Mathematical Journal of Okayama University

Volume 46, Issue 1

2004

Article 28

JANUARY 2004

Hasse Principle" for Finite p-Groups with Cyclic Subgroups of Index p2

Michitaku Fuma*

Yasushi Ninomiya[†]

^{*}Shinshu University

[†]Shinshu University

Math. J. Okayama Univ. 46 (2004), 31-38

"HASSE PRINCIPLE" FOR FINITE p-GROUPS WITH CYCLIC SUBGROUPS OF INDEX p^2

MICHITAKU FUMA AND YASUSHI NINOMIYA

1. Introduction

Let G be a group. A map $f: G \longrightarrow G$ satisfying $f(xy) = f(x)f(y)^x$ for every $x, y \in G$, where $f(y)^x = xf(y)x^{-1}$, is called a cocycle of G. Let f be a cocycle of G. If, for every $x \in G$, there exists $a \in G$ such that $f(x) = a^{-1}a^x$ then f is called a local coboundary, and if there exists $a \in G$ such that $f(x) = a^{-1}a^x$ for every $x \in G$ then f is called a (global) coboundary. G is said to enjoy "Hasse principle" if every local coboundary of G is a coboundary. Abelian groups trivially enjoy "Hasse principle". It is known that a finite group G enjoys "Hasse principle" if and only if every conjugacy preserving automorphism of G is an inner automorphism ([6], Theorem 3.1).

Some types of groups enjoying "Hasse principle" are known ([1], [2], [3], [5], [6], [7], [8], [9]). For finite p-groups, it is known that the following groups enjoy "Hasse principle".

- (1) finite p-groups with cyclic subgroups of index p ([1]);
- $(2) \ {\rm extraspecial} \ p\hbox{-groups} \ ([1]);$
- (3) finite p-groups of order p^4 ([2]).

Among the known results, the following are useful for our study:

Theorem 1 ([2]). Metacyclic groups enjoy "Hasse principle".

Theorem 2 ([3]). Let H be a central subgroup of G. If G/H is generated by xH and yH $(x, y \in G)$ and every element of G/H can be written as x^ry^sH , then G enjoys "Hasse principle".

Recently, M. Kumar and L. R. Vermani [3] proved that for an odd prime p, every non-abelian finite p-group of order p^m having a normal cyclic subgroup of order p^{m-2} but having no element of order p^{m-1} enjoys "Hasse principle". Further they have described that there are fourteen 2-groups (up to isomorphism) of order 2^m of the above type and they showed that twelve of them enjoy "Hasse principle" but remaining two do not enjoy "Hasse principle". In [4], for any prime p, all finite non-abelian p-groups of order p^m having cyclic subgroups of order p^{m-2} but having no element of order p^{m-1} are classified. From the result we see that there is a missing group in a description in [3], which is given by

$$\langle a, b \mid a^{2^{m-2}} = 1, \ b^4 = a^{2^{m-3}}, \ b^{-1}ab = a^{-1} \rangle$$

(see [4], Remark 3 (1)). This group is metacyclic, and so enjoys "Hasse principle". Further, two groups given in [3], Theorem 3.4 are isomorphic (see [4], Remark 3 (2)).

In this note we report that every non-abelian p-group of order p^m having a cyclic subgroup of order p^{m-2} but having no normal cyclic subgroup of order p^{m-2} and no element of order p^{m-1} enjoys "Hasse principle". From now on suppose that G is a non-abelian p-group of this type.

(I) For an odd prime p, there are seven possibilities about G. Using notation given in [4], we here list these groups:

$$G_{1} = \langle x, y, z \mid x^{p^{m-2}} = 1, \ y^{p} = z^{p} = 1, \ xy = yx, \ z^{-1}xz = xy,$$

$$yz = zy\rangle \quad (m \ge 3);$$

$$G_{5} = \langle x, y, z \mid x^{p^{m-2}} = 1, \ y^{p} = z^{p} = 1, \ xy = yx, \ z^{-1}xz = xy,$$

$$z^{-1}yz = x^{p^{m-3}}y\rangle \quad (m \ge 4);$$

$$G_{6} = \langle x, y, z \mid x^{p^{m-2}} = 1, \ y^{p} = z^{p} = 1, \ xy = yx, \ z^{-1}xz = xy,$$

$$z^{-1}yz = x^{rp^{m-3}}y\rangle \quad (m \ge 4),$$

where r is a quadratic nonresidue mod p.

$$G_{7} = \langle x, y, z \mid x^{p^{m-2}} = 1, \ y^{p} = z^{p} = 1, \ y^{-1}xy = x^{1+p^{m-3}},$$

$$z^{-1}xz = xy, \ yz = zy \rangle \quad (m \ge 4);$$

$$G_{9} = \langle x, y \mid x^{p^{m-2}} = 1, \ y^{p^{2}} = 1, \ y^{-1}xy = x^{1+p} \rangle \quad (m \ge 5);$$

$$G_{10} = \langle x, y \mid x^{p^{2}} = 1, \ x^{p^{p-3}} = y^{p^{2}}, \ y^{-1}xy = x^{1-p} \rangle \quad (m \ge 6);$$

$$G_{11} = \langle x, y, z \mid x^{9} = 1, \ y^{3} = 1, \ z^{3} = x^{3}, \ xy = yx, \ z^{-1}xz = xy,$$

$$z^{-1}yz = x^{6}y \rangle$$

By Theorem 2, G_1 enjoys "Hasse principle", and because G_9 and G_{10} are metacyclic by Theorem 1, they also enjoy "Hasse principle".

(II) For p = 2, there are twelve possibilities about G. Again, using notation in [4], we list these groups:

$$G_{5} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^{2} = z^{2} = 1, \ xy = yx, \ z^{-1}xz = xy,$$

$$yz = zy \rangle \quad (m \ge 4);$$

$$G_{9} = \langle x, y \mid x^{2^{m-2}} = 1, \ y^{4} = 1, \ x^{-1}yx = y^{-1} \rangle \quad (m \ge 5);$$

$$G_{13} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^{2} = z^{2} = 1, \ xy = yx, \ z^{-1}xz = x^{-1}y,$$

$$yz = zy \rangle \quad (m \ge 5);$$

$$G_{14} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^{2} = 1, \ z^{2} = x^{2^{m-3}}, \ xy = yx,$$

$$z^{-1}xz = x^{-1}y, \ yz = zy \rangle \quad (m \ge 5);$$

$$G_{17} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^2 = z^2 = 1, \ y^{-1}xy = x^{1+2^{m-3}}, \ z^{-1}xz = xy, \ yz = zy \rangle \quad (m \ge 5);$$

$$G_{18} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^2 = 1, \ z^2 = y, \ y^{-1}xy = x^{1+2^{m-3}}, \ z^{-1}xz = x^{-1}y \rangle \quad (m \ge 5);$$

$$G_{21} = \langle x, y \mid x^{2^{m-2}} = 1, \ x^{2^{m-3}} = y^4, \ x^{-1}yx = y^{-1} \rangle \quad (m \ge 6);$$

$$G_{22} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^2 = z^2 = 1, \ xy = yx, \ z^{-1}xz = x^{1+2^{m-4}}y, \ z^{-1}yz = x^{2^{m-3}}y \rangle \quad (m \ge 6);$$

$$G_{23} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^2 = z^2 = 1, \ xy = yx, \ z^{-1}xz = x^{-1+2^{m-4}}y, \ z^{-1}yz = x^{2^{m-3}}y \rangle \quad (m \ge 6);$$

$$G_{24} = \langle x, y, z \mid x^{2^{m-2}} = 1, \ y^2 = z^2 = 1, \ y^{-1}xy = x^{1+2^{m-3}}, \ z^{-1}xz = x^{-1+2^{m-4}}y, \ yz = zy \rangle \quad (m \ge 6);$$

$$G_{25} = \langle x, y, z \mid x^{2^{m-2}} = 1, y^2 = 1, \ z^2 = x^{2^{m-3}}, \ y^{-1}xy = x^{1+2^{m-3}}, \ z^{-1}xz = x^{-1+2^{m-4}}y, \ yz = zy \rangle \quad (m \ge 6);$$

$$G_{26} = \langle x, y, z \mid x^8 = 1, \ y^2 = 1, \ z^2 = x^4, \ y^{-1}xy = x^5, \ z^{-1}xz = xy, \ yz = zy \rangle$$

By Theorem 2, G_5 , G_{13} and G_{14} enjoy "Hasse principle". Because G_9 and G_{21} are metacyclic, they also enjoy "Hasse principle".

In what follows, we denote by $\operatorname{Aut}_c G$ and $\operatorname{Inn} G$ the set of automorphisms which preserves each conjugacy class of G and the inner automorphism group of G, respectively.

2. The case p odd

In [2], it has been shown that if every $f \in \operatorname{Aut}_c G$ that fixes one of the generating elements of G is in $\operatorname{Inn} G$, then G enjoys "Hasse principle". Let p be an odd prime. We here show that the groups G_5 , G_6 , G_7 and G_{11} given in (I) enjoy "Hasse principle".

 G_5 and G_6 enjoy "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_5$ such that f(z) = z. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_5$ with $0 \le i, r < p^{m-2}$, $0 \le j, k, s, t < p$ such that $f(x) = a^{-1}xa$, $f(y) = b^{-1}yb$, and so

$$f(x) = z^{-k}y^{-j}x^{-i} \cdot x \cdot x^{i}y^{j}z^{k} = z^{-k}xz^{k},$$

$$f(y) = z^{-t}y^{-s}x^{-r} \cdot y \cdot x^{r}y^{s}z^{t} = z^{-t}yz^{t}.$$

34

As
$$z^{-1}xz = xy$$
 and $z^{-1}yz = x^{p^{m-3}}y$ we have

$$z^{-k}xz^k = x^{1+(1+2+\dots+(k-1))p^{m-3}}y^k = x^{1+\frac{k(k-1)}{2}p^{m-3}}y^k.$$

We also have $z^{-t}yz^t = x^{tp^{m-3}}y$. Therefore $f(x) = x^{1+\frac{k(k-1)}{2}p^{m-3}}y^k$, $f(y) = x^{tp^{m-3}}y$. Since f is an automorphism,

$$f(z)^{-1}f(x)f(z) = f(z^{-1}xz) = f(xy) = f(x)f(y).$$

We have

$$\begin{split} f(z)^{-1}f(x)f(z) &= z^{-1}(x^{1+\frac{k(k-1)}{2}}p^{m-3}y^k)z\\ &= (z^{-1}xz)^{1+\frac{k(k-1)}{2}}p^{m-3}(z^{-1}yz)^k\\ &= x^{1+(k+\frac{k(k-1)}{2})p^{m-3}}y^{1+k},\\ f(x)f(y) &= x^{1+\frac{k(k-1)}{2}}p^{m-3}y^kx^{tp^{m-3}}y\\ &= x^{1+(t+\frac{k(k-1)}{2})p^{m-3}}y^{1+k}. \end{split}$$

Therefore the following congruence holds:

$$1 + \Big(k + \frac{k(k-1)}{2}\Big)p^{m-3} \equiv 1 + \Big(t + \frac{k(k-1)}{2}\Big)p^{m-3} \pmod{p^{m-2}}.$$

From this it follows that $k \equiv t \pmod{p}$. Then because $0 \le k, t < p$, we have k = t. Thus we have $f(x) = z^{-k}xz^k$, $f(y) = z^{-k}xz^k$, $f(z) = z^{-k}zz^k$. This shows that $f \in \text{Inn } G_5$, and so G_5 enjoys "Hasse principle". By an analogous argument we can show that G_6 enjoys "Hasse principle".

In the rest of the paper, we proceed with a similar argument as above. Given $f \in \operatorname{Aut}_c G$, the image f(q) of $q \in G$ will be denoted by \overline{q} .

 G_7 enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_7$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_7$ with $0 \le i, r < p^{m-2}, 0 \le j, k, s, t < p$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+jp^{m-3}} y^k$, $\overline{y} = x^{-rp^{m-3}} y$, $\overline{z} = z$. Since f is an automorphism, $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y}$. Because $\overline{x} \overline{y} = x^{1+(j-r)p^{m-3}} y^{k+1}$, $\overline{z}^{-1} \overline{x} \overline{z} = x^{1+jp^{m-3}} y^{k+1}$, we have

$$\overline{z}^{-1}\overline{x}\,\overline{z} = \overline{x}\,\overline{y} \Longleftrightarrow rp^{m-3} \equiv 0 \pmod{p^{m-2}}.$$

Thus we have $\overline{x} = x^{1+jp^{m-3}}y^k, \overline{y} = y, \overline{z} = z$. Therefore setting $u = y^j z^k$, we have

$$f(x)=u^{-1}xu,\quad f(y)=u^{-1}yu,\quad f(z)=u^{-1}zu,$$
 and so $f\in {\rm Inn}\,G_7.$

 G_{11} enjoys "Hasse principle".

35

Proof. Let $f \in \operatorname{Aut}_c G_{11}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{11}$ with $0 \le i, r < 9, 0 \le j, k, s, t < 3$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+3k(k-1)} y^k$, $\overline{y} = x^{6t} y$, $\overline{z} = z$. Since f is an automorphism, $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y}$. Because $\overline{x} \overline{y} = x^{1+6t+3k(k-1)} y^{k+1}$, $\overline{z}^{-1} \overline{x} \overline{z} = x^{1+6k+3k(k-1)} y^{k+1}$, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y} \iff k = t$. Thus we have $\overline{x} = x^{1+3k(k-1)} y^k$, $\overline{y} = x^{6k} y$, $\overline{z} = z$. Therefore setting $u = z^k$, we have

$$f(x) = u^{-1}xu$$
, $f(y) = u^{-1}yu$, $f(z) = u^{-1}zu$,

and so $f \in \operatorname{Inn} G_{11}$.

3. The case p=2

We here show that the groups G_{17} , G_{18} , G_{22} , G_{24} , G_{25} and G_{26} given in (II) enjoy "Hasse principle".

 G_{17} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{17}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{17}$ with $0 \le i, r < 2^{m-2}, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+j2^{m-3}} y^k$, $\overline{y} = x^{r2^{m-3}} y$, $\overline{z} = z$. Since f is an automorphism, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y}$. Because $\overline{x} \overline{y} = x^{1+(j+r)2^{m-3}} y^{k+1}$, $\overline{z}^{-1} \overline{x} \overline{z} = x^{1+j2^{m-3}} y^{k+1}$, $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y} \iff r \equiv 0 \pmod{2}$. Thus we have $\overline{x} = x^{1+j2^{m-3}} y^k$, $\overline{y} = y$, $\overline{z} = z$. Therefore setting $u = y^j z^k$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \operatorname{Inn} G_{17}$.

 G_{18} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{18}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{18}$ with $0 \le i, r < 2^{m-2}, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1}xa$, $\overline{y} = b^{-1}yb$. We then have $\overline{x} = x^{j2^{m-3}+(-1)^k(1+k2^{m-4})+k^22^{m-4}}y^k$, $\overline{y} = x^{r2^{m-3}}y$, $\overline{z} = z$. Since f is an automorphism, we have $\overline{z}^2 = \overline{y}$. Because $y = \overline{z}^2 = x^{r2^{m-3}}y$, $\overline{z}^2 = \overline{y} \iff r \equiv 0 \pmod{2}$. Thus we have $\overline{x} = x^{j2^{m-3}+(-1)^k(1+k2^{m-4})+k^22^{m-4}}y^k$, $\overline{y} = y$, $\overline{z} = z$. Therefore setting $u = y^j z^k$, we have $\overline{x} = u^{-1}xu$, $\overline{y} = u^{-1}yu$, $\overline{z} = u^{-1}zu$, and so $f \in \operatorname{Inn} G_{18}$.

 G_{22} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{22}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{22}$ with $0 \le i, r < 2^{m-2}, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+k2^{m-4}} y^k$, $\overline{y} = x^{t2^{m-3}} y$, $\overline{z} = z$. Since f is an automorphism, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x}^{1+2^{m-4}} \overline{y}$. Because

$$\overline{x}^{1+2^{m-4}} \, \overline{y} = x^{1+t2^{m-3}+(1+k)2^{m-4}} y^{1+k}, \quad \overline{z}^{-1} \overline{x} \, \overline{z} = x^{1+k2^{m-3}+(1+k)2^{m-4}} y^{1+k}, \\ \overline{z}^{-1} \overline{x} \, \overline{z} = \overline{x}^{1+2^{m-4}} \, \overline{y} \Longleftrightarrow k = t.$$

36

Thus we have $\overline{x} = x^{1+k2^{m-4}}y^k$, $\overline{y} = x^{k2^{m-3}}y$, $\overline{z} = z$. Therefore setting $u = z^k$, we have $\overline{x} = u^{-1}xu$, $\overline{y} = u^{-1}yu$, $\overline{z} = u^{-1}zu$, and so $f \in \text{Inn } G_{22}$. \square

 G_{23} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{23}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{23}$ with $0 \le i, r < 2^{m-2}, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$\overline{x} = \begin{cases} x & (k=0) \\ x^{-1+2^{m-4}}y & (k=1) \end{cases}, \quad \overline{y} = x^{t2^{m-3}}y, \quad \overline{z} = z.$$

Since f is an automorphism, we have $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y}$. If k=0,

$$\overline{x}^{-1+2^{m-4}}\overline{y} = x^{-1+2^{m-4}+t2^{m-3}}y, \quad \overline{z}^{-1}\overline{x}\overline{z} = x^{-1+2^{m-4}}y.$$

Therefore $\overline{z}^{-1}\overline{x}\,\overline{z} = \overline{x}^{-1+2^{m-4}}\,\overline{y} \Longleftrightarrow t = 0$. If k = 1,

$$\overline{x}^{-1+2^{m-4}}\overline{y} = x^{1+(t-1)2^{m-3}}, \quad \overline{z}^{-1}\overline{x}\,\overline{z} = x.$$

Therefore $\overline{z}^{-1}\overline{x}\overline{z} = \overline{x}^{-1+2^{m-4}}\overline{y} \iff t=1$. Thus we have

$$\overline{x} = \begin{cases} x & (k=0) \\ x^{-1+2^{m-4}}y & (k=1) \end{cases}, \quad \overline{y} = x^{k2^{m-3}}y, \quad \overline{z} = z.$$

Therefore setting $u=z^k$, we have $\overline{x}=u^{-1}xu$, $\overline{y}=u^{-1}yu$, $\overline{z}=u^{-1}zu$, and so $f \in \text{Inn } G_{23}$.

 G_{24} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{24}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{24}$ with $0 \le i, r < 2^{m-2}$, $0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$\overline{x} = \begin{cases} x^{1+j2^{m-3}} & (k=0) \\ x^{-1+2^{m-4}+j2^{m-3}} y & (k=1) \end{cases}, \quad \overline{y} = x^{r2^{m-3}} y, \quad \overline{z} = z.$$

Since f is an automorphism, we have $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y}$. If k=0,

$$\overline{x}^{-1+2^{m-4}}\,\overline{y} = x^{-1+2^{m-4}+(r-j)2^{m-3}}y, \quad \overline{z}^{-1}\overline{x}\,\overline{z} = x^{-1+2^{m-4}+j2^{m-3}}y.$$

Therefore $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y}\Longleftrightarrow r\equiv 0\pmod{2}.$ If k=1,

$$\overline{x}^{-1+2^{m-4}}\overline{y} = x^{1+(r-j)2^{m-3}} = x^{1+(r+j)2^{m-3}}, \quad \overline{z}^{-1}\overline{x}\,\overline{z} = x^{j2^{m-3}}x = x^{1+j2^{m-3}}.$$

Therefore $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y} \Longleftrightarrow r\equiv 0 \pmod{2}$. Thus we have

$$\overline{x} = \begin{cases} x^{1+j2^{m-3}} & (k=0) \\ x^{-1+2^{m-4}+j2^{m-3}} y & (k=1) \end{cases}, \quad \overline{y} = y, \quad \overline{z} = z.$$

"HASSE PRINCIPLE" FOR FINITE p-GROUPS

37

Therefore setting $u = y^j$, we have $\overline{x} = u^{-1}xu$, $\overline{y} = u^{-1}yu$, $\overline{z} = u^{-1}zu$, and so $f \in \text{Inn } G_{24}$.

 G_{25} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{25}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{25}$ with $0 \le i, r < 2^{m-2}, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have

$$\overline{x} = \begin{cases} x^{1+j2^{m-3}} & (k=0) \\ x^{-1+2^{m-4}+j2^{m-3}} y & (k=1) \end{cases}, \quad \overline{y} = x^{r2^{m-3}} y, \quad \overline{z} = z.$$

Since f is an automorphism, we have $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y}$. If k=0,

$$\overline{x}^{-1+2^{m-4}}\,\overline{y}=x^{-1+2^{m-4}+(j+r)2^{m-3}}y,\quad \overline{z}^{-1}\overline{x}\,\overline{z}=x^{-1+2^{m-4}+j2^{m-3}}y.$$

Therefore $\overline{z}^{-1}\overline{x}\overline{z} = \overline{x}^{-1+2^{m-4}}\overline{y} \iff r \equiv 0 \pmod{2}$. If k = 1,

$$\overline{x}^{-1+2^{m-4}}\overline{y} = x^{1+(r-j)2^{m-3}} = x^{1+(r+j)2^{m-3}}, \quad \overline{z}^{-1}\overline{x}\overline{z} = x^{1+j2^{m-3}}.$$

Therefore $\overline{z}^{-1}\overline{x}\,\overline{z}=\overline{x}^{-1+2^{m-4}}\,\overline{y} \Longleftrightarrow r\equiv 0 \pmod{2}$. Thus we have

$$\overline{x} = \begin{cases} x^{1+j2^{m-3}} & (k=0) \\ x^{-1+2^{m-4}+j2^{m-3}} y & (k=1) \end{cases}, \quad \overline{y} = y, \quad \overline{z} = z.$$

Therefore setting $u = y^j$, we have $\overline{x} = u^{-1}xu$, $\overline{y} = u^{-1}yu$, $\overline{z} = u^{-1}zu$, and so $f \in \text{Inn } G_{25}$.

 G_{26} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_c G_{26}$ such that $\overline{z} = z$. Then there exist $a = x^i y^j z^k$, $b = x^r y^s z^t \in G_{26}$ with $0 \le i, r < 8, 0 \le j, k, s, t < 2$ such that $\overline{x} = a^{-1} x a$, $\overline{y} = b^{-1} y b$. We then have $\overline{x} = x^{1+4j} y^k$, $\overline{y} = x^{4r} y$, $\overline{z} = z$. Since f is an automorphism, we have $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y}$. Because $\overline{x} \overline{y} = x^{1+4j+4r} y^{1+k}$, $\overline{z}^{-1} \overline{x} \overline{z} = x^{1+4j} y^{1+k}$, $\overline{z}^{-1} \overline{x} \overline{z} = \overline{x} \overline{y} \iff r \equiv 0 \pmod{2}$. Thus we have $\overline{x} = x^{1+4j} y^k$, $\overline{y} = y$, $\overline{z} = z$. Therefore setting $u = y^j z^k$, we have $\overline{x} = u^{-1} x u$, $\overline{y} = u^{-1} y u$, $\overline{z} = u^{-1} z u$, and so $f \in \operatorname{Inn} G_{26}$.

Acknowledgement. The authors thank the referee for his or her comments.

References

- M. Kumar and L. R. Vermani, "Hasse principle" for extraspecial p-groups, Proc. Japan Acad. 76A (2000), 123–125.
- [2] M. Kumar and L. R. Vermani, "Hasse principle" for groups of order p⁴, Proc. Japan Acad. **77A** (2001), 95–98.
- [3] M. KUMAR AND L. R. VERMANI, On automorphisms of some p-groups, Proc. Japan Acad. 78A (2002), 46–50.

M. FUMA AND Y. NINOMIYA

- [4] Y. NINOMIYA, Finite p-groups with cyclic subgroups of index p², Math. J. Okayama Univ. 36 (1994), 1–21.
- [5] T. Ono, "Hasse principle" for $PSL_2(Z)$ and $PSL_2(F_p)$, Proc. Japan Acad. **74A** (1998), 130–131.
- [6] T. Ono, Shafarevich-Tate sets for profinite groups, Proc. Japan Acad. 75A (1999), 96–97.
- [7] T. Ono and H. Wada, "Hasse principle" for free groups, Proc. Japan Acad. 75A (1999), 1–2.
- [8] T. Ono and H. Wada, "Hasse principle" for symmetric and alternating groups, Proc. Japan Acad. **75A** (1999), 61–62.
- [9] H. WADA, "Hasse principle" for $SL_n(D)$, Proc. Japan Acad. **75A** (1999), 67–69.

MICHITAKU FUMA
DEPARTMENT OF MATHEMATICAL SCIENCES
FACULTY OF SCIENCE
SHINSHU UNIVERSITY
MATSUMOTO 390-8621, JAPAN

Yasushi Ninomiya
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
e-mail address: ysninom@gipac.shinshu-u.ac.jp

(Received December 2, 2003)

1 .. // 1 1

38