Mathematical Journal of Okayama University

Volume 36, Issue 1

1994

Article 13

JANUARY 1994

A Note on the K-Theory of Constructible Sheves over a Curve

Tetsuo Sasaki*

^{*}Kyoto University

Math. J. Okayama Univ. 36(1994), 179-184

A NOTE ON THE K-THEORY OF CONSTRUCTIBLE SHEAVES OVER A CURVE

TETSUO SASAKI

Introduction. Let X be a smooth connected curve and let Const(X) be the category of constructible sheaves over X. Since Const(X) is an abelian category, we can define the K-group of Const(X). The main result of this note is

Theorem.

$$K_*(Const(X)) \cong \bigoplus_{x \in X_1} K_*(Const(k(x))) \oplus K_*(\mathcal{R}(X))$$

where X_1 is the set of closed points of X and $\mathcal{R}(X)$ is a category related to the representations of absolute Galois group of its generic point (cf. Lemma 4).

In this note we use the Waldhausen's K-theory machine [4],[5]. Then the fibration theorem [4, Theorem 1.6.4] shows there exists a spectral sequence similar to Quillen spectral sequence of K-theory of coherent shaves [3, Theorem 5.4], and we calculate the E_1 -term of this spectral sequence using the approximation theorem [4, Theorem 1.6.7].

1. The K-theory of constructible sheaves. Let \mathcal{A} be an abelian category and $\mathcal{C}^{\bullet}(\mathcal{A})$ be the category of its complexes. Let $co(\mathcal{C}^{\bullet}(\mathcal{A}))$ (resp. $quot(\mathcal{C}^{\bullet}(\mathcal{A}))$) consist of all degreewise monomorphisms (resp. epimorphisms). Let $w(\mathcal{C}^{\bullet}(\mathcal{A}))$ consist of all quasi-isomorphisms. Then $\mathcal{C}^{\bullet}(\mathcal{A})$ becomes a bi-Waldhausen category which satisfies the saturation and extension axioms, and the usual cylinder and cocylinder functors satisfy cylinder and cocylinder axioms [4],[5]. (Throughout this note, we denote a (bi-)Waldhausen category simply \mathcal{C} or $w\mathcal{C}$ when the choice of $w(\mathcal{C})$ is particulally important.)

Then we define the K-Theory of A by

$$K_{i}(\mathcal{A}) = \pi_{i+1}(B_{\bullet}\mathcal{Q}(\mathcal{A})) = \pi_{i+1}(wS_{\bullet}\mathcal{C}^{\bullet}(\mathcal{A}))$$
$$= \pi_{i+1}(wS_{\bullet}\mathcal{C}^{\bullet}(\mathcal{A})^{op}). \quad (\text{See [3],[4],[5].})$$

T. SASAKI

Now let X be a quasi-compact, quasi-separated scheme and R be a Noetheian ring. We denote simply Const(X) the category of constructible sheaves of abelian groups or R-modules. Note that Const(X) is an abelian category [6, IX]. Therefore we have the K-theory of constructible shraves $K_*(Const(X))$.

For any morphism $f: X \to Y$, $f^*: Const(Y) \to Const(X)$ is an exact functor, hence it induces a homomorphism of K-groups which will be denoted by

$$f^*: K_*(Const(Y)) \longrightarrow K_*(Const(X)).$$

In this way K_* becomes a contravariant functor from schemes to abelian groups.

We now consider the situation: $i: Z \to X$ is a closed subscheme and $j: U \to X$ its complement. Let $v(\mathcal{C}^{\bullet}(Const(X)))$ be the subcategory of $\mathcal{C}^{\bullet}(Const(X))$ whose morphisms are f so that $j^{*}f$ is a quasi-isomorphism of $\mathcal{C}^{\bullet}(Const(U))$. Then $v(\mathcal{C}^{\bullet}(Const(X)))$ defines another structure of bi-Waldhausen category, denoted by $v\mathcal{C}^{\bullet}(Const(X))$, satisfying the (co)-cylinder, saturation, and extension axioms. Therefore by the localization theorem, we have a homotopy fiber sequence:

$$wS_{\bullet}C^{\bullet}(Const(X))^{v} \longrightarrow wS_{\bullet}C^{\bullet}(Const(X)) \longrightarrow vS_{\bullet}C^{\bullet}(Const(X)).$$

Since the funtors $i_*: Const(Z) \to Const(X)$ and $j^*: Const(X) \to Const(U)$ are exact, they define exact functors of Waldhausen categories:

$$i_* \colon wC^{\bullet}(Const(Z)) \longrightarrow wC^{\bullet}(Const(X))^{v},$$

 $j^* \colon vC^{\bullet}(Const(X)) \longrightarrow wC^{\bullet}(Const(U)).$

Lemma 1. The following morphisms are homotopy equivalences:

$$i_*: wS_{\bullet}C^{\bullet}(Const(Z)) \longrightarrow wS_{\bullet}C^{\bullet}(Const(X))^v,$$

 $j^*: vS_{\bullet}C^{\bullet}(Const(X)) \longrightarrow wS_{\bullet}C^{\bullet}(Const(U)).$

Proof. For i_* : Let $F^{\bullet} \in C^{\bullet}(Const(X))^v$, $G^{\bullet} \in C^{\bullet}(Const(Z))$, and $\varphi \colon F^{\bullet} \to i_*G^{\bullet}$. Put $G'^{\bullet} = T^{\vee}(i^*F^{\bullet} \to G^{\bullet})$, where T^{\vee} is the usual cocylinder functor, φ' the composition $F^{\bullet} \to i_*i^*F^{\bullet} \to i_*G'^{\bullet}$, and α the canonical projection $G'^{\bullet} \to G^{\bullet}$. Then α is a fibration and $\varphi = \alpha \circ \varphi'$. Since $j_!$ is exact and j^*F^{\bullet} is acyclic, the exact sequence

$$0 \longrightarrow j_! j^* F^{\bullet} \longrightarrow F^{\bullet} \longrightarrow i_* i^* F^{\bullet} \longrightarrow 0$$

shows $F^{\bullet} \to i_* i^* F^{\bullet}$ is a qusi-isomorphism, hence so is φ' . Hence i_* satisfies the (dual of) approximation axioms. For j^* : Let $F^{\bullet} \in \mathcal{C}^{\bullet}(Const(X))$, $E^{\bullet} \in \mathcal{C}^{\bullet}(Const(U))$, and $\psi \colon E^{\bullet} \to j^* F^{\bullet}$. Put $F'^{\bullet} = T^{\vee}(j_! E^{\bullet} \to F^{\bullet})$, ψ' the composition $E^{\bullet} \to j^* j_! E^{\bullet} \to j^* F'^{\bullet}$, and β the canonical projection. Then these data show j^* satisfies the approximation axioms.

Theorem 2. We have an isomorphism:

$$K_*(Const(X)) \cong K_*(Const(Z)) \oplus K_*(Const(U)).$$

Proof. By the above lemma, we have a long exact sequence:

$$\cdots \longrightarrow K_i(Const(Z)) \longrightarrow K_i(Const(X)) \longrightarrow K_i(Const(U)) \longrightarrow K_{i-1}(Const(Z)) \longrightarrow \cdots,$$

and the functors $j_!$ and i^* give a splitting of this exact sequence.

Let $w_p(\mathcal{C}^{\bullet}(Const(X)))$ be the subcategory of $\mathcal{C}^{\bullet}(Const(X))$ whose morphisms are f so that the support of $H^*(T^{\vee}(f))$ is of codimension $\geq p$. Then we have homotopy fiber sequences:

$$wS_{\bullet}C^{\bullet}(Const(X))^{w_{p-1}} \longrightarrow wS_{\bullet}C^{\bullet}(Const(X))^{w_{p}}$$

 $\longrightarrow w_{p+1}S_{\bullet}C^{\bullet}(Const(X))^{w_{p}}.$

The usual arguments show

Theorem 3. There is a spectral sequence

$$E_1^{p,q} = \pi_{-p-q-1}(w_{p+1}S_{\bullet}C^{\bullet}(Const(X))^{w_p}) \implies K_{-p-q}(Const(X)),$$

which is convergent when X has finite (Krull) dimension.

In the next section, we calculate this spectral sequence in the case of curves.

2. Proof of main theorem. Let X be a normal connected irreducible scheme of dimension one, and let $g: \eta \hookrightarrow X$ be its generic point, and X_1 be the set of closed points. Write $G_{\eta} = \operatorname{Gal}(k(\bar{\eta})/k(\eta))$ and $G_x = \operatorname{Gal}(k(\bar{\chi})/k(x))$ where $\bar{\eta}$ and \bar{x} are chosen so that $k(\bar{\eta}) = k(\eta)^{sep}$, $k(\bar{x}) = k(x)^{sep}$. For each $x \in X_1$, choose an embedding $\mathcal{O}_{X,\bar{x}} \to k(\bar{\eta})$.

T. SASAKI

Then we have a filtration $G_{\eta} \supseteq D_x \supseteq I_x \supseteq \{1\}$, and an isomorphism $D_x/I_x \cong G_x$. Using these notations, we have an equivalence of categories

$$Const(X) \cong \left\{ \begin{aligned} &(M_{\eta}, (M_{x}, \phi_{x})_{x \in X_{1}}); \\ &M_{\eta} \text{: a finite } G_{\eta}\text{-Module,} \\ &M_{x} \text{: a finite } G_{x}\text{-Module,} \\ &\phi_{x} \colon M_{x} \to M_{\eta}^{I_{x}} \colon \text{ a } G_{x}\text{-homomorphism which} \\ &\text{satisfies there exists a non-empty open subset } U \text{ of } X \text{ s.t. } M_{x} \to M_{\eta}^{I_{x}} \hookrightarrow M_{\eta} \text{ is an isomorphism for } x \in U. \end{aligned} \right\},$$

where "finite" means a finite group if we consider sheaves of abelian groups, or a R-module with finite representation if we consider sheaves of R-modules. In terms of this identification, a morphism $M^{\bullet} \to N^{\bullet}$ is in $w_1(\mathcal{C}^{\bullet}(Const(X)))$ if and only if $M^{\bullet}_{\eta} \to N^{\bullet}_{\eta}$ is a quasi-isomorphism.

Lemma 4. We have the following isomorphisms:

$$\pi_{i+1}(wS_{\bullet}C^{\bullet}(Const(X)^{w_{1}}) \cong \bigoplus_{x \in X_{1}} K_{i}(Const(k(x))),$$

$$\pi_{i+1}(w_{1}S_{\bullet}C^{\bullet}(Const(X))) \cong K_{i}(\mathcal{R}(X)),$$

where $\mathcal{R}(X)$ is the full subcategory of finite G_{η} -modules whose objects are M such that $M^{I_x} \to M$ are isomorphisms for $x \in U$ for some non-empty open subset U of X.

Proof. Let $Const(X_1)$ be the full subcategory of Const(X) consisting of objects whose supports are of dimension zero. Clearly,

$$K_i(Const(X_1)) \cong \bigoplus_{x \in X_1} K_i(Const(k(x))).$$

Consider the functor:

$$\Phi: \ \mathcal{C}^{\bullet}(Const(X_{1})) \ \longrightarrow \ \mathcal{C}^{\bullet}(Const(X))^{w_{1}}$$

defined by $\Phi A^{\bullet} = (0, (A_x^{\bullet}, 0))$. Let $B^{\bullet} \in \mathcal{C}^{\bullet}(Const(X))^{w_1}$, $A^{\bullet} \in \mathcal{C}^{\bullet}(Const(X_1))$, and $f \colon B^{\bullet} \to \Phi A^{\bullet}$. Choose a non-empty open subset U^i of X so that $A_x^i = 0$ and $B_x^i \to B_{\eta}^i$ are isomorphisms for $x \in U^i$. Define the complex \mathcal{C}_x^{\bullet} by

$$\mathcal{C}_x^i = \begin{cases} B_x^i & \text{if } x \in \overline{U^i} \cup (\overline{U^{i-1}} \cap \overline{U^{i+1}}); \\ \operatorname{Im}[d:B_x^{i-1} \to B_x^i] & \text{if } x \in \overline{U^{i-1}} \cap U^i \cap \underline{U^{i+1}}; \\ \operatorname{Coim}[d:B_x^{i-1} \to B_x^i] & \text{if } x \in U^{i-1} \cap U^i \cap \overline{U^{i+1}}; \\ 0 & \text{otherwise.} \end{cases}$$

By the definition, the canonical maps $B_x^{\bullet} \to C_x^{\bullet}$ are quasi-isomorphisms, $(C_x^{\bullet})_{x \in X_1}$ defines an object of $C^{\bullet}(Const(X_1))$, denoted by C^{\bullet} , and the composition $B^{\bullet} \to \Phi C^{\bullet} \to \Phi A^{\bullet}$ is equal to f. Put $B'^{\bullet} = T^{\vee}(C^{\bullet} \to A^{\bullet})$, then we obtain a fibration $B'^{\bullet} \to A^{\bullet}$ and weak equivalence $B^{\bullet} \to \Phi C^{\bullet} \to \Phi B'^{\bullet}$. Hence we have an isomorphism

$$\pi_{i+1}(wS_{\bullet}C^{\bullet}(Const(X))^{w_1}) \cong \bigoplus_{x \in X_1} K_i(Const(k(x))).$$

Define functors $g^*: Const(X) \to \mathcal{R}(X)$ and $g_!: \mathcal{R}(X) \to Const(X)$ by $g^*M = M_{\eta}$ and $g_!M_{\eta} = (M_{\eta}, M_{\eta}^{I_x}, incl.)$). Then the similar argument as lemma 1 shows

$$\pi_{i+1}(w_1S_{\bullet}C_{\bullet}(Const(X))) \cong K_i(\mathcal{R}(X)).$$

Using this lemma, we obtain

Theorem 5. Let X be a normal connected irreducible scheme of dimension one. Then there is an isomorphism:

$$K_i(Const(X)) \cong \bigoplus_{x \in X_1} K_i(Const(k(x))) \oplus K_i(\mathcal{R}(X)).$$

The following corollary results from Theorem 2 and 5.

Corollary 6. Let $X \hookrightarrow \overline{X}$ be an open immersion of curves where \overline{X} is smooth connected irreducible. Then

$$K_i(Const(X)) \cong \bigoplus_{x \in X_1} K_i(Const(k(x))) \oplus K_i(\mathcal{R}(\overline{X})).$$

REFERENCES

- [1] P. DELIGNE: La conjecture de Weil, Publ. Math. I.H.E.S. 52 (1981), 313-428.
- [2] J. MILNE: Etale Cohomology, Princeton Univ. Press, 1980
- [3] D. Quillen: Higher algebraic K-theory I, Springer Lect. Notes in Math. 343 (1973), 85-147.
- [4] R. THOMASON and T. F. TRONBAUGH: Higher algebraic K-theory of schemes and derived categories, The Grothendieck Festschrift vol. 3.
- [5] F. WALDHAUSEN: Algebraic K-theory of spaces, Springer Lect. Notes in Math. 1126 (1985), 318-419.
- [6] Théorie des Topos et Cohomologie Etale des Schémas, Springer Lect. Notes in Math. 269 (1972), 270 (1972), 305 (1973).

184

T. SASAKI

[7] Cohomologie Etale, Springer Lect. Notes in Math. 569 (1977).

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY
KYOTO 606, JAPAN

(Received March 19, 1993)

CURRENT ADDRESS:
OSAKA PREFECTURAL COLLEGE OF TECHNOLOGY
NEYAGAWA-SHI, OSAKA 572, JAPAN