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A NOTE ON THE K-THEORY OF CONSTRUCTIBLE
SHEAVES OVER A CURVE

TETsvo SASAKI

Introduction. Let X be a smooth connected curve and let
Const(X) be the category of constructible sheaves over X. Since Const(X)
is an abelian category, we can define the K-group of Const(X). The main
result of this note is

Theorem.

K.(Const(X)) = g}){Ix’*(Const(k(a:))) B K.(R(X))

where X, is the set of closed points of X and R(X) is a category related
to the representations of absolute Galois group of its generic point (cf.
Lemma 4).

In this note we use the Waldhausen’s K'-theory machine [4],[5]. Then
the fibration theorem [4, Theorem 1.6.4] shows there exists a spectral se-
quence similar to Quillen spectral sequence of I -theory of coherent shaves
[3, Theorem 5.4], and we calculate the E;-term of this spectral sequence
using the approximation theorem [4, Theorem 1.6.7].

1. The K-theory of constructible sheaves. Let A be an abelian
category and C°*(A) be the category of its complexes. Let co(C*(A))
(resp. quot(C*(.A))) consist of all degreewise monomorphisms (resp. epi-
morphisms). Let w(C*(.A)) consist of all quasi-isomorphisms. Then C*(.A)
becomes a bi-Waldhausen category which satisfies the saturation and ex-
tension axioms, and the usual cylinder and cocylinder functors satisfy
cylinder and cocylinder axioms [4],[5]. (Throughout this note, we denote

a (bi-)Waldhausen category simply C or wC when the choice of w(C) is
particulaly important.)

Then we define the K-Theory of A by

Ki(A) = mi41(B,Q(A)) = miga(wS.C*(A))
= Tit1(wS.C°(A)P).  (See [3],[4],[5].)
179
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Now let X be a quasi-compact, quasi-separated scheme and R be a
Noetheian ring. We denote simply Const(X) the category of constructible
sheaves of abelian groups or R-modules. Note that Const(X) is an abelian
category [6, IX]. Therefore we have the K'-theory of constructible shraves
K. (Const(X)).

For any morphism f: X — Y, f* Const(Y) — Const(X) is an ex-
act functor, hence it induces a homomorphism of K'-groups which will be
denoted by

[ K.(Const(Y)) — K.(Const(X)).
In this way K. becomes a contravariant functor from schemes to abelian
groups.

We now consider the situation: i:Z — X is a closed subscheme and
j:U — X its complement. Let v(C*(Const(X))) be the subcategory of
C*(Const(X)) whose morphisms are f so that j*f is a quasi-isomorphism
of C*(Const(U)). Then v(C*(Const(X))) defines another structure of bi-
Waldhausen category, denoted by vC*(Const(X)), satisfying the (co-)
cylinder, saturation, and extension axioms. Therefore by the localization
theorem, we have a homotopy fiber sequence:

wS,C*(Const(X))! — wS5,C*(Const(X)) — vS,C*(Const(X)).

Since the funtors i,:Const(Z) — Const(X) and j*: Const(X) —
Const(U) are exact, they define exact functors of Waldhausen categories:
ip: wC*(Const(Z)) — wC*(Const(X))",

J*: vC*(Const(X)) — wC*(Const(U)).

Lemma 1. The following morphisms are homotopy equivalences:
ix: wS,C*(Const(Z)) — wS,C*(Const(X))*,
7*: vS8,C*(Const(X)) — wS,C*(Const(U)).
Proof. For i.: Let F* € C*(Const(X))", G* € C*(Const(Z)), and
p: F* = i,G*. Put G’ = TV(i*F* — G*), where T" is the usual cocylinder
functor, ¢ the composition F* — i, i*F* — 1«G", and a the canonical

projection G'* — G*. Then « is a fibration and ¢ = aoy’. Since j is exact
and 7*F'* is acyclic, the exact sequence

0 — jj*F* — F* — i3'F* — 0
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shows F'* — 7, F* is a qusi-isomorphism, hence so is ¢’. Hence ¢, satisfies
the (dual of) approximation axioms. For j*: Let F* € C*(Const(X)),
E* € C*(Const(U)), and 9: E* — j*F*. Put F'* = TV(jE* — F*), ¢’ the
composition E* — j*fiE* — j*F'*, and 8 the canonical projection. Then
these data show j* satisfies the approximation axioms.

Theorem 2. We have an isomorphism:
K, (Const(X)) = K.(Const(Z)) ® K.(Const(U)).
Proof. By the above lemma, we have a long exact sequence:

— K;(Const(Z)) — Ki(Const(X)) — K;(Const(U)) —
— K;_1(Const(Z)) — --- ,
and the functors 7 and i* give a splitting of this exact sequence.

Let w,(C*(Const(X))) be the subcategory of C*(Const(X)) whose mor-
phisms are f so that the support of H*(TVY(f)) is of codimension > p. Then
we have homotopy fiber sequences:

wS,C*(Const(X )P~ — wS,C*(Const(X))¥r
— wp419,C*(Const(X))*r.
The usual arguments show

Theorem 3. There is a spectral sequence
EP =71y g1 (wp415.C*(Const(X))?) = K_,_,(Const(X)),

which is convergent when X has finite (Krull) dimension.

In the next section, we calculate this spectral sequence in the case of
curves.

2. Proof of main theorem. Let X be a normal connected irre-
ducible scheme of dimension one, and let g:n — X be its generic point,
and X, be the set of closed points. Write G, = Gal(k(7)/k(n)) and
G; = Gal(k(z)/k(z)) where 7j and Z are chosen so that k(%) = k(n)*?,
k(z) = k(z)**?. For each z € X, choose an embedding Oxz — k(7).
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Then we have a filtration G, 2 D, 2 I; 2 {1}, and an isomorphism
D /I, = G. Using these notations, we have an equivalence of categories
((My, (Mz, ¢2)zex, ); )
M,: a finite G-Module,
M, a finite G,-Module,
Const(X)= < oy M, — ,M,{’: a Gz-homomorphism which r,

satisfies there exists a non-empty open sub-
set U of X s.t. M, — JM,{‘ — M, is an
L isomorphism for z € U. J

where “finite” means a finite group if we consider sheaves of abelian groups,
or a R-module with finite representation if we consider sheaves of R-
modules. In terms of this identification, a morphism M* — N°* is in
w1(C*(Const(X))) if and only if My — N} is a quasi-isomorphism.

Lemma 4. We have the following isomorphisms:

Tip1(wS,C*(Const (X )*) = S?(Ix’,-(Const(k(m))),

Tip1(u S,C*(Const(X)) = K;(R(X)),

where R(X) is the full subcategory of finite G,-modules whose objects are
M such that M’= — M are isomorphisms for z € U for some non-empty
open subset U of X.

Proof. Let Const(X;) be the full subcategory of Const(X) consisting
of objects whose supports are of dimension zero. Clearly,

K;(Const(X,1)) & Q;K;(Const(k(:c))).
zeX,

Consider the functor:
@ : C*(Const(X1)) — C*(Const(X))™*

defined by ®A* = (0,(A%,0)). Let B* € C*(Const(X))*, A* €
C*(Const(X1)), and f: B* — ®A*. Choose a non-empty open subset U* of
X so that AL = 0 and B — B,‘; are isomorphisms for z € U*. Define the
complex C} by

Bi if 2 € UF U (U™ nUH);

¢i = {Im[d:BS - Bi] iz e U nUInUHY,
Coim[d: Bi~' — Bi] ifz e U-1nU n U™
0 otherwise.
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By the definition, the canonical maps B} — (3 are quasi-isomorphisms,
(C2)zex, defines an object of C*(Const(X;)), denoted by C*, and the com-
position B* — ®C* — ®A* is equal to f. Put B'* = TV(C* — A*), then
we obtain a fibration B’* — A* and weak equivalence B* — ®C* — ®B'.
Hence we have an isomorphism

Tip1(wS,C*(Const(X))™) = lé.;{]&'i(Const(Ic(:v))).

Define functors g*: Const(X) — R(X) and ¢i: R(X) — Const(X) by
g°M = M, and oM, = (A-I,,,Al;,”,incl.)). Then the similar argument as
lemma 1 shows

7ip1(w1 S,C.(Const( X)) = K;(R(X)).

Using this lemma, we obtain

Theorem 5. Let X be a normal connected irreducible scheme of
dimension one. Then there is an isomorphism:

K;(Const(X)) = Ig{ﬁ',’(Const(k‘(z))) & Ki(R(X)).

The following corollary results from Theorem 2 and 5.

Corollary 6. Let X — X be an open immersion of curves where X
is smooth connected irreducible. Then

Ki(Const(X)) = @ Ki(Const(k(z))) & Ki(R(X)).
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