Mathematical Journal of Okayama University

Hasse Principle" for Finite p-Groups with Cyclic Subgroups of Index p2

Michitaku Fuma*
Yasushi Ninomiya ${ }^{\dagger}$

[^0]Math. J. Okayama Univ. 46 (2004), 31-38

"HASSE PRINCIPLE" FOR FINITE p-GROUPS WITH CYCLIC SUBGROUPS OF INDEX p^{2}

Michitaku FUMA and Yasushi NINOMIYA

1. Introduction

Let G be a group. A map $f: G \longrightarrow G$ satisfying $f(x y)=f(x) f(y)^{x}$ for every $x, y \in G$, where $f(y)^{x}=x f(y) x^{-1}$, is called a cocycle of G. Let f be a cocycle of G. If, for every $x \in G$, there exists $a \in G$ such that $f(x)=a^{-1} a^{x}$ then f is called a local coboundary, and if there exists $a \in G$ such that $f(x)=a^{-1} a^{x}$ for every $x \in G$ then f is called a (global) coboundary. G is said to enjoy "Hasse principle" if every local coboundary of G is a coboundary. Abelian groups trivially enjoy "Hasse principle". It is known that a finite group G enjoys "Hasse principle" if and only if every conjugacy preserving automorphism of G is an inner automorphism ([6], Theorem 3.1).

Some types of groups enjoying "Hasse principle" are known ([1], [2], [3], [5], [6], [7], [8], [9]). For finite p-groups, it is known that the following groups enjoy "Hasse principle".
(1) finite p-groups with cyclic subgroups of index $p([1])$;
(2) extraspecial p-groups ([1]);
(3) finite p-groups of order $p^{4}([2])$.

Among the known results, the following are useful for our study:

Theorem 1 ([2]). Metacyclic groups enjoy "Hasse principle".
Theorem 2 ([3]). Let H be a central subgroup of G. If G / H is generated by $x H$ and $y H(x, y \in G)$ and every element of G / H can be written as $x^{r} y^{s} H$, then G enjoys "Hasse principle".

Recently, M. Kumar and L. R. Vermani [3] proved that for an odd prime p, every non-abelian finite p-group of order p^{m} having a normal cyclic subgroup of order p^{m-2} but having no element of order p^{m-1} enjoys "Hasse principle". Further they have described that there are fourteen 2-groups (up to isomorphism) of order 2^{m} of the above type and they showed that twelve of them enjoy "Hasse principle" but remaining two do not enjoy "Hasse principle". In [4], for any prime p, all finite non-abelian p-groups of order p^{m} having cyclic subgroups of order p^{m-2} but having no element of order p^{m-1} are classified. From the result we see that there is a missing group in a description in [3], which is given by

$$
\left\langle a, b \mid a^{2^{m-2}}=1, b^{4}=a^{2^{m-3}}, b^{-1} a b=a^{-1}\right\rangle
$$

(see [4], Remark 3 (1)). This group is metacyclic, and so enjoys "Hasse principle". Further, two groups given in [3], Theorem 3.4 are isomorphic (see [4], Remark 3 (2)).

In this note we report that every non-abelian p-group of order p^{m} having a cyclic subgroup of order p^{m-2} but having no normal cyclic subgroup of order p^{m-2} and no element of order p^{m-1} enjoys "Hasse principle". From now on suppose that G is a non-abelian p-group of this type.
(I) For an odd prime p, there are seven possibilities about G. Using notation given in [4], we here list these groups:

$$
\begin{aligned}
& G_{1}=\langle x, y, z| x^{p^{m-2}}=1, y^{p}=z^{p}=1, x y=y x, z^{-1} x z=x y, \\
&y z=z y\rangle \quad(m \geq 3) ;
\end{aligned} \begin{aligned}
& G_{5}=\langle x, y, z| x^{p^{m-2}}=1, y^{p}=z^{p}=1, x y=y x, z^{-1} x z=x y, \\
& z^{-1} y z=x^{\left.p^{p^{-3}} y\right\rangle \quad(m \geq 4) ;} \\
& G_{6}=\langle x, y, z| x^{p^{m-2}}=1, y^{p}=z^{p}=1, x y=y x, z^{-1} x z=x y, \\
& z^{-1} y z\left.=x^{r p^{m-3}} y\right\rangle \quad(m \geq 4),
\end{aligned}
$$

where r is a quadratic nonresidue $\bmod p$.

$$
\begin{aligned}
& G_{7}=\langle x, y, z| x^{p^{m-2}}=1, y^{p}=z^{p}=1, y^{-1} x y=x^{1+p^{m-3}} \\
&\left.z^{-1} x z=x y, y z=z y\right\rangle \quad(m \geq 4) \\
& G_{9}=\left\langle x, y \mid x^{p^{m-2}}=1, y^{p^{2}}=1, y^{-1} x y=x^{1+p}\right\rangle \quad(m \geq 5) \\
& G_{10}=\left\langle x, y \mid x^{p^{2}}=1, x^{p^{p-3}}=y^{p^{2}}, y^{-1} x y=x^{1-p}\right\rangle \quad(m \geq 6) \\
& G_{11}=\langle x, y, z| x^{9}=1, y^{3}=1, z^{3}=x^{3}, x y=y x, z^{-1} x z=x y, \\
&\left.z^{-1} y z=x^{6} y\right\rangle
\end{aligned}
$$

By Theorem 2, G_{1} enjoys "Hasse principle", and because G_{9} and G_{10} are metacyclic by Theorem 1, they also enjoy "Hasse principle".
(II) For $p=2$, there are twelve possibilities about G. Again, using notation in [4], we list these groups:

$$
\begin{gathered}
G_{5}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, x y=y x, z^{-1} x z=x y \\
y z=z y\rangle \quad(m \geq 4) ; \\
G_{9}=\left\langle x, y \mid x^{2^{m-2}}=1, y^{4}=1, x^{-1} y x=y^{-1}\right\rangle \quad(m \geq 5) ; \\
G_{13}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, x y=y x, z^{-1} x z=x^{-1} y \\
y z=z y\rangle \quad(m \geq 5) ; \\
G_{14}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=1, z^{2}=x^{2^{m-3}}, x y=y x \\
\left.z^{-1} x z=x^{-1} y, y z=z y\right\rangle \quad(m \geq 5)
\end{gathered}
$$

$$
\begin{aligned}
& G_{17}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, y^{-1} x y=x^{1+2^{m-3}}, \\
& \left.z^{-1} x z=x y, y z=z y\right\rangle \quad(m \geq 5) ; \\
& G_{18}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=1, z^{2}=y, y^{-1} x y=x^{1+2^{m-3}} \text {, } \\
& \left.z^{-1} x z=x^{-1} y\right\rangle \quad(m \geq 5) ; \\
& G_{21}=\left\langle x, y \mid x^{2^{m-2}}=1, x^{2^{m-3}}=y^{4}, x^{-1} y x=y^{-1}\right\rangle \quad(m \geq 6) ; \\
& G_{22}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, x y=y x, \\
& \left.z^{-1} x z=x^{1+2^{m-4}} y, z^{-1} y z=x^{2^{m-3}} y\right\rangle \quad(m \geq 6) ; \\
& G_{23}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, x y=y x, \\
& \left.z^{-1} x z=x^{-1+2^{m-4}} y, z^{-1} y z=x^{2^{m-3}} y\right\rangle \quad(m \geq 6) ; \\
& G_{24}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=z^{2}=1, y^{-1} x y=x^{1+2^{m-3}} \text {, } \\
& \left.z^{-1} x z=x^{-1+2^{m-4}} y, y z=z y\right\rangle \quad(m \geq 6) ; \\
& G_{25}=\langle x, y, z| x^{2^{m-2}}=1, y^{2}=1, z^{2}=x^{2^{m-3}}, y^{-1} x y=x^{1+2^{m-3}}, \\
& \left.z^{-1} x z=x^{-1+2^{m-4}} y, y z=z y\right\rangle \quad(m \geq 6) ; \\
& G_{26}=\langle x, y, z| x^{8}=1, y^{2}=1, z^{2}=x^{4}, y^{-1} x y=x^{5} \text {, } \\
& \left.z^{-1} x z=x y, y z=z y\right\rangle
\end{aligned}
$$

By Theorem 2, G_{5}, G_{13} and G_{14} enjoy "Hasse principle". Because G_{9} and G_{21} are metacyclic, they also enjoy "Hasse principle".

In what follows, we denote by $\mathrm{Aut}_{c} G$ and $\operatorname{Inn} G$ the set of automorphisms which preserves each conjugacy class of G and the inner automorphism group of G, respectively.

2. The case p ODD

In [2], it has been shown that if every $f \in \operatorname{Aut}_{c} G$ that fixes one of the generating elements of G is in $\operatorname{Inn} G$, then G enjoys "Hasse principle". Let p be an odd prime. We here show that the groups G_{5}, G_{6}, G_{7} and G_{11} given in (I) enjoy "Hasse principle".
G_{5} and G_{6} enjoy "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{5}$ such that $f(z)=z$. Then there exist $a=x^{i} y^{j} z^{k}$, $b=x^{r} y^{s} z^{t} \in G_{5}$ with $0 \leq i, r<p^{m-2}, 0 \leq j, k, s, t<p$ such that $f(x)=$ $a^{-1} x a, f(y)=b^{-1} y b$, and so

$$
\begin{aligned}
& f(x)=z^{-k} y^{-j} x^{-i} \cdot x \cdot x^{i} y^{j} z^{k}=z^{-k} x z^{k} \\
& f(y)=z^{-t} y^{-s} x^{-r} \cdot y \cdot x^{r} y^{s} z^{t}=z^{-t} y z^{t}
\end{aligned}
$$

As $z^{-1} x z=x y$ and $z^{-1} y z=x^{p^{m-3}} y$ we have

$$
z^{-k} x z^{k}=x^{1+(1+2+\cdots+(k-1)) p^{m-3}} y^{k}=x^{1+\frac{k(k-1)}{2} p^{m-3}} y^{k} .
$$

We also have $z^{-t} y z^{t}=x^{t p^{m-3}} y$. Therefore $f(x)=x^{1+\frac{k(k-1)}{2} p^{m-3}} y^{k}, f(y)=$ $x^{t p^{m-3}} y$. Since f is an automorphism,

$$
f(z)^{-1} f(x) f(z)=f\left(z^{-1} x z\right)=f(x y)=f(x) f(y)
$$

We have

$$
\begin{aligned}
f(z)^{-1} f(x) f(z) & =z^{-1}\left(x^{1+\frac{k(k-1)}{2} p^{m-3}} y^{k}\right) z \\
& =\left(z^{-1} x z\right)^{1+\frac{k(k-1)}{2} p^{m-3}}\left(z^{-1} y z\right)^{k} \\
& =x^{1+\left(k+\frac{k(k-1)}{2}\right) p^{m-3}} y^{1+k}, \\
f(x) f(y) & =x^{1+\frac{k(k-1)}{2} p^{m-3}} y^{k} x^{t p^{m-3}} y \\
& =x^{1+\left(t+\frac{k(k-1)}{2}\right) p^{m-3}} y^{1+k} .
\end{aligned}
$$

Therefore the following congruence holds:

$$
1+\left(k+\frac{k(k-1)}{2}\right) p^{m-3} \equiv 1+\left(t+\frac{k(k-1)}{2}\right) p^{m-3} \quad\left(\bmod p^{m-2}\right) .
$$

From this it follows that $k \equiv t(\bmod p)$. Then because $0 \leq k, t<p$, we have $k=t$. Thus we have $f(x)=z^{-k} x z^{k}, f(y)=z^{-k} x z^{k}, f(z)=z^{-k} z z^{k}$. This shows that $f \in \operatorname{Inn} G_{5}$, and so G_{5} enjoys "Hasse principle". By an analogous argument we can show that G_{6} enjoys "Hasse principle".

In the rest of the paper, we proceed with a similar argument as above. Given $f \in \mathrm{Aut}_{c} G$, the image $f(g)$ of $g \in G$ will be denoted by \bar{g}.
G_{7} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{7}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}$, $b=x^{r} y^{s} z^{t} \in G_{7}$ with $0 \leq i, r<p^{m-2}, 0 \leq j, k, s, t<p$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{1+j p^{m-3}} y^{k}, \bar{y}=x^{-r p^{m-3}} y, \bar{z}=z$. Since f is an automorphism, $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y}$. Because $\bar{x} \bar{y}=x^{1+(j-r) p^{m-3}} y^{k+1}$, $\bar{z}^{-1} \bar{x} \bar{z}=x^{1+j p^{m-3}} y^{k+1}$, we have

$$
\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y} \Longleftrightarrow r p^{m-3} \equiv 0 \quad\left(\bmod p^{m-2}\right)
$$

Thus we have $\bar{x}=x^{1+j p^{m-3}} y^{k}, \bar{y}=y, \bar{z}=z$. Therefore setting $u=y^{j} z^{k}$, we have

$$
f(x)=u^{-1} x u, \quad f(y)=u^{-1} y u, \quad f(z)=u^{-1} z u
$$

and so $f \in \operatorname{Inn} G_{7}$.
G_{11} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_{c} G_{11}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}$, $b=x^{r} y^{s} z^{t} \in G_{11}$ with $0 \leq i, r<9,0 \leq j, k, s, t<3$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{1+3 k(k-1)} y^{k}, \bar{y}=x^{6 t} y, \bar{z}=z$. Since f is an automorphism, $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y}$. Because $\bar{x} \bar{y}=x^{1+6 t+3 k(k-1)} y^{k+1}$, $\bar{z}^{-1} \bar{x} \bar{z}=x^{1+6 k+3 k(k-1)} y^{k+1}$, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y} \Longleftrightarrow k=t$. Thus we have $\bar{x}=x^{1+3 k(k-1)} y^{k}, \bar{y}=x^{6 k} y, \bar{z}=z$. Therefore setting $u=z^{k}$, we have

$$
f(x)=u^{-1} x u, \quad f(y)=u^{-1} y u, \quad f(z)=u^{-1} z u
$$

and so $f \in \operatorname{Inn} G_{11}$.

3. The case $p=2$

We here show that the groups $G_{17}, G_{18}, G_{22}, G_{24}, G_{25}$ and G_{26} given in (II) enjoy "Hasse principle".

G_{17} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_{c} G_{17}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}, b=$ $x^{r} y^{s} z^{t} \in G_{17}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{1+j 2^{m-3}} y^{k}, \bar{y}=x^{r 2^{m-3}} y, \bar{z}=z$. Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y}$. Because $\bar{x} \bar{y}=x^{1+(j+r) 2^{m-3}} y^{k+1}$, $\bar{z}^{-1} \bar{x} \bar{z}=x^{1+j 2^{m-3}} y^{k+1}, \bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. Thus we have $\bar{x}=x^{1+j 2^{m-3}} y^{k}, \bar{y}=y, \bar{z}=z$. Therefore setting $u=y^{j} z^{k}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{17}$.

G_{18} enjoys "Hasse principle".

Proof. Let $f \in \operatorname{Aut}_{c} G_{18}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}$, $b=x^{r} y^{s} z^{t} \in G_{18}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a, \bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{2^{m-3}}+(-1)^{k}\left(1+k 2^{m-4}\right)+k^{2} 2^{m-4} y^{k}$, $\bar{y}=x^{r 2^{m-3}} y, \bar{z}=z$. Since f is an automorphism, we have $\bar{z}^{2}=\bar{y}$. Because $y=\bar{z}^{2}=x^{r 2^{m-3}} y, \bar{z}^{2}=\bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. Thus we have $\bar{x}=$ $x^{j 2^{m-3}+(-1)^{k}\left(1+k 2^{m-4}\right)+k^{2} 2^{m-4}} y^{k}, \bar{y}=y, \bar{z}=z$. Therefore setting $u=y^{j} z^{k}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{18}$.
G_{22} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{22}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}, b=$ $x^{r} y^{s} z^{t} \in G_{22}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{1+k 2^{m-4}} y^{k}, \bar{y}=x^{t 2^{m-3}} y, \bar{z}=z$. Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{1+2^{m-4}} \bar{y}$. Because

$$
\begin{gathered}
\bar{x}^{1+2^{m-4}} \bar{y}=x^{1+t 2^{m-3}+(1+k) 2^{m-4}} y^{1+k}, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{1+k 2^{m-3}+(1+k) 2^{m-4}} y^{1+k} \\
\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{1+2^{m-4}} \bar{y} \Longleftrightarrow k=t
\end{gathered}
$$

Thus we have $\bar{x}=x^{1+k 2^{m-4}} y^{k}, \bar{y}=x^{k 2^{m-3}} y, \bar{z}=z$. Therefore setting $u=z^{k}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{22}$.
G_{23} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{23}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}, b=$ $x^{r} y^{s} z^{t} \in G_{23}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have

$$
\bar{x}=\left\{\begin{array}{ll}
x & (k=0) \\
x^{-1+2^{m-4}} y & (k=1)
\end{array}, \quad \bar{y}=x^{t 2^{m-3}} y, \quad \bar{z}=z .\right.
$$

Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y}$. If $k=0$,

$$
\bar{x}^{-1+2^{m-4}} \bar{y}=x^{-1+2^{m-4}+t 2^{m-3}} y, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{-1+2^{m-4}} y .
$$

Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow t=0$. If $k=1$,

$$
\bar{x}^{-1+2^{m-4}} \bar{y}=x^{1+(t-1) 2^{m-3}}, \quad \bar{z}^{-1} \bar{x} \bar{z}=x .
$$

Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow t=1$. Thus we have

$$
\bar{x}=\left\{\begin{array}{ll}
x & (k=0) \\
x^{-1+2^{m-4}} y & (k=1)
\end{array}, \quad \bar{y}=x^{k 2^{m-3}} y, \quad \bar{z}=z .\right.
$$

Therefore setting $u=z^{k}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{23}$.
G_{24} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{24}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}, b=$ $x^{r} y^{s} z^{t} \in G_{24}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have

$$
\bar{x}=\left\{\begin{array}{ll}
x^{1+j 2^{m-3}} & (k=0) \\
x^{-1+2^{m-4}+j 2^{m-3}} y & (k=1)
\end{array}, \quad \bar{y}=x^{r 2^{m-3}} y, \quad \bar{z}=z .\right.
$$

Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y}$. If $k=0$,

$$
\bar{x}^{-1+2^{m-4}} \bar{y}=x^{-1+2^{m-4}+(r-j) 2^{m-3}} y, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{-1+2^{m-4}+j 2^{m-3}} y
$$

Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. If $k=1$, $\bar{x}^{-1+2^{m-4}} \bar{y}=x^{1+(r-j) 2^{m-3}}=x^{1+(r+j) 2^{m-3}}, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{j 2^{m-3}} x=x^{1+j 2^{m-3}}$. Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. Thus we have

$$
\bar{x}=\left\{\begin{array}{ll}
x^{1+j 2^{m-3}} & (k=0) \\
x^{-1+2^{m-4}+j 2^{m-3}} y & (k=1)
\end{array}, \quad \bar{y}=y, \quad \bar{z}=z .\right.
$$

Therefore setting $u=y^{j}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{24}$.
G_{25} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{25}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}, b=$ $x^{r} y^{s} z^{t} \in G_{25}$ with $0 \leq i, r<2^{m-2}, 0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have

$$
\bar{x}=\left\{\begin{array}{ll}
x^{1+j 2^{m-3}} & (k=0) \\
x^{-1+2^{m-4}+j 2^{m-3}} y & (k=1)
\end{array}, \quad \bar{y}=x^{r 2^{m-3}} y, \quad \bar{z}=z\right.
$$

Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y}$. If $k=0$,

$$
\bar{x}^{-1+2^{m-4}} \bar{y}=x^{-1+2^{m-4}+(j+r) 2^{m-3}} y, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{-1+2^{m-4}+j 2^{m-3}} y
$$

Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. If $k=1$,

$$
\bar{x}^{-1+2^{m-4}} \bar{y}=x^{1+(r-j) 2^{m-3}}=x^{1+(r+j) 2^{m-3}}, \quad \bar{z}^{-1} \bar{x} \bar{z}=x^{1+j 2^{m-3}}
$$

Therefore $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x}^{-1+2^{m-4}} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. Thus we have

$$
\bar{x}=\left\{\begin{array}{ll}
x^{1+j 2^{m-3}} & (k=0) \\
x^{-1+2^{m-4}+j 2^{m-3}} y & (k=1)
\end{array}, \quad \bar{y}=y, \quad \bar{z}=z .\right.
$$

Therefore setting $u=y^{j}$, we have $\bar{x}=u^{-1} x u, \bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{25}$.
G_{26} enjoys "Hasse principle".
Proof. Let $f \in \operatorname{Aut}_{c} G_{26}$ such that $\bar{z}=z$. Then there exist $a=x^{i} y^{j} z^{k}$, $b=x^{r} y^{s} z^{t} \in G_{26}$ with $0 \leq i, r<8,0 \leq j, k, s, t<2$ such that $\bar{x}=a^{-1} x a$, $\bar{y}=b^{-1} y b$. We then have $\bar{x}=x^{1+4 j} y^{k}, \bar{y}=x^{4 r} y, \bar{z}=z$. Since f is an automorphism, we have $\bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y}$. Because $\bar{x} \bar{y}=x^{1+4 j+4 r} y^{1+k}$, $\bar{z}^{-1} \bar{x} \bar{z}=x^{1+4 j} y^{1+k}, \bar{z}^{-1} \bar{x} \bar{z}=\bar{x} \bar{y} \Longleftrightarrow r \equiv 0(\bmod 2)$. Thus we have $\bar{x}=x^{1+4 j} y^{k}, \bar{y}=y, \bar{z}=z$. Therefore setting $u=y^{j} z^{k}$, we have $\bar{x}=u^{-1} x u$, $\bar{y}=u^{-1} y u, \bar{z}=u^{-1} z u$, and so $f \in \operatorname{Inn} G_{26}$.

Acknowledgement. The authors thank the referee for his or her comments.

References

[1] M. Kumar and L. R. Vermani, "Hasse principle" for extraspecial p-groups, Proc. Japan Acad. 76A (2000), 123-125.
[2] M. Kumar and L. R. Vermani, "Hasse principle" for groups of order p^{4}, Proc. Japan Acad. 77A (2001), 95-98.
[3] M. Kumar and L. R. Vermani, On automorphisms of some p-groups, Proc. Japan Acad. 78A (2002), 46-50.
[4] Y. NinOmiYa, Finite p-groups with cyclic subgroups of index p^{2}, Math. J. Okayama Univ. 36 (1994), 1-21.
[5] T. Ono, "Hasse principle" for $P S L_{2}(Z)$ and $P S L_{2}\left(F_{p}\right)$, Proc. Japan Acad. 74A (1998), 130-131.
[6] T. Ono, Shafarevich-Tate sets for profinite groups, Proc. Japan Acad. 75A (1999), 96-97.
[7] T. Ono and H. Wada, "Hasse principle" for free groups, Proc. Japan Acad. 75A (1999), 1-2.
[8] T. Ono and H. Wada, "Hasse principle" for symmetric and alternating groups, Proc. Japan Acad. 75A (1999), 61-62.
[9] H. Wada, "Hasse principle" for $S L_{n}(D)$, Proc. Japan Acad. 75A (1999), 67-69.
Michitaku Fuma
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
Yasushi Ninomiya
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto 390-8621, Japan
e-mail address: ysninom@gipac.shinshu-u.ac.jp
(Received December 2, 2003)

[^0]: *Shinshu University
 ${ }^{\dagger}$ 'Shinshu University

 Copyright © 2004 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

