Mathematical Journal of Okayama University

Volume 25, Issue 1 1983 Article 1 JUNE 1983

Conditions for elements to be central in certain rings

Mohamed N. Daif*

Mohamed H. Fahmy[†]

*Al-Azhar University †Al-Azhar University

Copyright ©1983 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 25 (1983), 1-6

CONDITIONS FOR ELEMENTS TO BE CENTRAL IN CERTAIN RINGS

MOHAMED N. DAIF and MOHAMED H. FAHMY

Recently, many papers, [3], [4], [7], [9], [10] and others, have been devoted to studying the conditions which force an element of a ring to be central. In this paper, we continue the investigation on such conditions, and partially generalize the results of Awtar [2], Mogami and Hongan [10] and Felzenszwalb [3].

Throughout this paper R is an associative ring with 1, and Z the center of R. Given a subset M of R, r(M) and l(M) denote the right annihilator and the left annihilator of M in R, respectively.

Now, let *a* and *x* be elements of *R*. and consider the following conditions :

$$(1) [ax, xa] \in Z.$$

(ii) There exists an integer n(x) > 1 such that

 $(xa)^{k} - x^{k}a^{k} \in \mathbb{Z}, \quad k = n(x), \ n(x) + 1, \ n(x) + 2.$

The main theorems of this paper are stated as follows:

Theorem 1. Let R be a semiprime ring, and U an ideal of R with l(U)=0. If (i) is satisfied for all $x \in U$, then a is central.

Theorem 2. Let R be a prime ring with no non-zero nil left ideals and $2R \neq 0$. If (ii) is satisfied for all $x \in R$, then a is central.

In preparation for proving our theorems, we establish the following lemmas.

Lemma 1. Let R be a division ring. If (i) or (ii) is satisfied for all $x \in R$, then a is central.

Proof. Suppose, to the contrary, $a \notin Z$. If (i) is satisfied then $[x,a^{-1}xa] \in Z$ for all $x \in R$. Next, assume that (ii) is satisfied. Since

$$x[x^{k-1}a^{k-1},ax]a = [x^{k}a^{k},xa] = [x^{k}a^{k}-(xa)^{k},xa] = 0,$$

we get $[x^{k-1}a^{k-1}, ax] = 0$, and hence

 $[(xa)^{k-1}, ax] = [(xa)^{k-1} - x^{k-1}a^{k-1}, ax] = 0, \quad k = n(x) + 1, \quad n(x) + 2.$

From the last, we obtain $(xa)^n[xa,ax] = [(xa)^{n+1},ax] - [(xa)^n,ax]xa = 0$.

M.N. DAIF and M.H. FAHMY

This proves that [xa,ax] = 0, and so $[a^{-1}xa,x] = 0$. Thus, in any case, $[x,a^{-1}xa] \in Z$. Since the inner automorphism effected by *a* is non-trivial, *R* is commutative by [11, Remark 2]. This contradiction shows that $a \in Z$.

Lemma 2. Let R be a primitive ring, and U a non-zero ideal of R. If (i) or (ii) is satisfied for all $x \in U$, then a is central.

Proof. Since R is primitive, it has a faithful irreducible module Vwhich can also be regarded as a faithful irreducible U-module. By Density Theorem, U acts densely on V as a vector space over a division ring Δ . If dim₄ V = 1 then R is a division ring, and $a \in Z$ by Lemma 1. So, we assume henceforth that $\dim_{d} V > 1$. Let v be a non-zero vector in V. We claim that v and va are linearly dependent. First, consider the case of (i). Suppose that v, va, va^2 are linearly independent. By Density Theorem, there exist $u_1, u_2 \in U$ such that $vu_1 = v$, $(va)u_1 = v$, $(va^2)u_1 = 0$; $vu_2 = 0$, $(va)u_2 = -v$, $(va^2)u_2 = va$. Thus, $0 = v[[u_1a, au_1], u_2] = v$, which contradicts the choice of v. So we may assume that $va^2 = \beta v + \gamma va$, where $\beta, \gamma \in \Delta$. If v and va are linearly independent, then there are $u'_1, u'_2 \in U$ such that $vu'_1 = v$, $(va)u'_1 = v$; $vu'_2 = 0$, $(va)u'_2 = -v$, which yields again v = 0. This proves that v and va are linearly dependent. Next, assume that (ii) is satisfied for all $x \in U$. If v and va are linearly independent then there are w_1 , $w_2 \in U$ such that $vw_1 = 0$, $(va)w_1 = v$; $vw_2 = va$. $(va)w_2 = v$. Thus,

$$0 = v[(w_1a)^k - w_1^k a^k, w_2] = -va \text{ for } k = n(w_1).$$

This contradiction shows that v and va are linearly dependent. Thus, in any case, for every $v \in V$ we have $va = \lambda(v)v$, where $\lambda(v) \in \Delta$. Noting that dim_d V > 1, we can easily see that $\lambda(v)$ does not depend on v, i.e., $va = \lambda v$ for all $v \in V$. Now, if $u \in U$, we have $(vu)a = \lambda vu = (va)u$. Thus V[u,a] = 0, that is [u,a] = 0 for all $u \in U$. Now, by [8, Lemma 1.1.6], we get $a \in Z$.

Lemma 3. Let R be a semiprimitive ring, and U a two-sided ideal of R with l(U) = 0. If (i) or (ii) is satisfied for all $x \in U$, then a is central.

Proof. Divide the set of all primitive ideals of R into two parts: let \mathcal{P}_1 be the set of those which contain U, and \mathcal{P}_2 the set of those which do not. Let $U_1 \equiv \bigcap_{P \in \mathcal{P}_1} P$, and $U_2 \equiv \bigcap_{P \in \mathcal{P}_2} P$. Then $U_1 \cap U_2 = 0$. Since $U_2 \subseteq l(U_1) \subseteq l(U) = 0$, R is a subdirect sum of R/P ($P \in \mathcal{P}_2$). Obviously, (U+P)/P is non-zero for every $P \in \mathcal{P}_2$. Hence, by Lemma 2, $[a,x] \in \bigcap_{P \in \mathcal{P}_2} P = 0$ for all $x \in R$.

2

CONDITIONS FOR ELEMENTS TO BE CENTRAL

3

Corollary 1. Let R be a semiprimitive ring. If (i) or (ii) is satisfied for all $x \in R$ then a is central.

Lemma 4. Let R be a ring without non-zero nil left ideals, and $a \in R$. Suppose that for each $x \in R$ there exists n = n(x) > 1 such that $(xa)^n - x^n a^n \in Z$.

(1) Let $b \in l(a)$. If $x, y \in R$ and xy = 0 then $xa^k by = 0$ for all k > 1.

- (2) $l(a) = \{x \in R \mid xa^m = 0 \text{ for some } m \ge 1\}.$
- (3) r(a) = l(a).

Proof. (1) For any $r \in R$, there exists n > 1 such that $(yrxa)^n = (yrxa)^n - (yrx)^n a^n \in Z$, and therefore $(yrxa)^{n+1} = [(yrxa)^n, yrx]a = 0$. Thus, *Rxay* is a nil left ideal, and so we get xay = 0. Since $(ab)^2 = 0$, t = 1 + ab is invertible and $tat^{-1} = a - a^2b$. By the above, $xay = 0 = t^{-1}xt \cdot a \cdot t^{-1}yt$, and so we get

$$xa^{2}by = -x(a-a^{2}b)y = -t(t^{-1}xt \cdot a \cdot t^{-1}yt)t^{-1} = 0.$$

Now, it is easy to see that $xa^k by = 0$ for all k > 1.

(2) It suffices to show that $xa^m = 0$ (m > 1) yields $xa^{m-1} = 0$. Putting $y = xa^{m-2}$, we have $ya^2 = 0$. For any $r \in R$, there exists n > 1 such that $(rya)^n = (rya)^n - (ry)^n a^n \in Z$, and therefore $(rya)^{n+1} = ry[a, (rya)^n] = 0$. Since R has no non-zero nil left ideals, we get $xa^{m-1} = ya = 0$.

(3) Let $x \in r(a)$, and n = n(x). Since $x^n a^n = x^n a^n - (xa)^n \in Z$, there holds $x^{n+1}a^n = [x, x^n a^n] = 0$, whence it follows $x^{n+1}a = 0$ by (2). We consider the right ideal V consisting of all $v \in R$ such that $r^{n(r)}v = 0$ for all $r \in r(a)$. If $r \in r(a)$ and $r^2 = 0$ then, for any $v \in V$, $(rv)^m v = 0$ and $(r+rv)^m v = 0$, where $m = \max\{n(rv), n(r+rv)\}$. Expanding the last equation, we get $(rv)^m = 0$. Then, since R contains no nil right ideals either, it follows that rV = 0. Let y be an arbitrary element of V. Since $(x^n yx)^2 = 0$ and $x^n yx \in r(a)$, by what was just proved above, there holds $x^n yxy = 0$. Repeating the above argument, we obtain $x^{n-1}yxyxyxy = 0$, and eventually $(xy)^{1+2+\dots+2^{n-1}+1} = 0$. Thus, xV is a nil right ideal, and hence zero; in particular, xa = 0. This proves $r(a) \subseteq l(a)$.

To prove the converse inclusion, let $b \in l(a)$. Let x be an arbitrary element of R, and n = n(x). Then

$$0 = [x^n a^n - (xa)^n, xa] = [x^n a^n, xa] = x(x^{n-1}a^n xa - ax^n a^n).$$

By (1),

$$0 = xa^{n+2}b(x^{n-1}a^nxa - ax^na^n) = xa^{n+2}bx^{n-1}a^nxa$$

M.N. DAIF and M.H. FAHMY

and therefore again by (1)

4

$$(bxa^{n+2})^{n+1} = bxa^{n+2}b(xa^{n+2}b)^{n-2}xa^n \cdot a^2b \cdot xa \cdot a^{n+1} = 0.$$

Recalling that R contains no non-zero nil left ideals, we obtain $l(a)xa^{n+2} = 0$, and therefore l(a)xa = 0 by (2). Then, since $(xab)^2 = 0$, we see that Rab is a nil left ideal, and hence ab = 0, which proves $l(a) \subseteq r(a)$.

We are now ready to complete the proofs of our theorems.

Proof of Theorem 1. As in the proof of Lemma 3, we see that there exist prime ideals P_a of R such that $\bigcap_a P_a = 0$ and $U \notin P_a$. Thus, without loss of generality, we may assume that R is a prime ring and U is a non-zero ideal of R. Let S = RC be the central closure of R, where C is the extended centroid of R (see [8, pp. 20–31]). Let V = UC. Noting that for any $u_1, u_2 \in U$,

$$[ax_{1},x_{2}a] + [ax_{2},x_{1}a] = [a(x_{1}+x_{2}),(x_{1}+x_{2})a] - [ax_{1},x_{1}a] - [ax_{2},x_{2}a] \in \mathbb{Z},$$

we can easily see that the condition (i) carries over to S with respect to the ideal V. Suppose now that a is not in Z, and choose $u \in U$ such that $ua \neq 0$. Then, S satisfies the generalized polynomial identity $[[x_1ua, ax_1u], x_2] = 0$, and a theorem of Martindale [8, Theorem 1.3.2] shows that S is primitive, and therefore $a \in Z(S)$ by Lemma 2. Hence, $a \in Z$, a contradiction.

Corollary 2. (1) Let R be a ring without non-zero nil ideals. If for each $x \in R$ there exists an integer m = m(x) > 1 such that $[x^m y, yx^m] \in Z$ for all $y \in R$, then R is commutative.

(2) Let R be a semiprime ring. If for each $x \in R$ there exists a polynomial $p(t) = p_x(t)$ with integer coefficients such that

$$[(x-x^2p(x))y,y(x-x^2p(x))] \in Z \text{ for all } y \in R,$$

then R is commutative.

Proof. (1) Since R is a subdirect sum of prime rings without non-zero nil ideals, it is enough to prove the assertion for prime rings without non-zero nil ideals. Then, by Theorem 1, $x^m \in Z$. Hence, by [5, Theorem 5], R is commutative.

(2) By Theorem 1 and [6, Theorem 19].

Proof of Theorem 2. We may assume that a is non-zero. Furthermore, by Corollary 1, we may assume that the Jacobson radical J of R is non-zero. Let x be an arbitrary element of J. Then both 1+x and 1-x are units in R. Since R is prime and r(a) = l(a) by Lemma 4 (3), a is regular. Thus,

CONDITIONS FOR ELEMENTS TO BE CENTRAL

we can use the same argument as in the proof of Lemma 1 to show that

$$[a,ax]+[xa,a]+[xa,ax] = [(1+x)a,a(1+x)] = 0$$
, and
 $-[a,ax]-[xa,a]+[xa,ax] = 0.$

Since $2R \neq 0$, the last two equations give [xa,ax] = 0. Thus from Theorem 1 it follows that $a \in Z$.

As an easy consequence of Corollary 1 and Theorem 2, we have

Corollary 3. Let R be either a semiprimitive ring or a 2-torsion free prime ring with no non-zero nil left ideals.

(1) If for every x, $y \in R$ there exist integers m = m(x) > 1 and n = n(x,y) > 1 such that

$$(yx^m)^k - y^k x^{mk} \in \mathbb{Z}, \quad k = n, n+1, n+2,$$

then R is commutative.

(2) If for every x, $y \in R$ there exists a polynomial $p(t) = p_x(t)$ with integer coefficients and an integer n = n(x,y) > 1 such that

 $(y(x-x^2p(x)))^k - y^k(x-x^2p(x))^k \in \mathbb{Z}, k = n, n+1, n+2,$

then R is commutative.

We conclude this paper with the following remark.

Remark. Careful scrutiny of the proof of Lemma 4 shows that, in case n(x) are bounded, the lemma turns out to be true if we just assume that R has no non-zero nil left ideals of bounded index. By a result of Levitzki, every semiprime ring has no non-zero nil left ideals of bounded index. Hence, in case (ii) is satisfied for all x and n(x) are bounded, Theorem 2 is still true without the hypothesis that R has no non-zero nil left ideals.

Acknowledgement. The authors are indebted to Prof. H. Tominaga and Prof. Y. Hirano for their helpful suggestions which greatly improved this paper.

References

- [1] S.A. AMITSUR: An embedding of PI-rings, Proc. Amer. Math. Soc. 3 (1952), 3-9.
- [2] R. AWTAR: A remark on the commutativity of certain rings, Proc. Amer. Math. Soc. 41 (1973), 370-372.

M.N. DAIF and M.H. FAHMY

- [3] B. FELZENSZWALB: On the commutativity of certain rings, Acta Math. Acad. Sci. Hungar. 34 (1979), 257-260.
- [4] A. GIAMBRUNO: Some generalizations of a center of a ring, Rend. Circ. Mat. Palermo, Ser. II, 27 (1978), 270-282.
- [5] I.N. HERSTEIN: A theorem on rings, Canad. J. Math. 5 (1953), 238-241.

6

- [6] I.N. HERSTEIN: The structure of a certain class of rings, Amer. J. Math. 75 (1953), 864-871.
- [7] I.N. HERSTEIN: On the hypercenter of rings, J. Algebra 36 (1975), 151-157.
- [8] I.N. HERSTEIN: Rings with Involution, Univ. of Chicago Press, 1976.
- [9] I.N. HERSTEIN: Center-like elements in prime rings, J. Algebra 60 (1979), 567-574.
- [10] I. MOGAMI and M. HONGAN: Note on commutativity of rings, Math. J. Okayama Univ. 20 (1978), 21-24.
- [11] M.F. SMILEY: Remarks on the commutativity of rings, Proc. Amer. Math. Soc. 10 (1959), 466-470.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE AL-AZHAR UNIVERSITY NASR CITY, CAIRO, EGYPT

(Received August 23, 1982)