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CONDITIONS FOR ELEMENTS TO BE CENTRAL
IN CERTAIN RINGS

MoOHAMED N. DAIF and MoHAMED H. FAHMY

Recently, many papers, [3], [4], [7]. [9], [10] and others, have been
devoted to studying the conditions which force an element of a ring to be
central. In this paper, we continue the investigation on such conditions,
and partially generalize the results of Awtar [2], Mogami and Hongan [10]
and Felzenszwalb [3].

Throughout this paper R is an associative ring with 1, and Z the center
of R. Given a subset M of R, »(M) and /(M) denote the right annihilator
and the left annihilator of M in R, respectively.

Now, let a2 and x be elements of R. and consider the following conditions :

(i) laxxal € Z.

(ii) There exists an integer n{x) > 1 such that

(xa)t—x*a* € Z, k=n(x), n(x)+1. n(x)+2.

The main theorems of this paper are stated as follows:

Theorem 1. Let R be a semiprime ring, and U an ideal of R with
(U)=0. If (i) is satisfied for all x € U, then a is central.

Theorem 2. Let R be a prime ring with no non-zero nil left ideals
and 2R+ 0. If (ii) is satisfied for all x €E R, then a is central.

In preparation for proving our theorems, we establish the following
lemmas.

Lemma 1. Let R be a division ving. If (i) or (ii) is satisfied for
all x ER, then a is central,

Proof. Suppose, to the contrary, a €€ Z. If (i) is satisfied then
[x,a"'xa]l € Z for all x € R. Next, assume that (ii) is satisfied. Since

x[x®'a* Lax]a = [x*a*.xa) = [x*a*— (xa)* xa] = 0,
we get [x*'@* ! ax] =0, and hence
[(xa)*'ax] = [(xa)* ' —x*'a* Vax] =0, &= n(x)+1, n(x)+2.

From the last, we obtain (xa)"[xa,ax] = [(xa)"*'.ax]—[(xa)".ax]xa = 0.
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This proves that [xa,ax] =0, and so [@¢'xax] =0. Thus, in any case,
[x.a'xa] € Z. Since the inner automorphism effected by « is non-trivial,
R is commutative by [11, Remark 2]. This contradiction shows that ¢ € Z.

Lemma 2. Let R be a primitive rving, and U a non-zero ideal of R.
If (1) or (ii) is satisfied for all x € U. then ua is central.

Proof. Since K is primitive, it has a faithful irreducible module V
which can also be regarded as a faithful irreducible U-module. By Density
Theorem, U acts densely on V as a vector space over a division ring 4.
If dimsV =1 then R is a division ring, and ¢ € Z by Lemma 1. So, we
assume henceforth that dims 1V > 1. Let v be a non-zero vector in V. We
claim that ¢ and va are linearly dependent. First, consider the case of (i ).
Suppose that v, va, ve® are linearly independent. By Density Theorem,
there exist w1, w2 € U such that v, = v. (va)u, =v, (va®)u, =0; vz =0,
(va@)us = — v, (va®)us =va. Thus. 0 = v[[u1a ai1].22] = v. which contra-
dicts the choice of v. So we may assume that va® = Bv+ yva, where
B, re d If v and va are linearly independent, then there are ui, us € U
such that vu; = v, (va)u; = v vus = 0, (va)us = — v, which yields again
v=20. This proves that v and va are linearly dependent. Next, assume
that (ii) is satisfied for all x& U. If v and va are linearly independent
then there are w), w, € U such that wuwy =0, (va)w, =v; vw. = va.
(va)ws = v. Thus,

0 = v[(una)" — whta*.w:] = —va for k= n(w).

This contradiction shows that v and va are linearly dependent. Thus, in
any case, for every v € V we have va = A(v)v, where A(v) € 4. Noting
that dimsV > 1, we can easily see that A(v) does not depend on v, i.e.,
va=Avforall v€E V. Now, if u € U, we have(vu)a = Avu =(va)u. Thus
Vlu,a] =0, that is [#,a] =0 for all # € U. Now, by [8, Lemma 1.1.6],
we get a € Z.

Lemma 3. Let R be a semiprimitive ring, and U a two-sided ideal of
R owith [(U)Y=0. If (i)or (ii) is satisfied for all x € U, then a is central.

Proof. Divide the set of all primitive ideals of R into two parts: let
P1 be the set of those which contain U, and ; the set of those which do
not. Let Uy, = Nper, P, and Uz = Npep, . Then U, N U, = 0. Since
U, € I(U) <€ I(U)=0, R is a subdirect sum of R/P (P& ;). Obviously,
(U+P)/P is non-zero for every PE P,. Hence, by Lemma 2, [a.x] €
Nper, = 0 for all x € R.
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Corollary 1. Let R be a semiprimitive ring. If (i) or (ii) i
satisfied for all x € R then a is central.

Lemma 4. Lel R be a ring without non-zero nil left ideals, and
a€ R. Suppose that for each x E R there exists n= n(x) >1 such that
(xa)"—x"a" € Z.

(1) Let bEela). If x. YER and xy=0 then xa"by =10 for all
k>1.

(2) Ha)={xE€ R|xa™=0 for some m = 1}.

(3) »(a)y= la).

Proof (1) For any » € R, there exists # > 1 such that (yrxa)® =
(vrxa)"—(yrx)a™ € Z, and therefore (vrxa)™*' = [(yrxa)* yrx]Ja=0. Thus,
Rxay is a nil left ideal, and so we get xay = 0. Since (ab)* =0, t =1+ab
is invertible and tat~! = a—a?b. By the above, xay =0 = {"'xt-a t 'yi,
and so we get

xatby=—x(a—a®b)y = — t{(t 'xt-a-t"'yt)t ' = 0.

Now, it is easy to see that xa*by =0 for all £ > 1.

(2) It suffices to show that xa™=0 (sn > 1) yields xa™ ' = 0. Putting
y = xa™?2, we have ya®>= 0. For any » € R, there exists # > 1 such that
(rva)” = (rva)"—(ry)"a” € Z. and therefore (rva)"*' = ry[a,(rya)?] = 0.
Since R has no non-zero nil left ideals, we get xa™ ! = ya = 0.

(3) Letx€ 7(a). and n = n(x). Since x"a” =x"a"—(xa)" E Z, there
holds x"*'q" = [x.x"a"] = 0. whence it follows x"*'a=0 by (2). We
consider the right ideal V consisting of all » € R such that »™"v =0 for
all y € r(a). If » € r(a) and 2 =0 then, for any v € V. (v)"v =0 and
(r+7v)"v =0, where m = max{n(»v). n(r+rv)}. Expanding the last
equation, we get (»v)®=0. Then, since R contains no nil right ideals
either, it follows that »V = 0. Let y be an arbitrary element of V. Since
(x"yx)2=0 and x"yx € r(a), by what was just proved above, there holds
x"yxy=0. Repeating the above argument, we obtain x™~'yxyxyxy =0, and
eventually (xy)!*2+-+2"'+1 =0 Thus, xV is a nil right ideal, and hence
zero: in particular, xa =0. This proves »(a) S /{a).

To prove the converse inclusion, let € /(a). Let x be an arbitrary
element of R, and # = n(x). Then

0=[x"a"—(xa)" xa) = [x"a"xa] = x(x"'a"xa—ax"a™).
By (1),

0= xa"*2b(x" 'a™xa—ax™a”) = xa"*2bx" 'a’xa,
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and therefore again by (1)

(bxan+2)n+l — bxan+2b(xan+2b)n—2xan,azb_xa,anﬂ = (.

Recalling that R contains no non-zero nil left ideals, we obtain /(a)xa™*?

= 0, and therefore /{a)xa=0by (2). Then, since (xab)? =0, we see that
Rab is a nil left ideal, and hence ab = 0. which proves /(a) € 7(a).

We are now ready to complete the proofs of our theorems.

Proof of Theorem 1. As in the proof of Lemma 3, we see that there
exist prime ideals P, of R such that NP, =0 and U ¢ P.. Thus, without
loss of generality, we may assume that R is a prime ring and U is a non-
zero ideal of R. Let S = RC be the central closure of R, where C is the
extended centroid of R (see [8, pp. 20—31]). Let V = UC. Noting that
for any u, u. € U,

[axi.xea]+[axe.x1a] = [alx)+ x2), (01 + x2)a) — [ax1,x ] — [ axe, x20] € Z,

we can easily see that the condition ( i ) carries over to S with respect to
the ideal V. Suppose now that ¢ is not in Z, and choose « € U such that
ua + 0. Then, S satisfiesthe generalized polynomial identity [[x) za,ax; u].x2)
=0, and a theorem of Martindale [8, Theorem 1.3.2] shows that S is prim-
itive, and therefore a € Z(S) by Lemma 2. Hence, a € Z, a contradiction.

Corollary 2. (1) Let R be a ring without non-zero nil ideals. If for
each x € R there exists an integer m = m(x) > 1 such that [x"yyx™|€ Z
for all yE R, then R is commutative.

(2) Let R be a semiprime rving. If for each x € R there exists a
polvnomial p(t) = px(t) with integer coefficients such that

[((x—x2p(x)yy(x—x*p(xDE Z  for all yE R,
then R is commutative.

Proof. (1) Since R is a subdirect sum of prime rings without non-
zero nil ideals, it is enough to prove the assertion for prime rings without
non-zero nil ideals. Then, by Theorem 1, x™ € Z. Hence, by (5, Theorem5],
R is commutative.

(2) By Theorem 1 and [6, Theorem 19].

Proof of Theorem 2. Wemay assume that a isnon-zero. Furthermore,
by Corollary 1, we may assume that the Jacobson radical J of R is non-zero.
Let x be an arbitrary element of /. Then both 1+x and 1—x are units in
R. Since R is prime and 7(a) = /(a) by Lemma 4 (3), a is regular. Thus,
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we can use the same argument as in the proof of Lemma 1 to show that

la,ax]+[xa.a]+ xa,ax] = [(1+x)a.a(1+x)] = 0, and
—la,ax]—[xa,al+{xa,ax] = 0.

Since 2R # 0, the last two equations give [xa,ax]=0. Thus from Theorem 1
it follows that a € Z.

As an easy consequence of Corollary 1 and Theorem 2, we have

Corollary 3. Let R be either a semiprimitive ring or a 2-ftorsion free
prime ring with no non-zero nil left ideals.

(1) If for every x, yYE R there exist integers m = ml{x)>1 and
n=nlxy) >1 such that

(yx™E—yrx™ & Z  k=n n+l, n+2,

then R s commutaltive.
(2) If for every x, vy €E R there exists a polynomial p(t) = p(t) with
integer coefficients and an integer n = n(x,y) > 1 such that

(y(x—x2p(x))N)2—yR(x—x2p(xN*E Z, k=n, n+l, n+2.

then R is commutative.

We conclude this paper with the following remark.

Remark. Careful scrutiny of the proof of Lemma 4 shows that, in
case n(x) are bounded, the lemma turns out to be true if we just assume
that K has no non-zero nil left ideals of bounded index. By a result of
Levitzki, every semiprime ring has no non-zero nil left ideals of bounded
index. Hence, in case (ii) is satisfied for all x and #(x) are bounded,
Theorem 2 is still true without the hypothesis that R has no non-zero nil
left ideals.

Acknowledgement. The authors are indebted to Prof. H. Tominaga
and Prof. Y. Hirano for their helpful suggestions which greatly improved
this paper.
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