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NOTE ON COMMUTATIVITY OF RINGS.

Isao MOGAMI

Throughout, R will represent an associative ring with center C, J the
(Jacobson) radi(l:al of R, D the commutator ideal of R, and N the set of
all positive integers. A ring R is called s-unital if for each x € R,
x € Rx N xR. As stated in [1, Lemma 1 (a)], if R is an s-unital ring,
then for any finite subset F of R, there exists an element ¢ in R such
that ex =xe = x for all x in F. Such an element e will- be called a
pseudo-identity of F.

We consider the following properties of rings:

(I) For each pair of elements x, ¥ in R, there exist positive integers
m, m' such that (m, m') =2 and

(xy)®=x%" a=m, m+1, m, m'+1.
(IOI) For each pair of elements x, y in R there exists an even positive
integer m such that
(x)* = x%y% a=m, m+2, m+4.

The purpose of this note is to prove the following commutativity
theorems.

Theorem 1. If R is an s-unilal ring having the property (1), then R
s commutative.

Theorem 2. If R is an s-unital ving having the property (1), then R
is commutative.

Recently, C.-T. Yen [3] showed that every primary ring satisfying the
polynomial identities (xy)* = x%y? (@ = m, m+1, m’, m'+1) with (m, m’)
=1 or 2 is commutative. Obviously, Theorem 1 together with the previous
result [2, Theorem] improves the result of Yen.

In preparation for the proof of our theorems, we first state an easy
lemma.

Lemma 1. (1) Let e be a pseudo-identity of a€ R. If a has a
quasi-inverse a’, then (a+e)(a'+e) = (a'+e)ate)= e

(2) Let e be a pseudo-identity of {a, b} S R. If a®h=0= (a+e)d
for some s, t E N, then b=0.
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(3) Let m<E 2N, and a, bE R. If [a® b2]=0 and (ab)® =a%b® for
a=m, m+2, then bma™*'[b,alb = 0.

Proof. (1) is immediate and (2) is well known.
(3) In fact,

0= (ab)m+2__am+2bm+2 — ambm<ab)2_ am+2bm+2

= b™a™ bab— b"a™2p% = b g™t b,alb.

Corollary 1. Let e be a pseudo-identity of {a, b} & R, and m € 2N.
Suppose that {b(a+e)}® = b*(a+e)® for a = m, m+2, m+4. If a is quasi-
regular, then b™*2[b2% (a+e)?] = 0.

Proof. By Lemma 1 (1), we can easily see that
{(b(a+e))?b™ = b™**(a+e)? and {bla+e)}2b™*? = p™*4(a+e)?
Combining those above, we readily obtain 6™*2[52, (a+e)?] = 0.

In order to prove Theorem 1, we require further lemmas.

Lemma 2. Let R be an s-unital ring having the property (1). Then,
Jor a, b E R, there exists s € N such that [a,b?]b% = 0.

Proof. By hypothesis, there exist m, m' € N with (m, m’) =2 such
that
(ab)® = a®b®, a=m, m+1, m', m +1.

Without loss of generality, we may assume that {'#' —im = 2 with some
t, Y €N. By [2, Lemma 1 and Lemma 2 (a)], there exist p, € N such
that

[a.6'™]b%a®* =0 and [a,b67™]b%a" = 0.
Putting p” = max {p, p’}, we obtain
[a,%]6™a?” = [a,b2]6"™b%a”" = [a,b'™]b%a”™ — b?[a,b™]b2a” = 0.

Again by [1, Lemma 1], there exists g € N such that a?[a,b2]b*™ = 0.
Hence, by Lemma 1 (2), [a,b%]b° = 0 with some s € N,

Lemma 3. Let R be an s-unital ving having the property (1). If
a s a quasi-vegular element in R, then a is central. In particular, every
division ring having the property (1) is commutative.

Proof. Let bE R, and e a pseudo-identity of {e, b}. Then, by Lemma 2,
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[6(a+e)?](a+e)* =0 for some s€ N, and therefore [6(a+e)?] =0 by
Lemma 1 (1). Choose m, m' € N with (s, m’) = 2 such that

{bla+e)}e = b%a+e), a=m, m+1 m', m' +1.

Without loss of generality, we may assume that ¢ —#im=2 with some
t, ¥ € N. Then, noting that [b,(a+¢)?] =0 and both m and ' are multi-
ples of 2, we can easily see that

{bla+e)}? = b*a+e)® a=tm tm+1, tm+2=twm.

From those above, it follows that 8[6™.a] = b[b"™.a+e] =0 and b[b™"! a]
= b6 a+e] =0. Hence, b [b,a]l= b[6'""',a]—b[6"™ a]lb=0. Now,
by Lemma 1 (2), we obtain [5,a] = 0.

Corollary 2. If R is an s-unital ring having the property (1), then
DcjccC.

Proof. Since J € C by Lemma 3, it remains only to prove that D € J.
Note that the property ( 1) is inherited by all subrings and homomorphic
images of B. Note also that no complete matrix ring (S), over a division
ring S (/ > 1) has the property, as a consideration of x = £ and y = Ej,
shows. It suffices to show that if R is a semi-primitive s-unital ring having
the property (1) then it is commutative. Because of the above facts and
the structure theory of primitive rings, we may assume that R is a division
ring. Then, R is commutative by Lemma 3.

Lemma 4. Let R be an s-unial ring having the propecty (1). If
2[a.b] =0 then [a,b] = 0.

Proof. Since D S C by Corollary 2, we have [a2b] =2ala.b] =0.
Choose m, m' € N with (m, m’) =2 such that

(ab)® = a%b®, a=m, m+1, m', m'+1.

Without loss of generality, we may assume that ¢'m'—tm=2 with'some
l, ' € N. Then, noting that [2%.6]=0 and both m and ' are multiples
of 2, we can easily see that

(ab)? = a®be, =mt mt+1, mt+2=m't".

Now, applying the same argument as in the last part of the proof of
Lemma 3, we obtain [a,0] = 0.

We are now in a position to complete the proof of Theorem 1.
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Proof of Theorem 1. Let a, b be arbitrary elements of K. According
to Lemma 2. there exists s € N such that [a,6%]6%5 = 0. Since [a,b] is
central by Corollary 2, 2[a,b]65*' = [a,6?]b = 0. Hence, 2[a,b] =0 by
Lemma 1 (2), and so [a,6] =0 by Lemma 4.

Our next task is to prove Theorem 2. To this end, we state the
following lemmas.

Lemma 5. Let R be an s-unital ring having the property (1), and
a, bE R. If a is quasi-regular and 2[a,b] = 0. then [a,b]=0.

Proof. Obviously, 2[a,6] =0 implies 2[6%a] = 0=2[b,a?). Let e be
a pseudo-identity of {a. b}, and e’ a pseudo-identity of {a, b. e}. By hy-
pothesis, there exist m, » € 2N such that

{bla+e)}® = b%(a+e)’. a=m, m+2, m+4, and
{(b+eXa+e )} =(b+e)(a+e):, B=n, n+2, n+d.
Then, by Corollary 1, we see that
bm+2[b2,a2] — bm+2[b2,(a+e)2] =,
(b+e)*2[b%a?] = (b+e)"**(b+e)%a?] = 0.
Hence, by Lemma 1 (2), [6%2*] =0, and so [6*(a+e)?] =0. Now, ac-
cording to Lemma 1 (3), we get (a+e)™b™ ' [a+ebl(a+e) =0, and so

5™ q,b] =0 by Lemma 1 (1). Similarly, (b+e)**'[a.b] =0. Thus, again
by Lemma 1 (2) . [a.b] = 0.

Lemma 6. Let R be an s-unital ring having the property (I). If
a and b are quasi-regular elements of R, then [a,b]=0. In particular,
every division ring having the property (11) is commulative.

Proof. Let e be a pseudo-identity of {a, b}. By hypothesis, there.

exists m € 2N such that
{(at+e)b+e)e=(a+e)(b+e) a=m, m+2, m+4.

Then, by making use of the argument used in the proof of Corollary 1, we
can easily see that e?™*?(a+e)™*?[(b+e)?(a+e)?] =0. Since [(6+e)?
(a+e)?] = [b2+2b,a%+2a], this together with Lemma 1 (1) implies
[(a+e)?(b+e)?] =0. Hence, by Lemma 1 (3), (b+e)™(a+e)"*'[b.a]
(b+e)=0. Now, again by Lemma 1 (1), we get [b,a] =0.

Lemma 7. If R is an s-unital ring having the proerty (1), then
DcJcCC.
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Proof. By Lemma 6, every division ring having the property (II) is
commutative. Hence, applying the argument used in the proof of Corollary
2, we can see that D & J. It remains therefore to show that / € C. Now,
let @ be in J, and b an arbitrary element of R. Let e be a pseudo-identity
of {a, b}, and e’ a pseudo-identity of {a, b, e}. By hypothesis, there exist
m, n € 2N such that

{bla+e)} = b%(a+e)® a=m, m+2, m+4,
{(b+e)a+e)f =(b+e)(a+e). B=n n+2, n+d.

Then, by Corollary 1,

bm+2[b2,622+20] — bm*z[bz.(ll—l-e)z] — 0, and
(b+e)"2[b2+2b.a2+2a]l = (b+e)*2[(b+ )2, a®+2a] = 0.

From these, it follows that
20™*2(b+e)"*2[b,a*+2a)l = (b+e)"*2b™*?[b%+2b,a*+2a] = 0.
Similarly, we see that there exists #' € 2N such that
2b+e) 2 (b+e+e) Y b.a?+2a] =0,
Hence,
2748pmrl(h @) 2 b,a’+2a] = 2(b+e) 2 b (b4 e+ e )3 b,a? +2a] = 0.
Continuing this procedure, we obtain eventually

25(b+e)***[b+ea®+2a] = 2%(b+e)**?[ b.a®+2a] =0, and
25(b+e+e)"*?[b+ea’+2a]l =0

for some k. N. I:‘rom these, it follows that 24[b,a®+2a] =0 (Lemma 1
(2)). Then, since @?+2a€ ], we have [b.(a+e)?]=[ba?+2a]l=0
(Lemma 5), and so

(a+e)"b™a.bl(a+e)=(a+e)"b™ ' [a+ebllat+e)=0
by Lemma 1 (3). Hence, 4™*'[a.6]=0 by Lemma 1 (1). Now, [a,5]=0
is immediate by Lemma 1 (2).
Corollary 3. Let R be an s-unital ring having the property (II). If
20a.6]1 =0 then [a,b] = 0.

Proof. Since [a.b] € C (Lemma 7) and [a,b?] = 2b[a,b] = 0, we have
a™[b,alb™' = bma™*! [balb = 0 for some m € 2N (Lemma 1 (3)).
Thus, [b,a] =0 is an easy consequence of Lemma 1 (2).

We are now ready to complete the proof of Theorem 2.
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Proof of Theorem 2. Let a and b be arbitrary elements of K. By
(I), there exists m € 2N such that

(ab)* = ab®, a=m, m+2, m+4.
Then,
[(ab)2.a™|b™ + a™{(ab)?— a®b?}b™ = {(ab)*a™ — a™2b*}b™
= (ab)2a™b™—a™*2pmt?2 =
and
[(ab)?.a™*2]b™ 2+ a™**{(ab)? — a?b?}b™*2 = (.
From those above, we readily obtain
a?[(ab)?, a™|b™*? —[(ab)? a™+?]b™*? = 0.
Hence, noting that D & C (Lemma 7), we see that

4a™*3[a.b]b™*? = 4a™*[a.abl(ab)b™*?* = 2a™*'[a (ab)?]b™*2
= ma™*[(ab)? alb™**—(m+2)a™*[(ab)? a)b™*?
— az[(ab)z,a”‘]b”“‘z— [(ab)z,am+2] pm+2 — 0.

Now, by Lemma 1 (2) and Corollary 3, it is easy to see that [a.b] = 0.

Remark. In Theorem 1 and Theorem 2, we can replace (1) and (II)
by the following properties, respectively :

(1) For each pair of elements x, y in R, there exist positive integers
m, m’ such that (m+1, m +1) =2 and

(xy)® = y*x® a=m, m+1. m', m'+1.
(1) For each pair of elements x, ¥ in R, there exists an odd positive
integer m such that
(xy)e = y%x®, a=m, m+2, m+4.

Furthermore, careful examination of the proofs of Lemmas 1 (3), 5,
6, 7, Corollaries 1, 3. and of Theorem 2 shows that Theorem 2 is still true
if (II) is replaced by the following property :

(II)” For each pair of elements x, y in R, there exists an even posi-
tive integer m such that

(xy)? = y%x®, a=m, m+2, m+4.
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