Mathematical Journal of Okayama University

Volume 23, Issue 2

1981

Article 9

DECEMBER 1981

Note on commutativity of rings. III

Isao Mogami*

^{*}Tsuyama College of Technology

Math. J. Okayama Univ. 23 (1981), 163-169

NOTE ON COMMUTATIVITY OF RINGS. III

Isao MOGAMI

Throughout, R will represent an associative ring with center C, J the (Jacobson) radical of R, D the commutator ideal of R, and N the set of all positive integers. A ring R is called *s-unital* if for each $x \in R$, $x \in Rx \cap xR$. As stated in [1, Lemma 1 (a)], if R is an *s*-unital ring, then for any finite subset F of R, there exists an element e in R such that ex = xe = x for all x in F. Such an element e will be called a pseudo-identity of F.

We consider the following properties of rings:

(I) For each pair of elements x, y in R, there exist positive integers m, m' such that (m, m') = 2 and

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha}, \quad \alpha = m, \quad m+1, \quad m', \quad m'+1.$$

(Π) For each pair of elements x, y in R there exists an even positive integer m such that

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha}, \ \alpha = m, \ m+2, \ m+4.$$

The purpose of this note is to prove the following commutativity theorems.

Theorem 1. If R is an s-unital ring having the property (I), then R is commutative.

Theorem 2. If R is an s-unital ring having the property (Π) , then R is commutative.

Recently, C.-T. Yen [3] showed that every primary ring satisfying the polynomial identities $(xy)^a = x^a y^a$ ($\alpha = m, m+1, m', m'+1$) with (m, m') = 1 or 2 is commutative. Obviously, Theorem 1 together with the previous result [2, Theorem] improves the result of Yen.

In preparation for the proof of our theorems, we first state an easy lemma.

- **Lemma 1.** (1) Let e be a pseudo-identity of $a \in R$. If a has a quasi-inverse a', then $(a+e)(a'+e) = (a'+e)(a+e) = e^2$.
- (2) Let e be a pseudo-identity of $\{a, b\} \subseteq R$. If $a^sb = 0 = (a+e)^tb$ for some $s, t \in \mathbb{N}$, then b = 0.

164 I. MOGAMI

(3) Let $m \in 2N$, and $a, b \in R$. If $[a^2, b^2] = 0$ and $(ab)^a = a^a b^a$ for a = m, m+2, then $b^m a^{m+1} [b, a] b = 0$.

Proof. (1) is immediate and (2) is well known.

(3) In fact,

$$0 = (ab)^{m+2} - a^{m+2}b^{m+2} = a^m b^m (ab)^2 - a^{m+2}b^{m+2}$$

= $b^m a^{m+1}bab - b^m a^{m+2}b^2 = b^m a^{m+1}[b,a]b$.

Corollary 1. Let e be a pseudo-identity of $\{a, b\} \subseteq R$, and $m \in 2N$. Suppose that $\{b(a+e)\}^a = b^a(a+e)^a$ for a = m, m+2, m+4. If a is quasi-regular, then $b^{m+2}[b^2,(a+e)^2] = 0$.

Proof. By Lemma 1 (1), we can easily see that

$${b(a+e)}^2b^m = b^{m+2}(a+e)^2$$
 and ${b(a+e)}^2b^{m+2} = b^{m+4}(a+e)^2$.

Combining those above, we readily obtain $b^{m+2}[b^2, (a+e)^2] = 0$.

In order to prove Theorem 1, we require further lemmas.

Lemma 2. Let R be an s-unital ring having the property (I). Then, for $a, b \in R$, there exists $s \in N$ such that $[a,b^2]b^s = 0$.

Proof. By hypothesis, there exist $m, m' \in N$ with (m, m') = 2 such that

$$(ab)^{\alpha} = a^{\alpha}b^{\alpha}, \quad \alpha = m, m+1, m', m'+1.$$

Without loss of generality, we may assume that t'm'-tm=2 with some $t, t' \in \mathbb{N}$. By [2, Lemma 1 and Lemma 2 (a)], there exist $p, p' \in \mathbb{N}$ such that

$$[a,b^{tm}]b^2a^p = 0$$
 and $[a,b^{t'm'}]b^2a^{p'} = 0$.

Putting $p'' = \max \{p, p'\}$, we obtain

$$[a,b^2]b^{t'm'}a^{p''} = [a,b^2]b^{tm}b^2a^{p''} = [a,b^{t'm'}]b^2a^{p''} - b^2[a,b^{tm}]b^2a^{p''} = 0.$$

Again by [1, Lemma 1], there exists $q \in N$ such that $a^q[a,b^2]b^{t'm'}=0$. Hence, by Lemma 1 (2), $[a,b^2]b^s=0$ with some $s \in N$.

Lemma 3. Let R be an s-unital ring having the property (I). If a is a quasi-regular element in R, then a is central. In particular, every division ring having the property (I) is commutative.

Proof. Let $b \in R$, and e a pseudo-identity of $\{a, b\}$. Then, by Lemma 2,

 $[b,(a+e)^2](a+e)^s=0$ for some $s \in \mathbb{N}$, and therefore $[b,(a+e)^2]=0$ by Lemma 1 (1). Choose $m, m' \in \mathbb{N}$ with (m,m')=2 such that

$${b(a+e)}^{\alpha} = b^{\alpha}(a+e)^{\alpha}, \quad \alpha = m, m+1, m', m'+1.$$

Without loss of generality, we may assume that t'm'-tm=2 with some $t, t' \in \mathbb{N}$. Then, noting that $[b,(a+e)^2]=0$ and both m and m' are multiples of 2, we can easily see that

$$\{b(a+e)\}^{\alpha} = b^{\alpha}(a+e)^{\alpha}, \quad \alpha = tm, \ tm+1, \ tm+2 = t'm'.$$

From those above, it follows that $b[b^{tm},a] = b[b^{tm},a+e] = 0$ and $b[b^{tm+1},a] = b[b^{tm+1},a+e] = 0$. Hence, $b^{tm+1}[b,a] = b[b^{tm+1},a] - b[b^{tm},a]b = 0$. Now, by Lemma 1 (2), we obtain [b,a] = 0.

Corollary 2. If R is an s-unital ring having the property (I), then $D \subseteq J \subseteq C$.

Proof. Since $J \subseteq C$ by Lemma 3, it remains only to prove that $D \subseteq J$. Note that the property (I) is inherited by all subrings and homomorphic images of R. Note also that no complete matrix ring $(S)_t$ over a division ring S(t>1) has the property, as a consideration of $x=E_{12}$ and $y=E_{21}$ shows. It suffices to show that if R is a semi-primitive s-unital ring having the property (I) then it is commutative. Because of the above facts and the structure theory of primitive rings, we may assume that R is a division ring. Then, R is commutative by Lemma 3.

Lemma 4. Let R be an s-unial ring having the property (I). If 2[a,b] = 0 then [a,b] = 0.

Proof. Since $D \subseteq C$ by Corollary 2, we have $[a^2,b] = 2a[a,b] = 0$. Choose $m, m' \in N$ with (m, m') = 2 such that

$$(ab)^{\alpha} = a^{\alpha}b^{\alpha}, \quad \alpha = m, m+1, m', m'+1.$$

Without loss of generality, we may assume that t'm'-tm=2 with some $t, t' \in \mathbb{N}$. Then, noting that $[a^2,b]=0$ and both m and m' are multiples of 2, we can easily see that

$$(ab)^{\alpha} = a^{\alpha}b^{\alpha}$$
, $\alpha = mt$, $mt + 1$, $mt + 2 = m't'$.

Now, applying the same argument as in the last part of the proof of Lemma 3, we obtain [a,b] = 0.

We are now in a position to complete the proof of Theorem 1.

166 I. MOGAMI

Proof of Theorem 1. Let a, b be arbitrary elements of R. According to Lemma 2, there exists $s \in N$ such that $[a,b^2]b^s = 0$. Since [a,b] is central by Corollary 2, $2[a,b]b^{s+1} = [a,b^2]b^s = 0$. Hence, 2[a,b] = 0 by Lemma 1 (2), and so [a,b] = 0 by Lemma 4.

Our next task is to prove Theorem 2. To this end, we state the following lemmas.

Lemma 5. Let R be an s-unital ring having the property (Π), and $a, b \in R$. If a is quasi-regular and 2[a,b] = 0, then [a,b] = 0.

Proof. Obviously, 2[a,b] = 0 implies $2[b^2,a] = 0 = 2[b,a^2]$. Let e be a pseudo-identity of $\{a,b\}$, and e' a pseudo-identity of $\{a,b,e\}$. By hypothesis, there exist $m, n \in 2N$ such that

$$\{b(a+e)\}^{\alpha} = b^{\alpha}(a+e)^{\alpha}, \quad \alpha = m, m+2, m+4, \text{ and } \{(b+e)(a+e')\}^{\beta} = (b+e)^{\beta}(a+e')^{\beta}, \quad \beta = n, n+2, n+4.$$

Then, by Corollary 1, we see that

$$b^{m+2}[b^2, a^2] = b^{m+2}[b^2, (a+e)^2] = 0,$$

$$(b+e)^{n+2}[b^2, a^2] = (b+e)^{n+2}[(b+e)^2, a^2] = 0.$$

Hence, by Lemma 1 (2), $[b^2,a^2] = 0$, and so $[b^2,(a+e)^2] = 0$. Now, according to Lemma 1 (3), we get $(a+e)^m b^{m+1} [a+e,b] (a+e) = 0$, and so $b^{m+1}[a,b] = 0$ by Lemma 1 (1). Similarly, $(b+e)^{n+1}[a,b] = 0$. Thus, again by Lemma 1 (2), [a,b] = 0.

Lemma 6. Let R be an s-unital ring having the property (Π) . If a and b are quasi-regular elements of R, then [a,b] = 0. In particular, every division ring having the property (Π) is commutative.

Proof. Let e be a pseudo-identity of $\{a, b\}$. By hypothesis, there exists $m \in 2N$ such that

$$\{(a+e)(b+e)\}^{\alpha} = (a+e)^{\alpha}(b+e)^{\alpha}, \quad \alpha = m, m+2, m+4.$$

Then, by making use of the argument used in the proof of Corollary 1, we can easily see that $e^{2(m+2)}(a+e)^{m+2}[(b+e)^2,(a+e)^2]=0$. Since $[(b+e)^2,(a+e)^2]=[b^2+2b,a^2+2a]$, this together with Lemma 1 (1) implies $[(a+e)^2,(b+e)^2]=0$. Hence, by Lemma 1 (3), $(b+e)^m(a+e)^{m+1}[b,a]$ (b+e)=0. Now, again by Lemma 1 (1), we get [b,a]=0.

Lemma 7. If R is an s-unital ring having the proerty (Π), then $D \subseteq J \subseteq C$.

Proof. By Lemma 6, every division ring having the property (Π) is commutative. Hence, applying the argument used in the proof of Corollary 2, we can see that $D \subseteq J$. It remains therefore to show that $J \subseteq C$. Now, let a be in J, and b an arbitrary element of R. Let e be a pseudo-identity of $\{a, b\}$, and e' a pseudo-identity of $\{a, b, e\}$. By hypothesis, there exist $m, n \in 2N$ such that

$$\{b(a+e)\}^{\alpha} = b^{\alpha}(a+e)^{\alpha}, \quad \alpha = m, m+2, m+4, \\ \{(b+e)(a+e')\}^{\beta} = (b+e)^{\beta}(a+e')^{\beta}, \quad \beta = n, n+2, n+4.$$

Then, by Corollary 1,

$$b^{m+2}[b^2,a^2+2a] = b^{m+2}[b^2,(a+e)^2] = 0$$
, and $(b+e)^{n+2}[b^2+2b,a^2+2a] = (b+e)^{n+2}[(b+e)^2,a^2+2a] = 0$.

From these, it follows that

$$2b^{m+2}(b+e)^{n+2}[b,a^2+2a] = (b+e)^{n+2}b^{m+2}[b^2+2b,a^2+2a] = 0.$$

Similarly, we see that there exists $n' \in 2N$ such that

$$2(b+e)^{n+2}(b+e+e')^{n'+2}[b,a^2+2a] = 0.$$

Hence,

$$2^{n'+3}b^{m+1}(b+e)^{n+2}[b,a^2+2a] = 2(b+e)^{n+2}b^{m+1}(b+e+e')^{n'+2}[b,a^2+2a] = 0.$$

Continuing this procedure, we obtain eventually

$$2^{k}(b+e)^{n+2}[b+e,a^{2}+2a] = 2^{k}(b+e)^{n+2}[b,a^{2}+2a] = 0$$
, and $2^{k}(b+e+e')^{n'+2}[b+e,a^{2}+2a] = 0$

for some $k \in \mathbb{N}$. From these, it follows that $2^k[b,a^2+2a]=0$ (Lemma 1 (2)). Then, since $a^2+2a \in J$, we have $[b,(a+e)^2]=[b,a^2+2a]=0$ (Lemma 5), and so

$$(a+e)^m b^{m+1}[a,b](a+e) = (a+e)^m b^{m+1}[a+e,b](a+e) = 0$$

by Lemma 1 (3). Hence, $b^{m+1}[a,b] = 0$ by Lemma 1 (1). Now, [a,b] = 0 is immediate by Lemma 1 (2).

Corollary 3. Let R be an s-unital ring having the property (Π). If 2[a,b]=0 then [a,b]=0.

Proof. Since $[a,b] \in C$ (Lemma 7) and $[a,b^2] = 2b[a,b] = 0$, we have $a^{m+1}[b,a]b^{m+1} = b^m a^{m+1}[b,a]b = 0$ for some $m \in 2N$ (Lemma 1 (3)). Thus, [b,a] = 0 is an easy consequence of Lemma 1 (2).

We are now ready to complete the proof of Theorem 2.

168 I. MOGAMI

Proof of Theorem 2. Let a and b be arbitrary elements of R. By (II), there exists $m \in 2N$ such that

$$(ab)^{\alpha} = a^{\alpha}b^{\alpha}$$
, $\alpha = m$, $m+2$, $m+4$.

Then,

$$[(ab)^2, a^m]b^m + a^m\{(ab)^2 - a^2b^2\}b^m = \{(ab)^2a^m - a^{m+2}b^2\}b^m$$
$$= (ab)^2a^mb^m - a^{m+2}b^{m+2} = 0$$

and

$$[(ab)^2, a^{m+2}]b^{m+2} + a^{m+2}\{(ab)^2 - a^2b^2\}b^{m+2} = 0.$$

From those above, we readily obtain

$$a^{2}[(ab)^{2}, a^{m}]b^{m+2} - [(ab)^{2}, a^{m+2}]b^{m+2} = 0.$$

Hence, noting that $D \subseteq C$ (Lemma 7), we see that

$$\begin{aligned} 4a^{m+3}[a,b]b^{m+3} &= 4a^{m+1}[a,ab](ab)b^{m+2} = 2a^{m+1}[a,(ab)^2]b^{m+2} \\ &= ma^{m+1}[(ab)^2,a]b^{m+2} - (m+2)a^{m+1}[(ab)^2,a]b^{m+2} \\ &= a^2[(ab)^2,a^m]b^{m+2} - [(ab)^2,a^{m+2}]b^{m+2} = 0. \end{aligned}$$

Now, by Lemma 1 (2) and Corollary 3, it is easy to see that [a,b] = 0.

Remark. In Theorem 1 and Theorem 2, we can replace (I) and (II) by the following properties, respectively:

(I)' For each pair of elements x, y in R, there exist positive integers m, m' such that (m+1, m'+1) = 2 and

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}, \quad \alpha = m, m+1, m', m'+1.$$

(II)' For each pair of elements x, y in R, there exists an odd positive integer m such that

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}, \quad \alpha = m, m+2, m+4.$$

Furthermore, careful examination of the proofs of Lemmas 1 (3), 5, 6, 7, Corollaries 1, 3, and of Theorem 2 shows that Theorem 2 is still true if (II) is replaced by the following property:

 $(\Pi)^m$ For each pair of elements x, y in R, there exists an even positive integer m such that

$$(xy)^{\alpha} = y^{\alpha}x^{\alpha}, \quad \alpha = m, m+2, m+4.$$

169

NOTE ON COMMUTATIVITY OF RINGS. III

REFERENCES

- [1] I. MOGAMI and M. HONGAN: Note on commutativity of rings, Math. J. Okayama Univ. 20 (1978), 21—24.
- [2] I. MOGAMI: Note on commutativity of rings. II, Math. J. Okayama Univ. 22 (1980), 51-54.
- [3] C.-T. YEN: On the commutativity of primary rings, Math. Japonica 25 (1980), 449-452.

TSUYAMA COLLEGE OF TECHNOLOGY

(Received December 2, 1980)