\mathcal{M}_{5}(M) \cap \mathcal{O}_{k}$.
Proof. Let α be an element of $U(k)$. Since $\alpha \notin\left(\mathcal{O}_{k}\right)^{5}$ and $N(\alpha) \in \mathbb{Z}^{5}$, we have $\alpha^{-1+\tau}=\alpha^{-2} N(\alpha) \notin M(\zeta)^{5}$. Therefore, we get $\alpha \in \mathcal{M}_{5}(M) \cap \mathcal{O}_{k}$.

Lemma 4.3. (1) For an element $\alpha \in \mathcal{M}_{5}(M) \cap \mathcal{O}_{k}$, we have $K_{\alpha}=K_{\alpha^{n}}$ for every $n \in \mathbb{Z},(n, 5)=1$.
(2) For two elements $\alpha_{1}, \alpha_{2} \in U(k), K_{\alpha_{1}}=K_{\alpha_{2}}$ if and only if $\alpha_{1}^{n}=\alpha_{2} x^{5}$ for some $x \in k$ and $n \in\{1,2,3,4\}$.

Proof. (1) This result immediately follows from Proposition 3.2.
(2) For elements $\alpha_{1}, \alpha_{2} \in U(k)$, we have

$$
\begin{aligned}
& K_{\alpha_{1}}=K_{\alpha_{2}} \\
& \left.\Longleftrightarrow \alpha_{1}^{n} / \alpha_{2} \in \mathcal{N}_{5}(M) \text { for some } n \in\{1,2,3,4\} \quad \text { (by Proposition } 3.2\right) \\
& \Longleftrightarrow\left(\alpha_{1}^{n} / \alpha_{2}\right)^{-1+\tau} \in M(\zeta)^{5} \text { for some } n \in\{1,2,3,4\} \\
& \Longleftrightarrow\left(\alpha_{1}^{n} / \alpha_{2}\right)^{-2} N\left(\alpha_{1}^{n} / \alpha_{2}\right) \in M(\zeta)^{5} \text { for some } n \in\{1,2,3,4\} \\
& \Longleftrightarrow \alpha_{1}^{n} / \alpha_{2} \in M(\zeta)^{5} \text { for some } n \in\{1,2,3,4\} \quad\left(\text { by } N\left(\alpha_{1}\right), N\left(\alpha_{2}\right) \in \mathbb{Z}^{5}\right) \\
& \Longleftrightarrow \alpha_{1}^{n}=\alpha_{2} x^{5} \text { for some } x \in M(\zeta) \text { and } n \in\{1,2,3,4\} \\
& \Longleftrightarrow \alpha_{1}^{n}=\alpha_{2} x^{5} \text { for some } x \in k \text { and } n \in\{1,2,3,4\} \quad(\text { by } 5 \nmid[M(\zeta): k])
\end{aligned}
$$

The proof is completed.

Proof of Proposition 4.1. (1) Let α be an element of $U(k)$. Then we have $\alpha \in \mathcal{M}_{5}(M) \cap \mathcal{O}_{k}$ by Lemma 4.2. Hence by Proposition 3.1, we have only to show that K_{α} / M is unramified outside 5. By applying Proposition 3.4 to $f(X ; \alpha)$, we see that no primes except for 5 are totally ramified in $\mathbb{Q}(\theta)$, where θ is a root of $f(X ; \alpha)$. Then it follows from $5 \nmid[M: \mathbb{Q}]$ that K_{α} / M is unramified outside 5 .
(2) Let E be an unramified cyclic quintic extension of M. Assume that E / \mathbb{Q} is normal and its Galois group is

$$
\operatorname{Gal}(E / \mathbb{Q})=\left\langle\sigma, \iota \mid \sigma^{5}=\iota^{4}=1, \iota^{-1} \sigma \iota=\sigma^{l(\rho)}\right\rangle \quad \text { with }\left.\quad \iota\right|_{M}=\left.\rho\right|_{M}
$$

Then by Proposition 3.1 and Remark 3.3, there is an element $\alpha \in \mathcal{M}_{5}(M) \cap$ \mathcal{O}_{k} so that we have $E=K_{\alpha}$.

Now let us show that we can take an element $\beta \in U(k)$ with $K_{\alpha}=K_{\beta}$. We write $\alpha=(a+b \sqrt{D}) / 2, a, b \in \mathbb{Z}$. Put $g:=(N(\alpha), \operatorname{Tr}(\alpha))$, and express

$$
\begin{align*}
N(\alpha) & =g n \\
\operatorname{Tr}(\alpha) & =g t \tag{4.1}
\end{align*}
$$

Then we have $n, t \in \mathbb{Z},(n, t)=1$, and

$$
\begin{equation*}
b^{2} D=g^{2} t^{2}-4 g n \tag{4.2}
\end{equation*}
$$

Put $g^{\prime}:=(g, n)$ and $\beta:=\alpha^{2} / g g^{\prime}$. Then we have $K_{\alpha}=K_{\beta}$. Indeed, $K_{\alpha}=$ $K_{\alpha^{2}}$ follows from Lemma 4.3 (1), and $K_{\alpha^{2}}=K_{\beta}$ follows from $f\left(X ; \alpha^{2}\right)=$ $g^{5} g^{\prime 5} f\left(X / g g^{\prime} ; \beta\right)$. Hence we have only to show $\beta \in U(k)$. By (4.1) and (4.2), we have

$$
\begin{aligned}
\beta & =\frac{(a+b \sqrt{D})^{2}}{4 g g^{\prime}}=\frac{a^{2}+b^{2} D+2 a b \sqrt{D}}{4 g g^{\prime}} \\
& =\frac{g^{2} t^{2}+\left(g^{2} t^{2}-4 g n\right)+2 g t b \sqrt{D}}{4 g g^{\prime}}=\frac{g t^{2}-2 n+t b \sqrt{D}}{2 g^{\prime}} .
\end{aligned}
$$

Since

$$
N(\beta)=\frac{N(\alpha)^{2}}{g^{2}{g^{\prime}}^{2}}=\frac{n^{2}}{{g^{\prime}}^{2}} \in \mathbb{Z} \text { and } \operatorname{Tr}(\beta)=\frac{g t^{2}-2 n}{g^{\prime}} \in \mathbb{Z}
$$

we have $\beta \in \mathcal{O}_{k}$. Moreover we have

$$
\left(\frac{n}{g^{\prime}}, \frac{g t^{2}-2 n}{g^{\prime}}\right)=\left(\frac{n}{g^{\prime}}, \frac{g t^{2}}{g^{\prime}}\right)=1
$$

so

$$
(N(\beta), \operatorname{Tr}(\beta))=\left(\frac{n^{2}}{g^{\prime 2}}, \frac{g t^{2}-2 n}{g^{\prime}}\right)=1
$$

By the definition of β, we easily see $\beta \in \mathcal{M}(M)$. Hence we can apply Proposition 3.4 to $f(X ; \beta)$. From the assumption that E / M is unramified, it must hold that $v_{q}(N(\beta)) \equiv 0(\bmod 5)$ for every prime q. Then we have
$N(\beta) \in \mathbb{Z}^{5}$. Finally, we show $\beta \notin\left(\mathcal{O}_{k}\right)^{5}$. Suppose, on the contrary, that $\beta \in\left(\mathcal{O}_{k}\right)^{5}$. Then there exist rational numbers u and v such that

$$
\beta=\gamma^{5} \text { with } \gamma=u+v \sqrt{D}
$$

Then because

$$
\operatorname{Tr}(\beta)=2 u\left(u^{4}+10 u^{2} v^{2} D+5 v^{4} D^{2}\right) \text { and } N(\beta)=\left(u^{2}-v^{2} D\right)^{5}
$$

we have

$$
\begin{aligned}
f(X ; \beta)= & X^{5}-5\left(u^{2}-v^{2} D\right)^{5} X^{3} \\
& +5\left(u^{2}-v^{2} D\right)^{10} X-2 u\left(u^{4}+10 u^{2} v^{2} D+5 v^{4} D^{2}\right)\left(u^{2}-v^{2} D\right)^{10} \\
= & \left\{X-2 u\left(u^{2}-v^{2} D\right)^{2}\right\}\left\{X^{4}+2 u\left(u^{2}-v^{2} D\right)^{2} X^{3}\right. \\
& -\left(u^{2}-5 v^{2} D\right)\left(u^{2}-v^{2} D\right)^{4} X^{2}-2 u\left(u^{2}-5 v^{2} D\right)\left(u^{2}-v^{2} D\right)^{6} X \\
& \left.+\left(u^{4}+10 u^{2} v^{2} D+5 v^{4} D^{2}\right)\left(u^{2}-v^{2} D\right)^{8}\right\} .
\end{aligned}
$$

Hence $f(X ; \beta)$ is reducible over \mathbb{Q}. This contradicts $K_{\alpha}=K_{\beta}$. Hence we have $\beta \notin\left(\mathcal{O}_{k}\right)^{5}$. Therefore, we obtain $\beta \in U(k)$, as desired.

Next we examine the ramification of the prime 5.
Proposition 4.4. Let $\alpha=(a+b \sqrt{D}) / 2(a, b \in \mathbb{Z})$ be an element of $U(k)$ and let θ be a root of $f(X ; \alpha)$. Suppose that $5 \mid b^{2} D$. Then the following statements hold.
(1) If $v_{5}\left(b^{2} D\right) \geq 3$, then the prime 5 is not totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$.
(2) If $v_{5}\left(b^{2} D\right)=1$ or 2 , then the prime 5 is totally ramified in $\mathbb{Q}(\theta) / \mathbb{Q}$.

Proof. Let $\alpha=(a+b \sqrt{D}) / 2(a, b \in \mathbb{Z})$ be an element of $U(k)$, and suppose that $5 \mid b^{2} D$. Then neither $N(\alpha)$ nor $\operatorname{Tr}(\alpha)$ is divisible by 5 . Express $N(\alpha)=m^{5}, 5 \nmid m \in \mathbb{Z}$; then we have

$$
f(X ; \alpha)=X^{5}-5 m^{5} X^{3}+5 m^{10} X-m^{10} a
$$

This polynomial satisfies the condition (3.1) for $j=0$ because the constant term is not divisible by 5 . Now let us apply Proposition 3.5 to $f(X ; \alpha)$.

By $5 \nmid a$ and $5 \nmid m$, we can verify that

$$
v_{5}\left(a_{0}\right)=0 \text { and } v_{5}\left(a_{j}\right)>0 \text { for every } j, 1 \leq j \leq 3
$$

that is, the condition (S-i) does not holds, but the conditions both (S-ii-1) and (S-ii-2) hold.

We note that

$$
\begin{aligned}
& f^{(1)}(X ; \alpha)=5 X^{4}-15 m^{5} X^{2}+5 m^{10} \\
& f^{(2)}(X ; \alpha)=20 X^{3}-30 m^{5} X \\
& f^{(3)}(X ; \alpha)=60 X^{2}-30 m^{5}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
f^{(1)}\left(m^{10} a ; \alpha\right) & =5\left(m^{10} a\right)^{4}-15 m^{5}\left(m^{10} a\right)^{2}+5 m^{10} \\
& =5 m^{10}\left(m^{30} a^{4}-3 m^{15} a^{2}+1\right) \\
& =5 m^{10}\left\{\left(\frac{a^{2}-b^{2} D}{4}\right)^{6} a^{4}-3\left(\frac{a^{2}-b^{2} D}{4}\right)^{3} a^{2}+1\right\} \\
& =\frac{5 m^{10}}{4^{6}}\left(a^{16}-3 \cdot 4^{3} a^{8}+4^{6}+t_{1} b^{2} D\right)
\end{aligned}
$$

for some $t_{1} \in \mathbb{Z}$. In a similar way, we get

$$
\begin{aligned}
f^{(2)}\left(m^{10} a ; \alpha\right) & =20\left(m^{10} a\right)^{3}-30 m^{5}\left(m^{10} a\right) \\
& =\frac{5 m^{15} a}{16}\left(a^{8}-96+t_{2} b^{2} D\right) \\
f^{(3)}\left(m^{10} a ; \alpha\right) & =60\left(m^{10} a\right)^{2}-30 m^{5} \\
& =\frac{15 m^{5}}{16}\left(a^{8}-32+t_{3} b^{2} D\right)
\end{aligned}
$$

for some $t_{2}, t_{3} \in \mathbb{Z}$. Since the congruence equations $a^{16}-3 \cdot 4^{3} a^{8}+4^{6} \equiv$ $0(\bmod 5)$ and $a^{8}-96 \equiv 0(\bmod 5)$ hold for all $a \in \mathbb{Z}$ with $(a, 5)=1$, and since $X^{8}-32=0$ has no solution in $\mathbb{Z} / 5 \mathbb{Z}$, we have

$$
\begin{equation*}
v_{5}\left(f^{(3)}\left(m^{10} a ; \alpha\right)\right)=1 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{v_{5}\left(f^{(j)}\left(m^{10} a ; \alpha\right)\right)}{5-j} \geq \frac{1}{2} \quad \text { for every } j, 1 \leq j \leq 3 \tag{4.4}
\end{equation*}
$$

It follows from the Eq. (4.3) that the condition (S-ii-4) holds for $j=3$.
Now we have

$$
\begin{aligned}
& f\left(m^{10} a ; \alpha\right) \\
& =\left(m^{10} a\right)^{5}-5 m^{5}\left(m^{10} a\right)^{3}+5 m^{10} m^{10} a-m^{10} a \\
& =m^{10} a\left(m^{40} a^{4}-5 m^{25} a^{2}+5 m^{10}-1\right) \\
& =m^{10} a\left\{\left(\frac{a^{2}-b^{2} D}{4}\right)^{8} a^{4}-5\left(\frac{a^{2}-b^{2} D}{4}\right)^{5} a^{2}+5\left(\frac{a^{2}-b^{2} D}{4}\right)^{2}-1\right\} \\
& =\frac{m^{10} a}{4^{8}}\left(a^{20}-5 \cdot 4^{3} a^{12}+5 \cdot 4^{6} a^{4}-4^{8}\right. \\
& \left.\quad-8 a^{18} b^{2} D+5^{2} \cdot 4^{3} a^{10} b^{2} D-10 \cdot 4^{6} a^{2} b^{2} D+t_{4} b^{4} D^{2}\right)
\end{aligned}
$$

for some $t_{4} \in \mathbb{Z}$. Here the congruence equation

$$
a^{20}-5 \cdot 4^{3} a^{12}+5 \cdot 4^{6} a^{4}-4^{8} \equiv 0\left(\bmod 5^{3}\right)
$$

holds for all $a \in \mathbb{Z}$ with $(a, 5)=1$, because

$$
\begin{aligned}
& X^{20}-5 \cdot 4^{3} X^{12}+5 \cdot 4^{6} X^{4}-4^{8} \\
& \quad \equiv\left(X^{4}-1\right)\left(X^{16}+X^{12}-69 X^{8}-69 X^{4}+36\right)\left(\bmod 5^{3}\right) \\
& \quad X^{16}+X^{12}-69 X^{8}-69 X^{4}+36 \\
& \quad \equiv\left(X^{4}-1\right)^{2}\left(X^{8}+3 X^{4}+11\right)\left(\bmod 5^{2}\right)
\end{aligned}
$$

and $a^{4}-1 \equiv 0(\bmod 5)$ for all $a \in \mathbb{Z}$ with $(a, 5)=1$. Hence we have

$$
v_{5}\left(f\left(m^{10} a ; \alpha\right)\right) \begin{cases}\geq 3 & \text { if } v_{5}\left(b^{2} D\right) \geq 3 \\ =v_{5}\left(b^{2} D\right) \leq 2 & \text { if } v_{5}\left(b^{2} D\right)=1 \text { or } 2\end{cases}
$$

From this together with the inequality (4.4), we see that the condition (S-ii-3) does not hold if $v_{5}\left(b^{2} D\right) \geq 3$, but holds if $v_{5}\left(b^{2} D\right)=1$ or 2 . This completes the proof of Proposition 4.4.

5. Proof of the main theorem

The goal of this section is to prove our main theorem.
Let the notation be as in Sections 1 and 2. Moreover, put $\alpha_{i r_{i}+1}:=\varepsilon_{i}$, if $d>0$, and put

$$
r_{i}^{\prime}:= \begin{cases}r_{i}+1 & \text { if } d>0 \\ r_{i} & \text { if } d<0\end{cases}
$$

Define the set $U\left(S\left(k_{i}\right)\right)$ as follows:

$$
U\left(S\left(k_{i}\right)\right):=\left\{\prod_{j=1}^{r_{i}^{\prime}} \alpha_{i j}^{t_{i j}} \mid 0 \leq t_{i j} \leq 4, \sum_{j=1}^{r_{i}^{\prime}} t_{i j} \neq 0\right\}
$$

The following proposition is important to prove our main theorem.
Proposition 5.1. The family $\left\{K_{\alpha} \mid \alpha \in U\left(S\left(k_{i}\right)\right)\right\}$ of the minimal splitting fields K_{α} of $f(X ; \alpha)$ over \mathbb{Q} for $\alpha \in U\left(S\left(k_{i}\right)\right)$ does not depend on the choice of generators of $\mathrm{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{i}\right)$.

Proof. Let $\mathrm{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{i}\right)$ be expressed as follows:

$$
\begin{equation*}
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{i}\right)=\left\langle\left[\mathfrak{b}_{i 1}\right]\right\rangle \times \cdots \times\left\langle\left[\mathfrak{b}_{i r_{i}}\right]\right\rangle, \tag{5.1}
\end{equation*}
$$

where $\mathfrak{b}_{i j}, 1 \leq j \leq r_{i}$, are (integral) ideals of k_{i}. Then $\mathfrak{b}_{i j}^{5}$ is principal. Fix integer $\beta_{i j} \in k_{i}$ with $\left(\beta_{i j}\right)=\mathfrak{b}_{i j}^{5}$ for each $j, 1 \leq j \leq r_{i}$, and put $\beta_{i r_{i}+1}:=\varepsilon_{i}$,

Kishi: The Spiegelungssatz for $\mathrm{p}=5$ from a Constructive Approach
if $d>0$. Define the sets $T\left(k_{i}\right)$ and $U\left(T\left(k_{i}\right)\right)$ by

$$
\begin{aligned}
T\left(k_{i}\right) & :=\left\{\beta_{i j} \mid 1 \leq j \leq r_{i}^{\prime}\right\} \\
U\left(T\left(k_{i}\right)\right) & :=\left\{\prod_{j=1}^{r_{i}^{\prime}} \beta_{i j}^{t_{i j}} \mid 0 \leq t_{i j} \leq 4, \sum_{j=1}^{r_{i}^{\prime}} t_{i j} \neq 0\right\}
\end{aligned}
$$

respectively. Moreover, put

$$
\mathcal{A}:=\left\{K_{\alpha} \mid \alpha \in U\left(S\left(k_{i}\right)\right)\right\} \text { and } \mathcal{B}:=\left\{K_{\beta} \mid \beta \in U\left(T\left(k_{i}\right)\right)\right\}
$$

To prove Proposition 5.1, it is sufficient to show that $\mathcal{A}=\mathcal{B}$.
Before proving this, we will show the following two lemmas.
Lemma 5.2. Let the notation be as above. Then the following statements hold.
(1) Let β be an element of $U\left(T\left(k_{i}\right)\right)$. Assume that β is not divisible by any rational integers except ± 1. Then β is also an element of $U\left(k_{i}\right)$.
(2) For $\alpha \in U\left(k_{i}\right)$, there exists an element $\beta \in U\left(T\left(k_{i}\right)\right)$ so that we have $K_{\alpha}=K_{\beta}$.

Proof. (1) Assume that β is an element of $U\left(T\left(k_{i}\right)\right)$ which is not divisible by any rational integers except ± 1. It is easily seen that $N(\beta) \in \mathbb{Z}^{5}$ and $\beta \notin\left(\mathcal{O}_{k}\right)^{5}$. Hence we have only to show $(N(\beta), \operatorname{Tr}(\beta))=1$. Express $\beta=$ $(a+b \sqrt{D}) / 2, a, b \in \mathbb{Z}$, where $D=d$ or $5 d$ according to $i=1$ or 2 , and express $N(\beta)=m^{5}, m \in \mathbb{Z}$. Then we have

$$
\begin{equation*}
a^{2}-b^{2} D=4 m^{5} \tag{5.2}
\end{equation*}
$$

Assume that there exists a prime q so that we have $q \mid(N(\beta), \operatorname{Tr}(\beta))$. Then by the Eq. (5.2), we have $q^{2} \mid b^{2} D$. Since D is square-free, we have $q \mid b$. Hence it follows from the assumption that q must be equal to 2 . Put $a=2 a^{\prime}$, $b=2 b^{\prime}$. Then we have $a^{\prime 2}-b^{\prime 2} D=m^{5}$. This implies

$$
\begin{equation*}
a^{\prime 2}-b^{\prime 2} D \equiv 0(\bmod 4) \tag{5.3}
\end{equation*}
$$

and hence $a^{\prime} \equiv b^{\prime}(\bmod 2)$. If $a^{\prime} \equiv b^{\prime} \equiv 0(\bmod 2)$, then we have $2 \mid \beta$. This is a contradiction. If $a^{\prime} \equiv b^{\prime} \equiv 1(\bmod 2)$, then we have $D \equiv 1(\bmod 4)$ by the congruence equation (5.3). Therefore we have $2 \mid \beta=a^{\prime}+b^{\prime} \sqrt{D}$. This is a contradiction. Then we have $(N(\beta), \operatorname{Tr}(\beta))=1$. Thus the assertion (1) of Lemma 5.2 has been proved.
(2) Let α be an element of $U\left(k_{i}\right)$. First we show that α is not divisible by any rational integers except ± 1. Assume that the prime q divides α. Then q also divides the conjugate of α. We see, therefore, that q divides both $N(\alpha)$ and $\operatorname{Tr}(\alpha)$. This is a contradiction.

Now suppose that α is a unit of k_{i}. Then we have $\alpha= \pm \varepsilon_{i}^{n}$ for some $n \in \mathbb{Z},(n, 5)=1$. Express $n=5 n_{1}+n_{2}, n_{1}, n_{2} \in \mathbb{Z}, 1 \leq n_{2} \leq 4$; then we have $\varepsilon_{i}^{n_{2}}=\beta_{i r_{i}+1}^{n_{2}} \in U\left(T\left(k_{i}\right)\right)$ and $K_{\alpha}=K_{\varepsilon_{i}^{n_{2}}}$.

Next suppose that α is not a unit. Let \mathfrak{q} be a prime divisor of (α) in k_{i}, and put $q:=\mathfrak{q} \cap \mathbb{Z}$. Since α is not divisible by any rational integers except ± 1 as we have seen, q is not inert in k_{i}. Assume that q is ramified in k_{i}; $(q)=\mathfrak{q}^{2}$. Since $q \mid N(\alpha)$ and $N(\alpha) \in \mathbb{Z}^{5}$, we have $q^{5} \mid N(\alpha)$, and hence $q \mid(\alpha)$. This is a contradiction. Therefore all prime divisors of $N(\alpha)$ split in k_{i}. Let

$$
|N(\alpha)|=\prod_{l=1}^{m} q_{l}^{5 e_{l}}
$$

be the prime decomposition of $|N(\alpha)|$ in \mathbb{Z}. For each q_{l}, express $q_{l}=\mathfrak{q}_{l} \mathfrak{q}_{l}^{\prime}$ in k_{i}. Choose the ideal \mathfrak{q}_{l} so that we have $\mathfrak{q}_{l} \mid(\alpha)$ for each $l(1 \leq l \leq m)$; then we obtain

$$
(\alpha)=\prod_{l=1}^{m} \mathfrak{q}_{l}^{5 e_{l}}=\left(\prod_{l=1}^{m} \mathfrak{q}_{l}^{e_{l}}\right)^{5}
$$

Put $\mathfrak{a}:=\prod_{l=1}^{m} \mathfrak{q}_{l}^{e_{l}}$. Since $\alpha \notin\left(\mathcal{O}_{k_{i}}\right)^{5}, \mathfrak{a}$ is not principal. Then by (5.1) we can express

$$
\mathfrak{a}=\mathfrak{b}_{i 1}^{t_{i 1}} \cdots \mathfrak{b}_{i r_{i}}^{t_{i r_{i}}}(\gamma), \quad 0 \leq t_{i j} \leq 4, \quad \sum_{j=1}^{r_{i}} t_{i j} \neq 0, \quad \gamma \in k_{i} .
$$

Then we have

$$
(\alpha)=\left(\beta_{i 1}^{t_{i 1}} \cdots \beta_{i r_{i}}^{t_{i r_{i}}} \gamma^{5}\right),
$$

and hence

$$
\alpha=\beta_{i 1}^{t_{i 1}} \cdots \beta_{i r_{i}^{\prime}}^{t_{i r_{i}^{\prime}}} \gamma^{\prime 5}, \quad \gamma^{\prime} \in k_{i} .
$$

Then we have $\beta:=\beta_{i 1}^{t_{i 1}} \cdots \beta_{i r_{i}^{\prime}}^{t_{i r_{i}^{\prime}}} \in U\left(T\left(k_{i}\right)\right)$ and $K_{\alpha}=K_{\beta}$. This completes the proof of Lemma 5.2.

Lemma 5.3. The number of distinct cyclic quintic extensions of M given as K_{α} with $\alpha \in U\left(T\left(k_{i}\right)\right)$ is equal to $\left(5^{r_{i}^{\prime}}-1\right) / 4$.
Proof. For $\beta, \beta^{\prime} \in U\left(T\left(k_{i}\right)\right)$, we express

$$
\begin{aligned}
& \beta=\beta_{i 1}^{t_{i 1}} \cdots \beta_{i r_{i}^{\prime}}^{t_{i r_{i}^{\prime}}^{\prime}}, \quad 0 \leq t_{i j} \leq 4 \\
& \beta^{\prime}=\beta_{i 1}^{t_{i 1}^{\prime}} \cdots \beta_{i r_{i}^{\prime}}^{t_{i}^{\prime} r_{i}^{\prime}}, \quad 0 \leq t^{\prime}{ }_{i j} \leq 4
\end{aligned}
$$

By using Lemma $4.3, K_{\beta}=K_{\beta^{\prime}}$ if and only if there exists $n \in\{1,2,3,4\}$ such that we have $n t_{i j} \equiv t_{i j}^{\prime}(\bmod 5)$ for all $j, 1 \leq j \leq r_{i}^{\prime}$. Since $\# U\left(T\left(k_{i}\right)\right)=$ $5^{r_{i}^{\prime}}-1$, therefore, we obtain the desired conclusion.

We go back to the proof of Proposition 5.1. Let α be an element of $U\left(S\left(k_{i}\right)\right)$. It follows from the choice of $\mathfrak{a}_{i j}$ that α is not divisible by any rational integers except ± 1. Then by (1) of Lemma 5.2, we have $\alpha \in U\left(k_{i}\right)$. Hence by (2) of Lemma 5.2, we have on the one hand $K_{\alpha}=K_{\beta}$ for some $\beta \in U\left(T\left(k_{i}\right)\right)$. Therefore we have $\mathcal{A} \subset \mathcal{B}$. By Lemma 5.3, on the other hand, we have

$$
\# \mathcal{A}=\# \mathcal{B}=\frac{5^{r_{i}^{\prime}}-1}{4}
$$

Hence we obtain $\mathcal{A}=\mathcal{B}$. The proof of Proposition 5.1 is completed.

As we have seen in Section 2, we have only to study $\operatorname{Gal}\left(\bar{E}_{i} / M\right)(i=1,2)$ for getting the 5 -rank of $\mathrm{Cl}(M)$, where \bar{E}_{1} (resp. \bar{E}_{2}) is the composite field of all unramified cyclic quintic extensions of M of Type (I) (resp. of Type (II)). From now on, we calculate the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{i} / M\right)$.

We recall that ρ is the fixed generator of $\operatorname{Gal}\left(M(\zeta) / k_{1}\right)$ with $\zeta^{\rho}=\zeta^{2}$. Assume that $\alpha \in U\left(k_{1}\right)$ and take generators σ, ι of $\operatorname{Gal}\left(K_{\alpha} / \mathbb{Q}\right)$ with $\sigma^{5}=$ $\iota^{4}=1$ and $\left.\iota\right|_{M}=\left.\rho\right|_{M}$. By applying Proposition 4.1 (1) to $k=k_{1}$, the relation $\iota^{-1} \sigma \iota=\sigma^{2}$ holds. Hence if K_{α} is unramified over M, then it is of Type (I). Next assume that $\beta \in U\left(k_{2}\right)$. Take generators σ, ι of $\operatorname{Gal}\left(K_{\beta} / \mathbb{Q}\right)$ with $\sigma^{5}=\iota^{4}=1$ and $\left.\iota\right|_{M}=\left.\rho\right|_{M}$ and take a generator ρ^{\prime} of $\operatorname{Gal}\left(M(\zeta) / k_{2}\right)$ with $\left.\iota\right|_{M}=\left.\rho^{\prime}\right|_{M}$; then we have $\rho^{\prime}=\tau \rho$. Hence by Proposition 4.1 (1), we have

$$
\iota^{-1} \sigma \iota=\sigma^{l\left(\rho^{\prime}\right)}=\sigma^{l(\tau \rho)}=\sigma^{3}
$$

because $\zeta^{\tau \rho}=\left(\zeta^{-1}\right)^{\rho}=\zeta^{-2}=\zeta^{3}$. If K_{β} / M is unramified, therefore, K_{β} is of Type (II).

From this, together with Proposition 4.1 (2), and Lemma 5.2, we have
Proposition 5.4. For $\alpha \in U\left(S\left(k_{1}\right)\right)$ (resp. $\beta \in U\left(S\left(k_{2}\right)\right)$), K_{α} is normal over \mathbb{Q} and is a cyclic quintic extension of M unramified outside 5. Moreover, if $K_{\alpha} / M\left(\right.$ resp. $\left.K_{\beta} / M\right)$ is unramified, then K_{α} (resp. K_{β}) is of Type (I) (resp. of Type (II)). Conversely, suppose that E is an unramified cyclic quintic extension of M. If E is of Type (I) (resp. of Type (II)), then there exists an element $\alpha \in U\left(S\left(k_{1}\right)\right)$ (resp. $\beta \in U\left(S\left(k_{2}\right)\right)$) so that we have $E=K_{\alpha}\left(\right.$ resp $\left.. E=K_{\beta}\right)$.

By this proposition, \bar{E}_{i} coincides with the composite field of all unramified cyclic quintic extensions of M given as K_{α} with $\alpha \in U\left(S\left(k_{i}\right)\right)$.

The following proposition states a criterion for an element of $U\left(S\left(k_{i}\right)\right)$ to give an unramified extension of M.

Proposition 5.5. (1) For $\alpha \in U\left(S\left(k_{1}\right)\right)$, we have
K_{α} / M is unramified

$$
\Longleftrightarrow \begin{cases}(\mathrm{A}-\mathrm{i}),(\mathrm{A}-\mathrm{ii}) \text { or }(\mathrm{A}-\mathrm{iv}) & \text { if } d \equiv \pm 1(\bmod 5) \\ (\mathrm{A}-\mathrm{i}),(\mathrm{A}-\mathrm{ii}),(\mathrm{A}-\mathrm{iii}) \text { or }(\mathrm{A}-\mathrm{v}) & \text { if } d \equiv \pm 2(\bmod 5)\end{cases}
$$

(2) For $\beta \in U\left(S\left(k_{2}\right)\right)$, we have

$$
K_{\beta} / M \text { is unramified } \Longleftrightarrow(\mathrm{B})
$$

Proof. (1) Let $\alpha=(a+b \sqrt{d}) / 2(a, b \in \mathbb{Z})$ be an element of $U\left(S\left(k_{1}\right)\right)$. It is clear by Proposition 5.4 that K_{α} / M is unramified outside 5 . Hence we have
K_{α} / M is unramified \Longleftrightarrow a prime divisor of 5 in M is unramified in K_{α}. Put

$$
\alpha^{l}=\frac{a_{l}+b_{l} \sqrt{d}}{2}, a_{l}, b_{l} \in \mathbb{Z}
$$

for $l(>0) \in \mathbb{Z}$.
First assume that $d \equiv \pm 1(\bmod 5)$. In this case, the prime 5 splits in k_{1}; $(5)=\mathfrak{p p}^{\prime}$. Then we have

$$
\left(\mathcal{O}_{k_{1}} /(5)\right)^{\times}=\left(\mathcal{O}_{k_{1}} / \mathfrak{p}\right)^{\times} \times\left(\mathcal{O}_{k_{1}} / \mathfrak{p}^{\prime}\right)^{\times} \simeq C_{4} \times C_{4} .
$$

Since $(\alpha, 5)=1$, therefore, we have $\alpha^{4} \equiv 1(\bmod 5)$, and hence $v_{5}\left(b_{4}\right) \geq 1$. Since α^{4} is not divisible by any rational integers except ± 1, we can show $\alpha^{4} \in U\left(k_{1}\right)$ in the same way as the proof of Lemma 5.2 (1). It follows from Lemma 4.3 (1) that $K_{\alpha}=K_{\alpha^{4}}$. By applying Proposition 4.4 to $f\left(X ; \alpha^{4}\right)$, therefore, we have
a prime divisor of 5 in M is unramified in K_{α}
\Longleftrightarrow a prime divisor of 5 in M is unramified in $K_{\alpha^{4}}$
$\Longleftrightarrow 5$ is not totally ramified in $\mathbb{Q}(\theta)$
$\Longleftrightarrow v_{5}\left(b_{4}\right) \geq 2$,
where θ is a root of $f\left(X ; \alpha^{4}\right)$. Here we note that

$$
b_{4}=\frac{a b\left(a^{2}+b^{2} d\right)}{2}
$$

Moreover, an easy calculation shows that

$$
\begin{aligned}
v_{5}(a) \geq 2 & \Longleftrightarrow(\mathrm{~A}-\mathrm{ii}), \\
v_{5}(b) \geq 2 & \Longleftrightarrow(\mathrm{~A}-\mathrm{i}), \\
v_{5}\left(a^{2}+b^{2} d\right) \geq 2 & \Longleftrightarrow(\mathrm{~A}-\mathrm{iv}) .
\end{aligned}
$$

Hence by $5 \nmid(a, b), 5 \nmid\left(a, a^{2}+b^{2} d\right)$ and $5 \nmid\left(b, a^{2}+b^{2} d\right)$, we have

$$
K_{\alpha} / M \text { is unramified } \Longleftrightarrow(\mathrm{A}-\mathrm{i}), \text { (A-ii) or (A-iv). }
$$

Next assume that $d \equiv \pm 2(\bmod 5)$. In this case, the prime 5 remains prime in k_{1}. In a similar way to the above argument, we have $v_{5}\left(b_{24}\right) \geq 1$ because

$$
\left(\mathcal{O}_{k_{1}} /(5)\right)^{\times} \simeq C_{24}
$$

Moreover, we see that $\alpha^{24} \in U\left(k_{1}\right)$ and $K_{\alpha}=K_{\alpha^{24}}$. By Proposition 4.4, therefore, we have
a prime divisor of 5 in M is unramified in K_{α}
\Longleftrightarrow a prime divisor of 5 in M is unramified in $K_{\alpha^{24}}$
$\Longleftrightarrow 5$ is not totally ramified in $\mathbb{Q}(\theta)$
$\Longleftrightarrow v_{5}\left(b_{24}\right) \geq 2$,
where θ is a root of $f\left(X ; \alpha^{24}\right)$. Now we have

$$
\begin{aligned}
b_{24}= & \frac{1}{2^{20}} a b\left(3 a^{2}+b^{2} d\right)\left(a^{2}+3 b^{2} d\right)\left(a^{2}+b^{2} d\right)\left(a^{4}+14 a^{2} b^{2} d+b^{4} d^{2}\right) \\
& \times\left(a^{4}+6 a^{2} b^{2} d+b^{4} d^{2}\right)\left(a^{8}+60 a^{6} b^{2} d+134 a^{4} b^{4} d^{2}+60 a^{2} b^{6} d^{3}+b^{8} d^{4}\right)
\end{aligned}
$$

It is easily seen that

$$
\begin{aligned}
v_{5}(a) & \geq 2 \Longleftrightarrow(\mathrm{~A}-\mathrm{ii}), \\
v_{5}(b) & \geq 2 \Longleftrightarrow(\mathrm{~A}-\mathrm{i}), \\
v_{5}\left(3 a^{2}+b^{2} d\right) & \geq 2 \Longleftrightarrow(\mathrm{~A}-\mathrm{iii}), \\
v_{5}\left(a^{2}+3 b^{2} d\right) & \geq 2 \Longleftrightarrow(\mathrm{~A}-\mathrm{v}),
\end{aligned}
$$

and the greatest common divisor of any pair of $\left\{a, b, 3 a^{2}+b^{2} d, a^{2}+3 b^{2} d\right\}$ is not divisible by 5. Furthermore,

$$
\begin{aligned}
& \left(a^{2}+b^{2} d\right)\left(a^{4}+14 a^{2} b^{2} d+b^{4} d^{2}\right)\left(a^{4}+6 a^{2} b^{2} d+b^{4} d^{2}\right) \\
& \quad \times\left(a^{8}+60 a^{6} b^{2} d+134 a^{4} b^{4} d^{2}+60 a^{2} b^{6} d^{3}+b^{8} d^{4}\right)=0
\end{aligned}
$$

has no solution in $\mathbb{Z} / 5 \mathbb{Z}$ when $5 \nmid(a, b)$ and $d \equiv \pm 2(\bmod 5)$. Hence the statement (1) of Proposition 5.5 has been proved.
(2) Let $\beta=(a+b \sqrt{5 d}) / 2(a, b \in \mathbb{Z})$ be an element of $U\left(S\left(k_{2}\right)\right) \subset U\left(k_{2}\right)$. Then by Proposition 4.4 and Proposition 5.4, we have

$$
\begin{aligned}
K_{\beta} / M \text { is unramified } & \Longleftrightarrow 5 \text { is not totally ramified in } \mathbb{Q}(\theta) \\
& \Longleftrightarrow v_{5}(b) \geq 1,
\end{aligned}
$$

where θ is a root of $f(X ; \beta)$. Since

$$
v_{5}(b) \geq 1 \Longleftrightarrow(\mathrm{~B})
$$

we obtain the desired conclusion.
Now we define the integer φ by

$$
\varphi:= \begin{cases}4 & \text { if } d \equiv \pm 1(\bmod 5) \\ 24 & \text { if } d \equiv \pm 2(\bmod 5)\end{cases}
$$

For calculating the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{1} / M\right)$, we need the following lemma.
Lemma 5.6. Let α, α_{1} and α_{2} be elements of $U\left(S\left(k_{1}\right)\right)$.
(1) If α satisfies the condition (A-ii) (resp. (A-iii), (A-iv) or (A-v)), then α^{2} (resp. α^{3}, α^{4} or α^{6}) satisfies (A-i).
(2) If both α_{1} and α_{2} satisfy the condition ($\mathrm{A}-\mathrm{i}$), then so does the product $\alpha_{1} \alpha_{2}$.
(3) If neither α_{1} nor α_{2} satisfies all of the five conditions (A-i) through (A-v), then one of the elements $\left(\alpha_{1} \alpha_{2}\right)^{\varphi},\left(\alpha_{1}^{2} \alpha_{2}\right)^{\varphi},\left(\alpha_{1}^{3} \alpha_{2}\right)^{\varphi}$ and $\left(\alpha_{1}^{4} \alpha_{2}\right)^{\varphi}$ satisfies the condition (A-i).

Proof. Note that for $\alpha=(a+b \sqrt{d}) / 2 \in U\left(S\left(k_{1}\right)\right)(a, b \in \mathbb{Z})$, we have

$$
\begin{equation*}
(\mathrm{A}-\mathrm{i}) \Longleftrightarrow v_{5}(b) \geq 2 \tag{5.4}
\end{equation*}
$$

(1) By easy calculations, we give the results. Let us explain the case where $\alpha=(s+t \sqrt{d}) / 2 \in U\left(S\left(k_{1}\right)\right)(s, t \in \mathbb{Z})$ satisfies the condition (A-iii) for example. In this case, we have

$$
s^{2} \equiv \frac{s^{2}-t^{2} d}{4}\left(\bmod 5^{2}\right)
$$

and hence $3 s^{2}+t^{2} d \equiv 0\left(\bmod 5^{2}\right)$. From this together with

$$
\alpha^{3}=\frac{s\left(s^{2}+3 t^{2} d\right)+t\left(3 s^{2}+t^{2} d\right) \sqrt{d}}{8},
$$

we see by (5.4) that α^{3} satisfies (A-i).
(2) Assume that both elements $\alpha_{1}=(s+t \sqrt{d}) / 2(s, t \in \mathbb{Z})$ and $\alpha_{2}=$ $(u+v \sqrt{d}) / 2(u, v \in \mathbb{Z})$ of $U\left(S\left(k_{1}\right)\right)$ satisfy the condition (A-i). Then by (5.4) we have $v_{5}(t) \geq 2$ and $v_{5}(v) \geq 2$, and hence

$$
\begin{equation*}
v_{5}(s v+t u) \geq 2 \tag{5.5}
\end{equation*}
$$

On the other hand, we have

$$
\alpha_{1} \alpha_{2}=\frac{s u+t v d+(s v+t u) \sqrt{d}}{4} .
$$

Then by (5.4) and (5.5), we conclude that $\alpha_{1} \alpha_{2}$ satisfies (A-i).
(3) Let α_{1} and α_{2} be elements of $U\left(S\left(k_{1}\right)\right)$. Assume that neither α_{1} nor α_{2} satisfies all of the five conditions (A-i) through (A-v). Then by Proposition 5.5 (1), a prime divisor of 5 in M is ramified in both $K_{\alpha_{1}}$ and $K_{\alpha_{2}}$. Put

$$
\alpha_{1}^{\varphi}=\frac{s+t \sqrt{d}}{2} \text { and } \alpha_{2}^{\varphi}=\frac{u+v \sqrt{d}}{2} \text { with } s, t, u, v \in \mathbb{Z}
$$

Then both $5 \mid t$ and $5 \mid v$ hold as we have seen in the proof of (1) of Proposition 5.5. Since $(\varphi, 5)=1$, we have $K_{\alpha_{1}}=K_{\alpha_{1}^{\varphi}}$ and $K_{\alpha_{2}}=K_{\alpha_{2}^{\varphi}}$. Hence we have $5^{2} \nmid t$ and $5^{2} \nmid v$. Write $t=5 t^{\prime}$ and $v=5 v^{\prime}\left(t^{\prime}, v^{\prime} \in \mathbb{Z}\right.$, $\left.5 \nmid t^{\prime} v^{\prime}\right)$, and put

$$
\left(\alpha_{1}^{l} \alpha_{2}\right)^{\varphi}=\frac{a_{l}+b_{l} \sqrt{d}}{2} \text { with } a_{l}, b_{l} \in \mathbb{Z}
$$

for $l(>0) \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& b_{1}=\frac{5\left(s v^{\prime}+t^{\prime} u\right)}{2} \\
& b_{2}=\frac{5 s\left(s v^{\prime}+2 t^{\prime} u\right)+125 t^{2} v^{\prime} d}{4} \\
& b_{3}=\frac{5 s^{2}\left(s v^{\prime}+3 t^{\prime} u\right)+125 t^{\prime 2}\left(3 s v^{\prime}+t^{\prime} u\right) d}{8} \\
& b_{4}=\frac{5 s^{3}\left(s v^{\prime}+4 t^{\prime} u\right)+250 s t^{2}\left(3 s v^{\prime}+2 t^{\prime} u\right) d+3125 t^{\prime} v^{\prime} d^{2}}{16}
\end{aligned}
$$

It is clear that one of those four elements is divisible by 5^{2}. Hence by (5.4), we obtain the desired conclusion.

We recall that the number of distinct cyclic quintic extensions of M given as K_{α} with $\alpha \in U\left(S\left(k_{1}\right)\right)$ is equal to $\left(5^{r_{1}^{\prime}}-1\right) / 4$.

Suppose that one of the five conditions (A-i) through (A-v) holds for every element of $S\left(k_{1}\right)$. Then by using Lemma 5.6 (1), we can choose $u_{j} \in$ $\{1,2,3,4,6\}$ so that $\alpha_{1 j}^{u_{j}}$ satisfies the condition (A-i) for each $\alpha_{1 j} \in S\left(k_{1}\right)$. Put $\alpha_{1 j}^{\prime}:=\alpha_{1 j}^{u_{j}}$. Then we have

$$
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{1}\right)=\left\langle\left[\mathfrak{a}_{11}^{u_{1}}\right]\right\rangle \times \cdots \times\left\langle\left[\mathfrak{a}_{1 r_{1}}^{u_{r_{1}}}\right]\right\rangle
$$

and $\left(\alpha_{1 j}^{\prime}\right)=\left(\mathfrak{a}_{1 j}^{u_{j}}\right)^{5}$. We define the set $S^{\prime}\left(k_{1}\right)$ by

$$
S^{\prime}\left(k_{1}\right):=\left\{\alpha_{1 j}^{\prime} \mid 1 \leq j \leq r_{1}^{\prime}\right\}
$$

and put

$$
U\left(S^{\prime}\left(k_{1}\right)\right):=\left\{\prod_{j=1}^{r_{1}^{\prime}}\left(\alpha_{1 j}^{\prime}\right)^{t_{1 j}} \mid 0 \leq t_{1 j} \leq 4, \sum_{j=1}^{r_{1}^{\prime}} t_{1 j} \neq 0\right\}
$$

It follows from (2) of Lemma 5.6 that all elements of $U\left(S^{\prime}\left(k_{1}\right)\right)$ satisfy the condition (A-i). Then by Proposition $5.5(1)$, all $\left(5^{r_{1}^{\prime}}-1\right) / 4$ fields given as K_{α} with $\alpha \in U\left(S^{\prime}\left(k_{1}\right)\right)$ are unramified over M. Therefore the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{1} / M\right)$ is equal to r_{1}^{\prime}.

Next suppose that none of the five conditions (A-i) through (A-v) holds for some elements of $S\left(k_{1}\right)$.

First we consider the case where $d>0$ and the fundamental unit ε_{1} satisfies none of the five conditions (A-i) through (A-v). By Lemma 5.6 (3), there exists $u_{j} \in\{0,1,2,3,4\}$ such that $\left(\varepsilon_{1}^{u_{j}} \alpha_{1 j}\right)^{\varphi}$ satisfies (A-i) for each $\alpha_{1 j}$ $\left(1 \leq j \leq r_{1}\right)$. Put $\alpha_{1 j}^{\prime}:=\varepsilon_{1}^{u_{j}} \alpha_{1 j}$; then we have

$$
\operatorname{Sy}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{1}\right)=\left\langle\left[\mathfrak{a}_{11}\right]\right\rangle \times \cdots \times\left\langle\left[\mathfrak{a}_{1 r_{1}}\right]\right\rangle,
$$

and $\left(\alpha_{1 j}^{\prime}\right)=\left(\mathfrak{a}_{1 j}\right)^{5}$. Put

$$
S^{\prime}\left(k_{1}\right):=\left\{\alpha_{1 j}^{\prime} \mid 1 \leq j \leq r_{1}\right\}
$$

and

$$
U\left(S^{\prime}\left(k_{1}\right)\right):=\left\{\prod_{j=1}^{r_{1}}\left(\alpha_{1 j}^{\prime}\right)^{t_{1 j}} \mid 0 \leq t_{1 j} \leq 4, \sum_{j=1}^{r_{1}} t_{1 j} \neq 0\right\}
$$

It follows from (2) of Lemma 5.6 that all elements of $U\left(S^{\prime}\left(k_{1}\right)\right)$ satisfy the condition (A-i). Then by Proposition 5.5 (1), all ($5^{r_{1}}-1$)/4 fields given as K_{α} with $\alpha \in U\left(S^{\prime}\left(k_{1}\right)\right)$ are unramified over M. However the number of unramified cyclic quintic extensions of M given as K_{α} with $\alpha \in U\left(S\left(k_{1}\right)\right)$ is less than $\left(5^{r_{1}+1}-1\right) / 4$, because a prime divisor of 5 in M is ramified in $K_{\varepsilon_{1}}$; that is, $K_{\varepsilon_{1}} / M$ is not unramified. Therefore the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{1} / M\right)$ is equal to $r_{1}=r_{1}^{\prime}-1$.

Next we consider the case where " $d<0$ " or " $d>0$ and the fundamental unit satisfies one of the five conditions (A-i) through (A-v)." We may assume that α_{11} satisfies none of the five conditions (A-i) through (A-v). By Lemma 5.6 (3), for each $\alpha_{1 j}\left(2 \leq j \leq r_{1}\right)$, there exists $u_{j} \in\{0,1,2,3,4\}$ such that $\left(\alpha_{11}^{u_{j}} \alpha_{1 j}\right)^{\varphi}$ satisfies the condition (A-i). Put $\alpha_{1 j}^{\prime}:=\alpha_{11}^{u_{j}} \alpha_{1 j}$; then we have

$$
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{1}\right)=\left\langle\left[\mathfrak{a}_{11}\right]\right\rangle \times\left\langle\left[\mathfrak{a}_{11}^{u_{2}} \mathfrak{a}_{12}\right]\right\rangle \times \cdots \times\left\langle\left[\mathfrak{a}_{11}^{u_{r_{1}}} \mathfrak{a}_{1 r_{1}}\right]\right\rangle
$$

and $\left(\alpha_{1 j}^{\prime}\right)=\left(\mathfrak{a}_{11}^{u_{j}} \mathfrak{a}_{1 j}\right)^{5}, 2 \leq j \leq r_{1}$. When $d>0, \varepsilon_{1}^{u}$ satisfies the condition (A-i) for some $u \in\{1,2,3,4,6\}$. Then we put $\alpha_{1 r_{1}^{\prime}}^{\prime}:=\varepsilon_{1}^{u}$. Put

$$
S^{\prime}\left(k_{1}\right):=\left\{\alpha_{1 j}^{\prime} \mid 2 \leq j \leq r_{1}^{\prime}\right\}
$$

and

$$
U\left(S^{\prime}\left(k_{1}\right)\right):=\left\{\prod_{j=2}^{r_{1}^{\prime}}\left(\alpha_{1 j}^{\prime}\right)^{t_{1 j}} \mid 0 \leq t_{1 j} \leq 4, \sum_{j=2}^{r_{1}^{\prime}} t_{1 j} \neq 0\right\} .
$$

Then the number of unramified cyclic quintic extensions of M given as K_{α} with $\alpha \in U\left(S^{\prime}\left(k_{1}\right)\right)$ is equal to $\left(5^{r_{1}^{\prime}-1}-1\right) / 4$. Hence the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{1} / M\right)$ is equal to $r_{1}^{\prime}-1$.

Next let us calculate the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{2} / M\right)$. The following lemma corresponds to our Lemma 5.6.

Lemma 5.7. Let β_{1} and β_{2} be elements of $U\left(S\left(k_{2}\right)\right)$.
(1) If both β_{1} and β_{2} satisfy the condition (B), then so does $\beta_{1} \beta_{2}$.
(2) If neither β_{1} nor β_{2} satisfies the condition (B), then one of the elements $\beta_{1} \beta_{2}, \beta_{1}^{2} \beta_{2}, \beta_{1}^{3} \beta_{2}, \beta_{1}^{4} \beta_{2}$ satisfies the condition (B).

Proof. We note that $\beta=(a+b \sqrt{5 d}) / 2 \in U\left(S\left(k_{2}\right)\right)(a, b \in \mathbb{Z})$ satisfies the condition (B) if and only if $v_{5}(b) \geq 1$.

For $\beta_{1}, \beta_{2} \in U\left(S\left(k_{2}\right)\right)$, we express

$$
\beta_{1}=\frac{s+t \sqrt{5 d}}{2} \text { and } \beta_{2}=\frac{u+v \sqrt{5 d}}{2} \text { with } s, t, u, v \in \mathbb{Z}
$$

(1) From the assumption, we have $v_{5}(t) \geq 1$ and $v_{5}(v) \geq 1$. Since

$$
\beta_{1} \beta_{2}=\frac{s u+5 t v d+(s v+t u) \sqrt{5 d}}{4}
$$

and $v_{5}(s v+t u) \geq 1$, we obtain the desired conclusion.
(2) From the assumption, we have $v_{5}(t)=0$ and $v_{5}(v)=0$. We also have $v_{5}(s)=0$ and $v_{5}(u)=0$ by $\left(N\left(\beta_{1}\right), \operatorname{Tr}\left(\beta_{1}\right)\right)=\left(N\left(\beta_{2}\right), \operatorname{Tr}\left(\beta_{2}\right)\right)=1$. Put

$$
\beta_{1}^{l} \beta_{2}=\frac{a_{l}+b_{l} \sqrt{5 d}}{2} \text { with } a_{l}, b_{l} \in \mathbb{Z}
$$

for $l(>0) \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
& b_{1}=\frac{s v+t u}{2} \\
& b_{2}=\frac{s(s v+2 t u)+5 t^{2} v d}{4} \\
& b_{3}=\frac{s^{2}(s v+3 t u)+5 t^{2}(3 s v+t u) d}{8} \\
& b_{4}=\frac{s^{3}(s v+4 t u)+10 s t^{2}(3 s v+2 t u) d+25 t^{4} v d^{2}}{16}
\end{aligned}
$$

It is clear that one of them is divisible by 5. The proof of Lemma 5.7 is completed.

As in the above discussion, by using this lemma, we obtain that the 5 -rank of $\operatorname{Gal}\left(\bar{E}_{2} / M\right)$ is equal to $r_{2}^{\prime}-\delta_{2}$.

We summarize the above argument in the following.

Proposition 5.8. Let \bar{E}_{1} (resp. \bar{E}_{2}) be the composite field of all unramified cyclic quintic extensions of M of Type (I) (resp. of Type (II)). Then we have

$$
\operatorname{Gal}\left(\bar{E}_{i} / M\right) \simeq \underbrace{C_{5} \times \cdots \times C_{5}}_{r_{i}^{\prime}-\delta_{i}} \quad(i=1,2),
$$

where δ_{i} is defined as in Section 1.
From this proposition together with the relation (2.2), we obtain that the 5 -rank of the ideal class group of M is equal to $r_{1}^{\prime}+r_{2}^{\prime}-\delta_{1}-\delta_{2}$. This completes the proof of the main theorem.

6. Divisibility of the class numbers

A necessary and sufficient condition for 3 to divide the class number of an imaginary quadratic field was given by Herz [3, Theorem 6]. In [8], Parry extended such a result to $p=5$; that is, he gave a necessary and sufficient condition for 5 to divide the class number of a certain imaginary cyclic quartic field. As an application of our main theorem, we can give another proof of Parry's result.

Theorem 6.1 ([8, Theorem 2, Theorem 5, Corollary 6]). Under the same situation as that in our main theorem, we assume in addition that d is positive. Let h_{1}, h_{2} and h denote the class numbers of k_{1}, k_{2} and M, respectively. Express $\varepsilon_{1}=\left(a_{1}+b_{1} \sqrt{d}\right) / 2\left(a_{1}, b_{1} \in \mathbb{Z}\right)$ and $\varepsilon_{2}=\left(a_{2}+b_{2} \sqrt{5 d}\right) / 2$ $\left(a_{2}, b_{2} \in \mathbb{Z}\right)$. Then $5 \mid h$ if and only if one of the following conditions holds:

$$
\begin{aligned}
(\mathrm{P}-\mathrm{i}) & a_{1} \equiv 0\left(\bmod 5^{2}\right) \text { or } b_{1} \equiv 0\left(\bmod 5^{2}\right) \\
(\mathrm{P}-\mathrm{ii}) & a_{1} \equiv \pm 1, \pm 7\left(\bmod 5^{2}\right) \\
(\mathrm{P}-\mathrm{iii}) & b_{2} \equiv 0(\bmod 5) \\
(\mathrm{P}-\mathrm{iv}) & 5 \mid h_{1} h_{2} .
\end{aligned}
$$

Proof. Let $r, r_{1}, r_{2}, \delta_{1}$ and δ_{2} be the same notation as in our main theorem. Note that

$$
\begin{aligned}
(\mathrm{P}-\mathrm{i}) & \Longleftrightarrow \operatorname{Tr}_{k_{1}}\left(\varepsilon_{1}\right) \equiv 0\left(\bmod 5^{2}\right) \text { or } \operatorname{Tr}_{k_{1}}\left(\varepsilon_{1}\right)^{2} \equiv 4 N_{k_{1}}\left(\varepsilon_{1}\right)\left(\bmod 5^{3}\right), \\
(\mathrm{P}-\mathrm{ii}) & \Longleftrightarrow \operatorname{Tr}_{k_{1}}\left(\varepsilon_{1}\right)^{2} \equiv N_{k_{1}}\left(\varepsilon_{1}\right)\left(\bmod 5^{2}\right) \\
(\mathrm{P}-\mathrm{iii}) & \Longleftrightarrow \operatorname{Tr}_{k_{2}}\left(\varepsilon_{2}\right)^{2} \equiv 4 N_{k_{2}}\left(\varepsilon_{2}\right)\left(\bmod 5^{2}\right)
\end{aligned}
$$

If the condition (P-iv) holds, then we have $r_{1}+r_{2} \geq 1$. If the condition (P-iv) does not hold, then we have $S\left(k_{i}\right)=\left\{\varepsilon_{i}\right\}$ for $i=1,2$, and hence

$$
\begin{aligned}
(\mathrm{P}-\mathrm{i}) \text { or }(\mathrm{P}-\mathrm{ii}) & \Longrightarrow \delta_{1}=0, \\
(\mathrm{P}-\mathrm{iii}) & \Longrightarrow \delta_{2}=0 .
\end{aligned}
$$

Therefore, if one of the above four conditions holds, then we have $r=$ $r_{1}+r_{2}+2-\delta_{1}-\delta_{2} \geq 1$.

Conversely, assume that none of the above four conditions holds. Since both $X^{2} \equiv \pm 2\left(\bmod 5^{2}\right)$ and $X^{2} \equiv \pm 3\left(\bmod 5^{2}\right)$ have no solution in \mathbb{Z}, ε_{1} does not satisfy either (A-iv) or (A-v). Then we have $\delta_{1}=\delta_{2}=1$ and $r_{1}+r_{2}=0$. This implies $r=0$; that is, h is not divisible by 5 .

7. Numerical examples

In this section, we give some numerical examples.
Example 7.1. Let $d=2723$. Then we have

$$
\mathrm{Cl}\left(k_{1}\right) \simeq C_{2} \text { and } \mathrm{Cl}\left(k_{2}\right) \simeq C_{20}
$$

Now we can write

$$
\operatorname{Syl}_{5}^{\mathrm{el} \mathrm{l}} \mathrm{Cl}\left(k_{2}\right)=\langle[\mathfrak{q}]\rangle,
$$

where \mathfrak{q} is a prime divisor of 19 in k_{2} with $(\beta)=\mathfrak{q}^{5}, \beta=1326+115 \sqrt{5 \cdot 2723}$. The fundamental unit $\varepsilon_{1}=94137+1804 \sqrt{2723}$ of k_{1} satisfies the condition (A-iii). Moreover both β and the fundamental unit $\varepsilon_{2}=7001+60 \sqrt{5 \cdot 2723}$ of k_{2} satisfy the condition (B). Then by the main theorem, the 5 -rank r of M is equal to 3 :

$$
r=0+1+2-0-0=3 .
$$

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group of M is isomorphic to $C_{10} \times C_{10} \times C_{10} \times C_{2}$.

Example 7.2. Let $d=-14606$. Then we have

$$
\mathrm{Cl}\left(k_{1}\right) \simeq C_{10} \times C_{10} \text { and } \mathrm{Cl}\left(k_{2}\right) \simeq C_{44} \times C_{2} \times C_{2}
$$

and we can write

$$
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{1}\right)=\left\langle\left[\mathfrak{p}_{1}\right]\right\rangle \times\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle
$$

where \mathfrak{p}_{1} and \mathfrak{p}_{2} are prime divisors of 71 and 73 , respectively, in k_{1} with $\left(\alpha_{1}\right)=\mathfrak{p}_{1}^{5}, \alpha_{1}=39699+125 \sqrt{-14606}$ and $\left(\alpha_{2}\right)=\mathfrak{p}_{2}^{5}, \alpha_{2}=19097+$ $342 \sqrt{-14606}$. We can easily verify that α_{1} and α_{2} satisfy the conditions (A-i) and (A-iv), respectively. Then the main theorem follows that the 5 -rank r of M is equal to 2 :

$$
r=2+0-0-0=2
$$

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group of M is isomorphic to $C_{10} \times C_{10} \times C_{2}$.

Example 7.3. Let $d=-16782$. Then we have

$$
\mathrm{Cl}\left(k_{1}\right) \simeq C_{10} \times C_{10} \text { and } \mathrm{Cl}\left(k_{2}\right) \simeq C_{40} \times C_{2} \times C_{2}
$$

We can write

$$
\operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{1}\right)=\left\langle\left[\mathfrak{p}_{1}\right]\right\rangle \times\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle \text { and } \operatorname{Syl}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{2}\right)=\langle[\mathfrak{q}]\rangle,
$$

where \mathfrak{p}_{1} and \mathfrak{p}_{2} are prime divisors of 7 and 31 in k_{1} respectively with $\left(\alpha_{j}\right)=\mathfrak{p}_{j}^{5}(j=1,2), \alpha_{1}=5+\sqrt{-16782}, \alpha_{2}=647+41 \sqrt{-16782}$, and \mathfrak{q} is a prime divisor of 271 in k_{2} with $(\beta)=\mathfrak{q}^{5}, \beta=583699+3655 \sqrt{-5 \cdot 16782}$. We see that neither α_{1} nor α_{2} satisfy all of the five conditions (A-i) through (A-v), but $\left(\alpha_{1}^{3} \alpha_{2}\right)^{6}$ satisfies (A-i) (cf. Lemma 5.6 (3)). Moreover, we also see that β satisfies the condition (B). Therefore it follows from the main theorem that the 5 -rank r of M is equal to 2 :

$$
r=2+1-1-0=2 .
$$

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group of M is isomorphic to $C_{10} \times C_{10}$.

Example 7.4. Let $d=-560181$. Then we have

$$
\mathrm{Cl}\left(k_{1}\right) \simeq C_{334} \times C_{2} \text { and } \mathrm{Cl}\left(k_{2}\right) \simeq C_{10} \times C_{10} \times C_{10} .
$$

We note that k_{2} is the imaginary quadratic field with the largest discriminant which has ideal class group of 5 -rank greater than two (see [1]). Now we have

$$
\operatorname{Syy}_{5}^{\mathrm{el}} \mathrm{Cl}\left(k_{2}\right)=\left\langle\left[\mathfrak{q}_{1}\right]\right\rangle \times\left\langle\left[\mathfrak{q}_{2}\right]\right\rangle \times\left\langle\left[\mathfrak{q}_{3}\right]\right\rangle,
$$

where $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ and \mathfrak{q}_{3} are prime divisors of 181,241 and 349 , respectively, in k_{2} with $\left(\beta_{j}\right)=\mathfrak{q}_{j}^{5}(j=1,2,3)$,

$$
\begin{aligned}
& \beta_{1}=426689+66 \sqrt{-5 \cdot 560181} \\
& \beta_{2}=91111+536 \sqrt{-5 \cdot 560181}, \\
& \beta_{3}=2183773+382 \sqrt{-5 \cdot 560181}
\end{aligned}
$$

We can easily verify that none of β_{j} satisfies the condition (B). (Both $\beta_{1} \beta_{2}$ and $\beta_{2} \beta_{3}$ however satisfy (B).) Therefore, the main theorem follows that the 5 -rank r of M is equal to 2 :

$$
r=0+3-0-1=2 .
$$

In fact, by using GP/PARI (version 2.1.0), we see that the ideal class group of M is isomorphic to $C_{10} \times C_{10}$.

Acknowledgment

The author would like to thank the referee for his careful reading of the first version and for his comments which have improved the presentation of this paper.

Kishi: The Spiegelungssatz for $\mathrm{p}=5$ from a Constructive Approach

References

[1] D. A. Buell, Class groups of quadratic fields. II, Math. Comp. 48(1987) 85-93.
[2] G. Gras, Théorèmes de réflexion, J. Théor. Nombres Bordeaux 10(1998) 399-499.
[3] C. S. Herz, Construction of class fields, in: "Seminar on Complex Multiplication," Lecture Notes in Mathematics, Vol. 21, Springer-Verlag, Berlin-New York, 1966.
[4] M. Imaoka and Y. Kishi, On dihedral extensions and Frobenius extensions, in: "Galois Theory and Modular Forms," pp. 195-220, Developments of Mathematics, Vol. 11, Kluwer Acad. Publ., Dordrecht, 2003.
[5] S.-N. Kuroda, Über den allgemeinen Spiegelungssatz für Galoissche Zahlkörper, J. Number Theory 2(1970) 282-297.
[6] H.-W. Leopoldt, Zur Struktur der l-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math. 199(1958) 165-174.
[7] D. J. Madden and W. Y. Vélez, A note on the normality of unramified, abelian extensions of quadratic extensions, Manuscripta Math. 30(1979/80) 343-349.
[8] C. J. Parry, Real quadratic fields with class numbers divisible by five, Math. Comp. 32 (1978) 1261-1270.
[9] M. SAse, On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74(1998) 120-123.
[10] A. Scholz, Über die Beziehung der Klassenzahl quadratischer Körper zueinander, J. Reine Angew. Math. 166(1932) 201-203.
[11] L. C. Washington, "Introduction to Cyclotomic Fields, 2nd ed.," Graduate Texts in Mathematics, Vol. 83, Springer-Verlag, New York, 1997.

Yasuhiro Kishi
Department of Mathematics
Fukuoka University of Education
Munakata, Fukuoka 811-4192 Japan
e-mail address: ykishi@fukuoka-edu.ac.jp

(Received June 30, 2004)

[^0]: This research was partially supported by JSPS Research Fellowships for Young Scientists.

