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1. Introduction

Let (M, g) be a compact Riemannian manifold and d(p, q) the distance

between p, q ∈ M induced from the metric g. Then the distance function

f := dp, dp(x) := d(p, x), to a point p ∈ M plays a fundamental role in

Riemannian geometry. Recall that dp is directionally differentiable at any

q 6= p, namely for any unit tangent vector ξ ∈ UqM we have the first

variation formula

(1.1) f ′
q(ξ) = − cosα,

where α denotes the infimum of angles between ξ and the initial directions

of minimal geodesics from q to p.

The behavior of the distance function dp is closely related to the structure

of the cut locus of p. Recall that the cut locus C(p) of p ∈ M is given as

follows: for any unit speed geodesic γu emanating from p with the initial

direction u = γ̇u(0) ∈ UpM , there exists the last parameter value ip(u) up to

which γu is a minimal geodesic segment, namely γu|[0, t] realizes the distance

d(p, γu(t)) for 0 < t ≤ ip(u). We call γu(ip(u)) the cut point of p and ip(u)

the cut distance to p along γu. Then the cut locus C(p) of p is defined as

(1.2) C(p) := {γu(ip(u)) | u ∈ UpM}.

Recall that q is a cut point of p along γu if and only if either there exists

another minimal geodesic γv, v ∈ UpM , v 6= u, emanating from p with

q = γu(ip(u)) = γv(ip(u)), or q is a (first) conjugate point to p along γu,

which means that there exists a nontrivial Jacobi field Y (t) along γu with

Y (0) = Y (ip(u)) = 0 (see e.g., [16]). The set C̃(p) := {ip(u)u | u ∈ UpM} is

called the tangent cut locus of p.

Then if q(6= p) does not belong to the cut locus C(p), dp is differentiable at

q and its gradient vector ∇dp(q) is given by γ̇(l), where γ is a unique minimal
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66 J. ITOH AND T. SAKAI

geodesic parameterized by arclength joining p to q and we set l = d(p, q).

Note that ‖∇dp(q)‖ = 1. On the other hand, if q ∈ C(p) then dp is in

general not differentiable at q.

Now, q(6= p) is said to be noncritical for f = dp, if there exists a ξ ∈ UqM

such that f ′
q(ξ) > 0. Namely, q(6= p) is a critical point of dp if for any

ξ ∈ UqM there exists a minimal geodesic γ from q to p whose initial direction

makes an angle α ≤ π/2 with ξ. Note that a critical point q(6= p) is a cut

point of p, where dp is not differentiable. We consider p itself a critical point

of f , since it is a unique minimum point. If f assumes a local maximum

at q, then q is a critical point in the above sense. The notion of critical

points was first considered by K. Grove and K. Shiohama, and then by M.

Gromov ([9], [6]). If q is noncritical, then constructing a gradient-like vector

field for −f we may put a neighborhood of q nearer to p by an isotopy of

M(isotopy lemma). Therefore, we have an analogy of Morse theory for the

case without critical points, and this idea has played an essential roll in

problems on curvature and topology of Riemannian manifolds ([9], [6], [7]).

Now since distance function is the most fundamental function on Rie-

mannian manifold, we ask the behavior of the levels of dp when it passes a

critical value. Namely, we ask how to define the notion of index of dp at

a critical point q and how we can get a normal form of dp around q under

some nondegeneracy condition. As mentioned above, dp is not differentiable

at its critical points, and the structure of the cut locus C(p) of p is related

to the behavior of dp around critical points.

In this note we are concerned with the above problem under the assump-

tion that C(p) has rather nice structure, and we discuss an analogy of Morse

theory for distance function. We give an application (Corollary 3.12), and

hope to give further applications with the present approach ( [12] is our mo-

tivation for the present work). Indeed, V. Gerschkovich and H. Rubinstein

have studied Morse theory for generic distance functions from the view point

of min-type functions ([3],[4],[5]), and got results closely related to what we

will discuss in the following. Especially, they studied the surface case in

detail. Here we try to take a more geometric and direct approach.

Assume that there is a point p ∈ M such that the tangent cut locus C̃(p)

of p is disjoint from the first tangent conjugate locus, namely any minimal
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CUT LOCI AND DISTANCE FUNCTIONS 67

geodesic segment emanating from p is conjugate point-free. Then we say

that (M, g) satisfies the condition (C) at p ∈ M . We are interested in the

structure of the cut locus C(p) of p under the above condition (C). Especially,

if (M, g) admits no conjugate points along all geodesics emanating from

p, then the structure of C(p) may be expressed in terms of the Dirichlet

domain of the universal covering space M̃ of M with the induced Riemannian

metric g̃ (see [15] for these assertions). If (M, g) is nonpositively curved,

then for any point p ∈ M there appear no conjugate points to p along any

geodesic emanating from p. On the other hand, A. Weinstein showed that

for any compact manifold M with dimM ≥ 2 except for S2 there exists a

Riemannian metric such that there is a point p ∈ M with the cut locus C(p)

disjoint from the first conjugate locus ([18]). In this case M satisfies the

condition (C) at p.

In §2 we introduce the notion of nondegenerate cut points under the

condition (C), and show that the cut locus C(p) admits a nice Whitney

stratification if all cut points are nondegenerate. As an application, using

this peculiar stratification we give a description of the structure of the cut

locus C(p) in a neighborhood of any cut point q ∈ C(p) in terms of the cone

over the cut locus of finitely many unit vectors in general position in the

unit sphere Sn−1 in TqM (Theorem 2.5). This is also useful to give a normal

form of dp around a critical point under some nondegeneracy condition in

§3. We also show that critical points of dp in the angle sense are critical

points of the smooth function, that is the restriction of the distance function

dp to strata containing the critical points, in the usual sense.

In §3, under the above assumption, first we define the notion of index

for a critical point of dp in the angle sense, and we give a normal form

of nondegenerate distance function dp around a critical point by geometric

consideration. Then we show that usual procedure of Morse theory works.

(Theorem 3.7. Compare [4].) Next, we also consider the condition (F) for

p ∈ M , which states that for any unit speed geodesic γu emanating from p,

and for any Jacobi field Y along γu with Y (0) = 0,∇γ̇Y (0) 6= 0, we have

〈Y (t),∇γ̇uY (t)〉 > 0 for the parameter value t > 0 up to the cut distance

ip(u) to p. Note that this implies that the condition (C) holds at p, and

the condition (F) is satisfied for any p ∈ M when (M, g) is of nonpositive
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68 J. ITOH AND T. SAKAI

sectional curvature. Then under the assumption of condition (F), on any

stratum of C(p) of codimension less than n, we see that the restriction f of

the distance function dp to the stratum satisfies the following: any critical

point r of dp in the angle sense belonging to the stratum is a strict local

minimum of f , namely, r is a critical point of f in the usual sense and its

Hessian is positive definite. Therefore, in this case we have simpler procedure

of Morse theory (see Theorem 3.11).

The structure of cut loci C(p) for generic Riemannian metrics was stud-

ied by applying singurality theory to smooth energy integral on the (finite-

dimensional approximation of) the space of piecewise smooth paths ema-

nating from p ([1],[2],[17],[19]). However, it is not clear for us whether such

structure theorems directly give information on the Riemannian distance

function dp, and we take here more geometrical approach under somewhat

stronger assumption on the cut locus. We are greateful to M. van Manen

for his criticism and pointing out several references including [19]. We are

greatful to H. Rubinstein for telling us [3],[4],[5]. We would like to also ex-

press our sincere appreciation to the referee for his kind suggestion to make

the paper more readable.

2. Structure of the cut locus disjoint from the first

conjugate locus

Suppose a compact n-dimensional Riemannian manifold (M, g) satisfies

the condition (C) at p, namely the tangent cut locus C̃(p) is disjoint from the

first tangent conjugate locus of p. Let q ∈ C(p). Then from the assumption

there are only finitely many minimal geodesics emanating from p to q. We

denote by {γ0, · · · , γk}(k ≥ 1) the set of the minimal geodesics parametrized

by arclength from p to q, where k + 1 is called the order of the cut point q.

Note that we may find open neighborhoods U 3 q in M and Vi 3 lγ̇i(0) (i =

0, . . . , k) in TpM such that expp : Vi −→ U are diffeomorphisms, where

expp : TpM −→ M denotes the exponential map at p. We may also assume

that for any minimal geodesic γ parameterized by arclength from p to a

point r ∈ U the tangent vector d(p, r)γ̇(0) ∈ TpM belongs to one of the

corresponding Vi’s. Then we set

(2.1) Fi := (expp |Vi)
−1

4
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CUT LOCI AND DISTANCE FUNCTIONS 69

that is a diffeomorphism from U onto Vi for each i = 0, . . . , k.

We set Xi := −γ̇i(l), l = d(p, q), i = 0, . . . , k which are pairwise different

unit vectors of TqM . Namely, {Xi}0≤i≤k is the set of initial directions of

geodesics from q to p parametrized by arclength. Now we define the notion

of nondegenerate cut points as follows:

Definition 2.1. A cut point q ∈ C(p) of order k + 1 is said to be nonde-

generate, if X0, . . . , Xk are in general position in TqM .

This means that the dimension of the affine subspace of the tangent space

TqM spanned by {X0, · · · , Xk} is equal to k. This is also equivalent to the

condition that X0 − X1, X0 − X2, . . . , X0 − Xk (or equivalently, for fixed

i, Xi − Xj (j 6= i)) are linearly independent. Then either X0, . . . , Xk are

linearly independent and spans a k-dimensional affine subspace that does not

contain the origin, or they are linearly dependent and spans a k-dimensional

vector subspace. For instance, cut points of order 2 or of order 3 are always

nondegenerate. Note that if q is a nondegenerate cut point, then its order

k + 1 is at most n + 1.

Remark 2.2. (1) Tangent cut loci of a point in 2-dimensional flat tori are

in general hexagons, in which case all cut points are nondegenerate. If the

tangent cut locus of p is given by a rectangle, then the cut point q which is

furthest to p and is given by vertices of the rectangle of the tangent cut locus

is degenerate. Indeed, we have four minimal geodesics from p to q. However,

after slightly deforming the lattice such degenerate cut points disappear in

this case. All cut points of p in an n-dimensional flat torus are nondegenerate

if and only if the cut points, that are local maximum points of dp and given

by the vertices of the tangent cut locus, are of order n + 1.

(2) The distance function dp is a (germ of) min-type function in the sense

of [4], namely, in a neighborhood of q we have dp(r) := min{‖Fi(r)‖ | 0 ≤

i ≤ k}.

Now suppose that all cut points of p are nondegenerate. We denote by

Ck+1 ⊂ C(p) the set of cut points of p of order k + 1. We assume that

Ck+1 is nonempty. Now for q ∈ Ck+1 we denote by γ0, . . . , γk the set of

minimal geodesics parametrized by arclength joining p to q. Recall that for

any r ∈ U ∩ Ck+1 and any minimal geodesic γ joining p to r, d(p, r)γ̇(0)
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belongs to Vi for some 0 ≤ i ≤ k, and that U ∩ C(p) consists of cut points

of p of order not greater than k + 1 (see e.g., [15]).

Now, we consider a smooth map G : U → R
k defined by

(2.2) G(r) := (‖F0(r)‖ − ‖F1(r)‖, . . . , ‖F0(r)‖ − ‖Fk(r)‖),

where Fi = (expp |Vi)
−1 : U → Vi ⊂ TrM, i = 0, . . . , k, are given by (2.1).

Then we easily see that

(2.3) G−1(0) = Ck+1 ∩ U,

and that for every r ∈ U the gradient vector ∇Gj(r) of the j-th coordinate

function Gj(r) := ‖F0(r)‖ − ‖Fj(r)‖ of G is given by

(2.4) ∇Gj(r) = Xj − X0 (j = 1, . . . , k)

by the first variation formula.

Since ∇Gj(r) are linearly independent for r ∈ G−1(0) by the assumption,

the differential DG(r) : TrU −→ R
k of G at any r ∈ G−1(0) is of rank k.

It follows by the implicit function theorem that Ck+1 is a submanifold of

M of codimension k. Equivalently, the hypersurfaces G−1
j (0) (j = 1, . . . , k)

intersect transversally at r ∈ G−1(0). However, note that Ck+1 is not nec-

essarily connected, and we denote by Ck+1,q the connected component of

Ck+1 containing q ∈ Ck+1.

Since we have dp(r) = ‖F0(r)‖(= ‖Fj(r)‖, j = 1, . . . , k) for r ∈ Ck+1 and

F0 is a diffeomorphism, we see that f := dp|Ck+1,q is a smooth function for

q ∈ Ck+1. Summing up we get

Lemma 2.3. Suppose that Ck+1(6= ∅) consists of nondegenerate cut points.

Then Ck+1 is a submanifold of codimension k of M , and dp is a smooth

function when restricted to each connected component Ck+1,q of Ck+1.

It may happen that some Ck+1 is empty. For instance, the cut locus of

the n-dimensional real projective space with canonical Riemannian metric

of constant curvature 1 consists of nondegenerate cut points of order 2, and

Ck+1 (k ≥ 2) is empty. In this case the cut locus is an (n − 1)-dimensional

projective subspace and indeed a smooth submanifold. From the condition

(C) we see that Ck+1 is nonempty for some k ≥ 1 and then so is Cl+1 for

6
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1 ≤ l ≤ k from the nondegeneracy condition. For q ∈ Ck+1 we have

U ∩ C(p) =
⋃

1≤l≤k

Cl+1 ∩ U and U \ C(p) =
k

⋃

i=0

Di,

where Di := {r ∈ U | ‖Fi(r)‖ < ‖Fj(r)‖; j 6= i}. Note that the closure

C̄k+1,q of Ck+1,q is given by
⋃

l≥k Cl+1,r, where r ∈ C̄k+1,q is of order l+1. If

Ck+2 = ∅ then we see that C̄k+1,q is a smooth submanifold. It follows that

we have a stratification of the cut locus by submanifolds Ck+1,q, and it is

easy to verify the Whitney’s condition (B) in our case ([8]). Hence we get

Proposition 2.4. Suppose a compact Riemannian manifold (M, g) satisfies

the condition (C) at p ∈ M and cut points q ∈ C(p) are nondegenerate. Then

the cut locus C(p) of p has a Whitney stratification given as above.

Next we give a description of the tangent cone of a cut point q ∈ C(p).

Suppose Ck+1 consists of nondegenerate cut points. Then recall that Ck+1

is an (n − k)-dimensional submanifold of M , and dp is a smooth function

when restricted to each connected component Ck+1,q.

Theorem 2.5. Suppose the condition (C) is satisfied at p and all cut points

of p are nondegenerate. Let q ∈ Ck+1 and let γ0, . . . , γk be the minimal

geodesics from p to q. Set Xi = −γ̇i(l) ∈ UqM, i = 0, · · · , k, with l =

d(p, q). We denote by S(q) the cut locus of a finite subset {X0, . . . , Xk} of

UqM , which is considered as the unit (n − 1)-dimensional sphere with the

canonical Riemannian metric. Then C(p)∩U is homeomorphic to the cone

over S(q) in TqM with origin as the vertex, if we take a sufficiently small

open neighborhood U of q.

First we recall the structure of the cut locus S(q) of the finite set {X0, . . . ,

Xk} in the unit sphere UqM with respect to the canonical metric. Indeed, we

have X ∈ S(q) if and only if there exists at least two minimizing geodesics

of UqM from the set {X0, . . . , Xk} to X. Namely, S(q) consists of the parts

of the bisectors of Xi and Xj (i < j) in the sphere UqM that are closer

or of equidistance to other Xl’s, l 6= i, j. In our case, X0, · · · , Xk spans

a k-dimensional affine subspace V1 and they are contained in a (k − 1)-

dimensional great or small sphere in UqM . Note that they are contained in a

great sphere Sk−1 if and only if the affine subspace spanned by them contains

7
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72 J. ITOH AND T. SAKAI

the origin and is a vector subspace. If they are contained in a small hyper-

sphere Ŝk−1 in the k-dimensional great sphere Sk := UqM ∩〈X0, · · · , Xk〉R,

we consider the parallel great sphere Sk−1 in Sk and the corresponding unit

vectors X̃0, · · · , X̃k in Sk−1 that are projections of X0, · · · , Xk from the

north pole respectively. Let Ṽ1 = 〈X̃0, · · · , X̃k〉R denote the k-dimensional

vector subspace determined by Sk−1. If {X0, · · · , Xk} are contained in

a (k − 1)-dimensional great sphere Sk−1 of V1 = 〈X0, · · · , Xk〉R, we set

X̃i = Xi(i = 0, . . . , k) and Ṽ1 = V1.

Now we give a description of the structure of the cut locus S(q).

Lemma 2.6. (i) The cut locus of {X̃0, · · · , X̃k} in the unit sphere UqM

coincides with S(q), the cut locus of {X0, . . . , Xk} in UqM .

(ii) The cut locus S̃k−2(q) of {X̃0, · · · , X̃k} in Sk−1 is given by the union of

the boundaries of the Dirichlet domains (or Voronoi diagrams) {u ∈ Sk−1 |

∠(u, X̃i) < ∠(u, X̃j) for all j 6= i, 0 ≤ j ≤ k} determined by X̃i’s (0 ≤ i ≤

k). These Dirichlet domains are spherical (k−1)-dimensional simplices with

totally geodesic boundaries in Sk−1 and gives a triangulation of Sk−1. Then

S̃k−2(q) is the (k − 2)-skeleton of the triangulation consisting of k(k + 1)/2

facets, and (k−l−1)-dimensional faces are given by {u ∈ Sk−1 | ∠(u, X̃i0) =

· · · = ∠(u, X̃il) < ∠(u, X̃j); 0 ≤ j ≤ k, j 6= i0, . . . , il}, which are totally

geodesic submanifolds of Sk−1.

(iii) The whole cut locus S(q) is given by the spherical join of S̃k−2(q)

and Sn−k−1, where Sn−k−1 consists of points in UqM of spherical distance

π/2 (or orthogonal) to the given Sk−1.

Proof of Lemma. If k = 1, S(q) is given by a great sphere Sn−2 of Sn−1

obtained as the bisector of X0 and X1, and (ii), (iii) hold setting S̃k−2(q) = ∅.

So we assume k ≥ 2 in the proof of (ii) and (iii).

(i) Denoting by n the unit vector in V1 := 〈X0, · · · , Xk〉R
∼= R

k+1

representing the north pole of Sk, we have

Xi = cos θ X̃i + sin θ n,(2.5)

where θ = ∠(Xi, X̃i) is the spherical distance between Sk−1 and Ŝk−1. It

follows that for u ∈ Sn−1 we have ∠(u,Xi) = ∠(u,Xj) (resp. ∠(u,Xi) <

∠(u,Xj)) if and only if ∠(u, X̃i) = ∠(u, X̃j)(resp. ∠(u, X̃i) < ∠(u, X̃j))

holds, and the cut locus of {X̃0, · · · , X̃k} coincides with S(q).

8
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(ii) By the nondegeneracy condition X̃0, · · · , X̃k ∈ Sk−1 form vertices of

a k-simplex in Ṽ1
∼= R

k. Then (ii) follows from

S̃k−2(q) =
⋃

i<j

{u ∈ Sk−1 | ∠(u, X̃i) = ∠(u, X̃j) ≤ ∠(u, X̃l)}

where 0 ≤ l ≤ k, l 6= i, j.

(iii) Note that the sphere Sn−1 = UqM with the canonical Riemannian

metric is isometric to the spherical join Sk−1 ∗ Sn−k−1 of Sk−1 and Sn−k−1.

Namely any y ∈ Sn−1 may be written as γ(t), 0 ≤ t ≤ π/2, where γ is

a unit-speed geodesic emanating from x ∈ Sk−1 perpendicularly to Sk−1.

Then we have

cos ∠(γ(t), X̃i) = cos t cos∠(x, X̃i)(2.6)

for 0 ≤ t ≤ π/2. It follows that if x = γ(0) ∈ S̃k−2(q) then we have

γ(t) ∈ S(q), 0 ≤ t < π/2 and vice versa. On the other hand, Sn−k−1 is

contained in S(q), since Sn−k−1 is the set of points of equidistance π/2 to

X̃i (i = 0, . . . , k), namely the set of furthest points to {X̃i}. Note that

the (n − k)-dimensional vector subspace V0 of TqM containing Sn−k−1 is

characterized as the set of points in TqM which are of equidistance from

X̃0, · · · , X̃k with respect to the Euclidean metric. �

In the case where X0, · · · , Xk lie on a small sphere in Sk, the cut locus

S̃k−1(q) of these unit vectors in Sk is the spherical suspension of the cut

locus S̃k−2(q) of X̃0, · · · , X̃k in Sk−1, and the cut locus Sk−2(q) of these

unit vectors in the original small (k − 1)-sphere Ŝk−1 is the intersection

of S̃k−1(q) and the k-dimensional affine subspace V1 determined by these

Xi, 0 ≤ i ≤ k. Then Sk−2(q) is indeed homeomorphic to S̃k−2(q). Further

note that the cone over S(q) in TqM is homeomorphic to the product of the

subspace V0 and the cone T̃ over S̃k−2(q) in Ṽ1.

Now we turn to the proof of Theorem 2.5, namely study the local structure

of the cut locus C(p) around q ∈ Ck+1. We set for r ∈ U

xi(r) := ‖Fi(r)‖, Xi(r) := −∇xi(r), i = 0, · · · , k,(2.7)

where Fi is given in (2.1) and recall that we have Xi = Xi(q) = −∇xi(q).

Then from Lemma 2.3 we may regard that we have “local coordinates”

(x0, · · · , xk, xk+1, · · · , xn), where (xk+1, · · · , xn) denotes local coordinates

9
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74 J. ITOH AND T. SAKAI

for Ck+1 around q guaranteed by Lemma 2.3 on an open neighborhood U of

q. In the above, we think (x0, · · · , xk) as “local coordinates” around q for

a submanifold N complementary to Ck+1 with tangent space spanned by

{Xi−X0, i = 1, · · · k}. More precisely, setting yi := x0−xi, i = 1, . . . , k, we

have local coordinates (y1, · · · , yk, xk+1, · · · , xn) , where (y1, · · · , yk) gives a

local coordinates system for N taking U(3 q) smaller if necessary. However,

we also use the above notation. Then around q the cut locus C(p) consists

of k(k + 1)/2 pieces of hypersurfaces C̄i,j (0 ≤ i < j ≤ k) of M given by

C̄i,j := {r ∈ C(p) ∩ U |Gij(r) := xi(r) − xj(r) = 0;

xl(r) ≥ xi(r) = xj(r) for l 6= i, j}

corresponding to minimal geodesics γi and γj from p to r. Note that these

hypersurfaces are also characterized in terms of yi, 1 ≤ i ≤ k, namely for

1 ≤ i < j ≤ k we obtain

C̄0,i := {r ∈ U | 0 = yi(r) ≥ yl(r), l 6= 0, i}

C̄i,j := {r ∈ U | 0 ≤ yi(r) = yj(r) ≥ yl(r), l 6= 0, i, j}.

The intersection of these hypersurfaces is nothing but Ck+1 ∩ U . Now for

I := {0 ≤ i0 < i1 < · · · < ia ≤ k} we set C̄I := C̄i0,i1 ∩ C̄i0,i2 ∩ · · · ∩ C̄i0,ia .

Then CI := C̄I \
⋃

{C̄J | J contains I with ]J = a + 1} are submanifolds

of codimension l in M that give the stratification of the cut locus C(p) in

Proposition 2.4. In terms of the coordinates yi we have

C̄I = {r ∈ U | 0 = yi1 = . . . = yia(r) ≥ yl(r), l 6∈ I} (0 = i0 ∈ I),

CI = {r ∈ U | 0 = yi1 = . . . = yia(r) > yl(r), l 6∈ I} (0 = i0 ∈ I),

C̄I = {r ∈ U | 0 ≤ yi0 = . . . = yia(r) ≥ yl(r), l 6∈ I} (0 6∈ I),

CI = {r ∈ U | 0 < yi0 = . . . = yia(r) > yl(r), l 6∈ I} (0 6∈ I).

(2.8)

Now, for any tangent vector u to C̄i,j at q we see that u is at the same

spherical distance to Xi and Xj. Indeed, taking a curve s 7→ x(s) in C̄i,j

tangent to u, we have xi(x(s)) = ‖Fi(x(s))‖ = ‖Fj(x(s))‖ = xj(x(s)). Then

by the first variation formula, it follows that 〈u,Xi〉 = 〈u,Xj〉. By the same

argument we have 〈u,Xl〉 ≤ 〈u,Xi〉 = 〈u,Xj〉 for l 6= i, j, namely, we have

for the spherical distance

∠(u,Xi) = ∠(u,Xj) ≤ ∠(u,Xl) for l 6= i, j.

10
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It follows that TqCIa = {u ∈ TqM | 〈u,Xi0〉 = 〈u,Xi1〉 = · · · = 〈u,Xia〉}

and V0 = TqCk+1 = TqCK with K = {0, 1, . . . , k}.

Now take a section N(⊂ U) through q ∈ Ck+1 defined by xα = const.

(α = k +1, . . . , n) in U , that is tangent to Ṽ1 = 〈X1(q)−X0(q), . . . , Xk(q)−

X0(q)〉R = 〈X̃1(q) − X̃0(q), . . . , X̃k(q) − X̃0(q)〉R. Note that TqN is the

orthogonal complement of V0 = TqCk+1 in TqM . Then we have

C0j ∩ N = {r ∈ N | 0 = yj(r) > yl(r), l 6= j} for 1 ≤ j ≤ k,

Cij ∩ N = {r ∈ N | 0 < yi(r) = yj(r) > yl(r)} for 1 ≤ i < j ≤ k.

and also have the similar expressions for C̄I ∩ N and CI ∩ N as in (2.8).

Then in terms of the local coordinates (y1, . . . , yk), C(p)∩N is a cone, and

the tangent cone to C̄I ∩ N (resp. CI ∩ N) at q is given by

⋃

t≥0

t{u ∈ UqN | ∠(Xi0 , u) = · · · = ∠(Xia , u) ≤ ∠(Xl, u), l 6= i0, . . . , ia},

⋃

t≥0

t{u ∈ UqN | ∠(Xi0 , u) = · · · = ∠(Xia , u) < ∠(Xl, u), l 6= i0, . . . , ia}

respectively. It follows that the tangent cone to N ∩C(p) at q is nothing but

the cone over S̃k−2(q) in Ṽ1 = TqN as described by the above arguments.

Therefore N ∩C(p) is homeomorphic to the cone T̃ over S̃k−2(q) in Ṽ1. Note

that the above fact also holds for r ∈ U ∩ Ck+1,q, and taking U (3 q) small

if necessary, U ∩ C(p) is homeomorphic to the product of T̃ and an open

(n− k)-disk, and the latter is homeomorphic to the cone over S(q) in TqM .

In the case of k = 1, C(p)∩U is a hypersurface of M and is homeomorphic

to open (n − 1)-disk, that is the cone over Sn−2 in UqM . �

Remark 2.7. We show that Theorem 2.5 does not hold without assuming

the nondegeneracy condition. Let (T, g0) be the 3-dimensional flat torus

obtained by identifying the opposite faces of the cube A := [−10, 10] ×

[−10, 10]×[−10, 10] in R
3, and we denote by φ : A → T this identifying map.

Then note that the tangent cut locus of the origin o = φ((0, 0, 0)) coincides

with the boundary C̃ of A, and the cut locus C is given by C = φ(C̃). Now

there are exactly four minimal geodesics from the origin to any point in the

segment E = {φ((10, 10, t)) | −10 < t < 10}, and the cut locus around the

point is given by four half planes gathering along the segment E.

11
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Now for any positive integer n, let Bn (resp. B′
n) be the 1

2n+3 -ball centered

at (1, 1, tan 1
2n ) (resp. (1,−1, tan 1

2n )). We denote by 1
2Bn (resp. 1

2B′
n) the

1
2n+4 -ball with the same center as Bn (resp. B′

n). Now for an ε > 0 small

enough take a smooth function χn (resp. χ′
n) that is equal to ε/22n on

1
2Bn (resp. 1

2B′
n), vanishes outside Bn (resp. B′

n), and is nonincreasing

along radii. Then setting gn := (1 + χn)g0 (resp. g′n := (1 + χ′
n)g0), we

get a new 3-dimensional almost flat torus. Note that s → φ(s, s, s tan 1
2n )

(resp. φ(s,−s, s tan 1
2n )), 0 ≤ s ≤ 10, is not a gn (resp. g′n)-minimal

geodesic from o to qn := φ((10, 10, 10 tan 1
2n ))(= φ((10,−10, 10 tan 1

2n ))).

But still there are exactly three gn (resp. g′n)-minimal geodesics from o

to qn. Namely, qn is a cut point of o and the cut locus around qn with

respect to the metric gn (resp. g′n) locally consists of three half planes

P1, P2, P3 (resp. P ′
1, P

′
2, P

′
3) gathering along the segment E, where we set

P1 : y = 10, x > 10;P2 : x = 10, y > 10;P3 : x = y < 10 (resp. P ′
1 : y =

10, x < 10;P ′
2 : x = 10, y < 10;P ′

3 : x = y > 10).

Note that {B2n, B2n+2}
∞
n=1 are pairwise disjoint, and they are disjoint

from the segment s 7→ φ(s, s, 0). We take a new 3-dimensional almost flat

torus (T, g̃) given by

g̃ = (1 +
∑

n

(χ2n + χ′
2n+1))g0.

Then q := φ(10, 10, 0) is again a cut point of o with respect to the deformed

Riemannian metric g̃ and in fact there are exactly four g̃-minimal geodesics

from the origin, that are also g0-minimal geodesics. It follows that the cut

locus S(q) in UqT consists of four half great circles joining two antipodes, and

the cone P over S(q) consists of four half planes gathering along a segment.

However, the cut locus of the origin with respect to g̃ is not homeomorphic

to C, since both of the sequences {q2n} and {q2n+1}) converges to q and

the local structure of the cut locus around {q2n} is different from the one

around {q2n+1}.

Remark 2.8. Even for real analytic metrics, the assumption of nondegener-

acy seems necessary in Theorem 2.5, as is suggested by the following exam-

ple: Take the functions f1 := z + c, f2 := −z + c, f3 := y + x2 + c, f4 :=

−y + x2 + c defined on R
3 = {(x, y, z) | x, y, z ∈ R}, where c is a positive

constant. Put f := min{f1, f2, f3, f4} and consider the set C of points in R
3

12
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such that there are at least two 1 ≤ i < j ≤ 4 with f = fi = fj . Although

f is precisely not a distance function, the set C is similar to the cut locus.

Note that the origin (0, 0, 0) belongs to C with f = fi = c(1 ≤ i ≤ 4), and

that gradient vectors of fi at the origin are given by ±∂/∂z,±∂/∂y. In this

case C consists of the 4 half parabolic cylinders (given by y = z − x2, z ≤

0; y = z + x2, z ≥ 0; y = −z − x2, z ≥ 0; y = −z + x2, z ≤ 0) and 2

cusp regions x ≥
√

|y|, x ≤ −
√

|y| in the xy-plane. On the other hand,

S((0, 0, 0)) consists of 4 great half circles of S2 joining the antipodes. Hence

the cone over S((0, 0, 0)) is not homeomorphic to C.

Now we set f := dp|Ck+1,q and give the gradient vector ∇f of f at

x ∈ Ck+1,q. Indeed, let u ∈ TxCk+1,q and s 7→ x(s) be a curve in Ck+1,q

with ẋ(0) = u. Then noting that f(x(s)) = ‖Fi(x(s))‖ = xi(x(s)) for any

0 ≤ i ≤ k, we obtain by the first variation formula (see e.g., [16])

(2.9) 〈∇f, u〉 =
d

ds
‖Fi(x(s))‖s=0 = −〈Xi, u〉,

where 〈Xi, u〉 is independent of i by the definition of Ck+1. It follows that

∇f(x) is the orthogonal projection of any −Xi to TxCk+1,q for i = 0, · · · , k.

Therefore, x is a critical points of f = dp|Ck+1,q in usual sense if and only

if all of Xi (i = 0, . . . , k) are orthogonal to Ck+1,q and are located in a

(k − 1)-dimensional great sphere of UqM .

Now how about the Hessian D2f(x) of f at a critical point x ∈ Ck+1,q

of f? Let u and s 7→ x(s) be as before. Then we have D2f(u, u) =
d2

ds2 ‖Fi(x(s))‖s=0 for each i (0 ≤ i ≤ k). Take a variation of γi given by

α(t, s) := expp

t

l
Fi(x(s)), (0 ≤ t ≤ l := d(p, x), −ε ≤ s ≤ ε).

Then the variation vector field is a unique Jacobi field Yi(t) along γi with

Yi(0) = 0 and Yi(l) = u. Note that Yi is perpendicular to γi. Then we get

by the second variation formula (see e.g., [16])

D2f(u, u) =

∫ l

0
{〈∇γ̇i

Yi(t),∇γ̇i
Yi(t)〉 − 〈R(Yi(t), γ̇i(t))γ̇i(t), Yi(t)〉}dt

−〈Xi,∇uẋ(s)〉 = 〈u,∇γ̇i
Yi(l)〉 − 〈Xi,∇uẋ(s)〉,

(2.10)

where we set l = d(p, x).
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Now, if a point p of a compact Riemannian manifold (M, g) admits no

conjugate points along all geodesics emanating from p (e.g., for any point

of a nonpositively curved manifold), then the structure of C(p) may be

expressed in terms of the Dirichlet domain of the universal covering space

M̃ of M with the induced Riemannian metric g̃. We briefly explain this

case (see also [15]). Let π : M̃ → M be the covering projection, and set

π−1(p) = {p̃ = p̃0, p̃1, . . . , p̃N , . . .}, that may be identified with the deck

transformation group Γ = {g0 = e, g1, . . . , gN , . . .} via p̃i = gi(p̃0), where e

denotes the identity. Note that p̃i (i = 0, 1, . . .) are poles, namely expp̃i
:

Tp̃i
M̃ → M̃ are diffeomorphisms, and for any q̃ ∈ M̃ there exists a unique

minimal geodesic joining p̃i and q̃. We fix p̃ as a base point. Then the cut

locus C(p) may be described as follows: Let ∆p̃ be the Dirichlet domain of

Γ. Namely,

∆p̃ =
⋂

g(6=e)∈Γ

{Hp̃,g(p̃) | i = 1, 2, . . .}

with Hp̃,q̃ = {r̃ ∈ M̃ | d̃(p̃, r̃) < d̃(q̃, r̃)}. Then we have C(p) = π(∂∆p̃).

Since M is compact, it suffices to consider a finite number of g ∈ Γ such

that d̃(p̃, gp̃) ≤ d(M) so that we may write ∆p̃ =
⋂

j=1,...,N Hp̃,gj(p̃).

This also means that the distance function dp is a min-type function in the

sense of [4], namely we have dp(q) := min{d̃(q̃, g1p̃), . . . , d̃(q̃, gN p̃)}, where

q̃ ∈ π−1(q). Let q ∈ C(p) be a cut point of order k + 1 and γ0, · · · γk be

the minimal geodesics from p to q with length l = d(p, q). As before we set

Xi = −γ̇i(l) ∈ UqM (i = 0, . . . , k). Take the lift of γ0 emanating from p̃

with respect to the universal covering π, and we denote by q̃ the end point

of the lift. Then there exist gi0 = e, gi1 , . . . , gik in Γ such that γj is expressed

as the projection of a unique minimal geodesic γ̃j in M̃ joining gij p̃ and q̃

(j = 0, . . . , k) with d̃(gij p̃, q̃) = d̃(p̃, q̃) = l. Now we set for I = {i1, . . . , ik}

C̃I := {r̃ ∈ M̃ | d̃(gip̃, r̃) = d̃(p̃, r̃) < d̃(gj p̃, r̃) for any i ∈ I, j 6∈ I}.

Then gi0 = e, gi1 , . . . , gik are chosen in common in the connected component

containing q of the set of cut points of order k+1, and we have π(C̃I) ⊂ C(p).

If we take the lift of γj instead of γ0 in the above, then we have g−1
ij

q̃ and

g−1
ij

C̃I instead of q̃ and C̃I , respectively. Now suppose that all cut points of p

are nondegenerate. Then X̃0, . . . , X̃k are in general position in Tq̃M̃ , where

14
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we set X̃i = − ˙̃γi(l). Then if C̃I 6= ∅, C̃I (resp. π(C̃I)) is a submanifold of

dimension n− k of M̃ (resp. M), and the cut locus C(p) is stratified by the

strata π(C̃I) by the same arguments as above.

Remark 2.9. (1) We suspect whether Riemannian metrics such that all cut

points of p are nondegenerate are open and dense in the set of all Riemannian

metrics satisfying the condition (C) at p. For two-dimensional case, V.

Gershkovich asserts that the above assertion holds ([3], [5]). This also follows

applying a recent result of [13] to our situation. We suspect that their

approach is helpful for the above problem.

(2) For 3-dimensional case, approximating a Riemannian metric of A.

Weinstein ([18]) in §1 by M. Buchner’s cut stable metrics, we get Riemannian

metrics satisfying the condition (C) for p ∈ M such that all cut points of p

are nondegenerate ([2], this holds up to dimension 6).

(3) M. van Manen pointed out that Y. Yodomin has considered cones over

the (n − 2)-skelton of simplices for central sets in R
n in [19] that is related

to our cut locus case.

3. Morse theory for distance functions

First we recall the notion of a critical point of the distance function dp in

the angle sense (see §1 and [9], [6]). A point q ∈ M is said to be a critical

point of dp, if for any unit tangent vector v ∈ TqM there exists a minimal

geodesic γ from p to q such that ∠(v,−γ̇(l)) ≤ π/2 holds with l = d(p, q).

Note that any critical point q of dp is a cut point of p. Now we set

(3.1)

Γ(q) := {−γ̇(l) ∈ UqM | γ : [0, l] → M ; minimal geodesic from p to q}

and define the set Γ̂q ⊂ TqM as the convex hull of Γ(q). Then, the above

condition for q to be a critical point of dp means that Γ̂q contains the origin

0 of TqM .

Definition 3.1. For any critical point q of dp we define its degree as the

dimension of the (vector) subspace spanned by Γ(q).

Recall that we set Xi := −γ̇i(l), l = d(p, q) for minimal geodesics γi (i =

0, · · · , k) joining p to q. If C(p) is nondegenerate and q ∈ Ck+1, then

X0, · · · , Xk span a k or (k + 1)-dimensional (vector) subspace V . If q is a
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critical point, then V is a subspace of dimension k, since the convex hull Γ̂q

contains 0. Therefore in this nondegenerate case, degree of q is equal to k.

Now, suppose there exist no critical points in the annulus R(r1, r2) :=

d−1
p ([r1, r2]) = {x ∈ M | r1 ≤ dp(x) ≤ r2}, 0 < r1 < r2. Then the iso-

topy lemma asserts the following: All the levels d−1
p (r), r1 ≤ r ≤ r2 are

homeomorphic to each other, and R(r1, r2) is homeomorphic to the prod-

uct d−1
p (r1) × [r1, r2]. This may be proved as in usual Morse theory by

considering a gradient-like vector field of dp (see e.g., [9], [6], [10] for more

detail).

Next, suppose that the cut locus C(p) of p consists of nondegenerate

cut points. Then Ck+1 is a submanifold of dimension n − k of M , and dp

is a smooth function when restricted to each connected component Ck+1,q.

First we will be concerned with the relation between the two kinds of critical

points of the distance function, which was also obtained by V. Gershkovich

and H. Rubinstein ([4]).

Lemma 3.2. Suppose r ∈ Ck+1,q is a critical point of dp in the angle sense.

Then r is a critical point of the smooth function f := dp | Ck+1,q in the usual

sense. If r ∈ C2,q is a critical point of the smooth function f := dp | C2,q,

then r is a critical point of dp in the angle sense.

Proof. Suppose r ∈ Ck+1,q is a critical point of dp in the angle sense and let

γi (i = 0, . . . , k) be a minimal geodesic parametrized by arclength joining p

to r. To see that r is a critical point of f = dp | Ck+1,q in the usual sense, by

(2.9) it suffices to show that α = 〈u,Xi〉 is equal to 0 for any u ∈ TrCk+1,q,

where Xi = −γ̇i(l), l = d(p, q). Recall that α is independent of i. Then from

the assumption we may choose ai ≥ 0 (i = 0, . . . , k) with
∑

ai = 1 such

that
∑

aiXi = 0, and it follows that

α =
∑

aiα = 〈u,
∑

aiXi〉 = 0.

Next suppose r is a critical point of dp | C2,q in the usual sense. Note

that dimC2,q = n− 1. We have unit tangent vectors X0, X1 at r of minimal

geodesics γ0, γ1 joining p to r, respectively. Then X0, X1 are different unit

vectors perpendicular to the hypersubspace TrC2,q of TrM by (2.6), and

therefore should satisfy X0 + X1 = 0. It follows that r is a critical point of

dp in the angle sense. �
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In general for k > 1, critical points of dp | Ck+1,q are not necessarily criti-

cal points of dp in the angle sense. For instance, if k = n then dimCn+1,q = 0

and every r ∈ Cn+1 are critical points in the usual sense. However, r may

not assume local maximum of dp (see Figure 1).
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Figure 1.(Arrows denote the direction in which f increases.)

Next we define the notion of nondegeneracy for a distance function as

follows:

Definition 3.3. Suppose the cut locus C(p) consists of nondegenerate cut

points of p under the condition (C). Then we call the distance function dp

nondegenerate, if the following hold:

(1) All critical points of dp in the angle sense are isolated, and Γ̂q contains

0 in its interior for each critical point q of dp. Namely, for a critical point

q ∈ Ck+1 in the angle sense we may find (unique) ai > 0 (0 ≤ i ≤ k) with
∑

ai = 1 such that
∑

aiXi = 0 holds.

(2) For any critical point q ∈ Ck+1 of dp in the angle sense, q is a

nondegenerate critical point in the usual sense of f := dp | Ck+1, the distance

function restricted to the stratum Ck+1 of C(p).

The last condition in (1) above means that for a critical point q ∈ Ck+1,

the cone
⋃

t≥0 tΓ̂q forms a vector subspace of dimension k = dim Γ̂q that

is the orthogonal complement of TqCk+1 in TqM . Note that this property

holds for critical points of dp which are cut points of order 2. For instance,
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the distance functions dp of generic flat tori are nondegenerate for arbitrary

points p.

In the following we want to give a normal form of nondegenerate dis-

tance function dp in a neighborhood U of a critical point q ∈ C(p) of

dp in the angle sense by choosing carefully a kind of local coordinates

around q adapted to the local structure of C(p). For q ∈ Ck+1 recall that

xi(r) = ‖Fi(r)‖, Xi(r) = −∇xi(r)(r ∈ U, i = 0, . . . , k) were given in (2.7),

and we have Xi = Xi(q). Recall also that a small neighborhood U ∩ C(p)

of q in the cut locus is homeomorphic to the cone over S(q) in TqM , where

S(q) is the cut locus of {X0, . . . , Xk} in the unit sphere UqM (see Theorem

2.5). Then U \C(p) is divided into k+1 components D0, . . . , Dk where each

Di contains the direction Xi, namely, contains γi((l − ε, l)) with l = d(p, q),

where {γi}0≤i≤k are minimal geodesics from p to q and ε > 0 is sufficiently

small. Di (i = 0, . . . , k) is indeed given by

Di = {r ∈ U | xi(r) < xl(r) for any l 6= i, 0 ≤ l ≤ k},

and note that we have dp(r) = xi(r) for r ∈ Di. Then it follows that

D̄i ∩ D̄j = C̄i,j ∩U for i < j, where D̄i denotes the closure of Di and C̄i,j is

given just before the formula (2.8).

Now let dp be nondegenerate distance function in the sense of Definition

3.3 and q a critical point of dp in the angle sense. To make our approach

more understandable we begin with the simplest case where q is a critical

point of order 2, namely q ∈ C2. Then we have X0 + X1 = 0, and S(q) is

a great hypersphere Sn−2 of UqM . U \C2,q is divided into domains D0 and

D1. For every point r ∈ Di (i = 0, 1) take a unique minimal geodesic γr

joining p to r, and denote by r1 = γx(lr) ∈ C2,q the cut point of p along γr.

Note that lr = d(p, r1) is the cut distance along the geodesic γr and depends

smoothly on r ∈ Di, since γr intersects C2,q transversely. Now we set

z := lr − d(p, r) = ip(γ̇r(0)) − dp(r) > 0.

For r ∈ C2,q we set r1 = r and z = 0. Then any r ∈ D̄i, i = 0, 1, may be

uniquely expressed as r = (r1, z) ∈ C2,q × R
+. Since q = (q, 0) is a critical

point of dp, q is a critical point of f := dp | C2,q by Lemma 3.2. Since dp

is nondegenerate, q is a nondegenerate critical point of f and taking local
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coordinates (x2, . . . , xn) around q ∈ C2,q we may write

(3.2) dp(r) = dp(q) ± x2
2 . . . ± x2

n − z.

Therefore in this case, we may define the index of dp at q as the sum of the

index of f := dp|C2,q at q and 1, where recall that 1 is the degree of the

critical point q.

Now we turn to a critical point q ∈ Ck+1 of dp for general k ≥ 2.

Then {X0, X1, . . . , Xk} span a k-dimensional subspace of TqM orthogo-

nal to the subspace TqCk+1,q of dimension n − k, and the convex hull of

{X0, X1, . . . , Xk} contains the origin 0 of TqM in its interior. Now for any

proper subset I of K := {0, 1, . . . , k} with ]I ≥ 2 we set

CI = {r ∈ C(p) | xi(r) = xj(r) < xl(r) for any i, j ∈ I and l 6∈ I},

and C̄I denotes the closure of CI (see also (2.8)). For r ∈ C̄I we denote

by TrCI := {u ∈ Tr(M) | 〈u,Xi(r)〉 = 〈u,Xj(r)〉 for any i, j ∈ I}(=

limri∈CI→r Tri
CI) the tangent space to CI at r. Then fI := dp|CI is a

smooth function and ∇fI denotes the gradient vector of fI . For r ∈ C̄I we

also use the notation ∇fI(r)(∈ TrCI) that is given as limri∈CI→r ∇fI(ri).

Then we have the following lemmas.

Lemma 3.4. Let q ∈ Ck+1 be a critical point of nondegenerate distance

function dp. Let I ⊂ {0, 1, . . . , k} with ]I ≥ 2 be a proper subset. Now for

any i ∈ I and r ∈ C̄I we denote by X>
i (r) the orthogonal projection of Xi(r)

to TrCI . Then we have

X>
i (r) = −∇fI(r) for any i ∈ I, r ∈ C̄I

and we denote the above vector also by X>
I (r). Furthermore, there exist an

open neighborhood U around q and δ > 0 such that

‖∇fI(r)‖ ≥ δ on U ∩ CI .

Proof. For any curve t → x(t) in C̄I emanating from r we have dp(x(t)) =

fI(x(t)) = xi(x(t)) for any i ∈ I. Differentiating this equation with respect

to t at t = 0, it follows that

〈∇fI(r), ẋ(0)〉 = 〈∇xi(r)), ẋ(0)〉 = −〈Xi(r), ẋ(0)〉 = −〈X>
i (r), ẋ(0)〉

from which the first assertion follows. For the second assertion it suffices to

show that X>
I (q) 6= 0 at the critical point q of dp. Indeed, otherwise for a
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fixed i0 ∈ I = {i0, . . . , ia} we see that {Xi − Xi0}i∈I\{i0} forms a basis of a

subspace (TqCI)
> of dimension a. Since q is a critical point of dp, {Xi}i∈I

span an a-dimensional subspace of TqM . However this contradicts the non-

degeneracy condition that the faces of the convex hull of {X0, X1, . . . , Xk}

cannot contain the origin 0 of TqM . �

Note that the orthogonal projection of of Xi to TqCk+1 is equal to zero

since q is a critical point of dp, but the lemma asserts that the orthogonal

projection X>
i of Xi(i ∈ I) to TqCI never vanishes for any proper subset I

of {0, 1, . . . , k}.

Lemma 3.5. Under the assumption of the previous lemma there exist pos-

itive constants ai (i = 0, . . . , k) with
∑

ai = 1 such that

−(
∑

i∈I

ai)〈X
>
I (q), X>

I (q)〉 =
∑

j 6∈I

aj〈∇fI(q),−Xj(q)〉.(3.3)

Indeed, we have
∑

0≤l≤k alXl(q) = 0 at q for some al > 0 (l = 0, . . . , k)

with
∑

al = 1 by Definition 3.3. Then considering the orthogonal projection

of
∑

alXl(q) to TqCI , we see that
∑

al〈Xl(q),∇fI(q)〉 = −
∑

i∈I

ai〈X
>
i (q), X>

i (q)〉 +
∑

j 6∈I

aj〈∇fI(q), Xj(q)〉

vanishes by the previous lemma, and (3.3) follows.

We also note that there exist no critical points of dp (and also of fI)

except q in U by the nondegeneracy condition.

Now suppose r ∈ Di0(0 ≤ i0 ≤ k). First take a unique minimal geodesic

γr joining p to r, and denote by r1 = γr(lr) ∈ C(p) the cut point of p

along γr, where lr = d(p, r1) = ip(γ̇r(0)) is the cut distance to p along γr.

Then r1 lies in some C̄i0,i1 that is a subset of the boundary of Di0 . Note

that here we do not assume that i0 < i1. For generic r ∈ Di0 we have

r1 ∈ Ci0,i1 := {r ∈ U | xi0(r) = xi1(r) < xl(r) for any l 6= i0, i1} for some

i1, and γr intersects Ci0,i1 transversely at r1. Then we denote the above r1

by ri1 , and set zi0 := lr − d(p, r)(> 0). By Lemma 3.4 the gradient vector

∇f of f(= fi0i1) := dp|Ci0,i1 at ri1 is given by −X>
i0

= −X>
i1

which is the

orthogonal projection of −Xi0 (or −Xi1) to Tr1
Ci0,i1 , and does not vanish.

Since ri1 is not a critical point of f , we may move ri1 along the trajectory

of ∇f to a point r2 ∈ C̄i0,i1,i2 in general in the following manner. If k = 2,
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then i2 is uniquely determined, and we have ai0Xi0 + ai1Xi1 + ai2Xi2 = 0

at q for some aij > 0. Since we have f = xi0(= ‖Fi0‖) = xi1(= ‖Fi1‖)

and 〈∇f(r),−Xi0(r)〉 = 〈∇f(r),−Xi1〉 = ‖∇f(r)‖2 ≥ δ2 > 0 by Lemma

3.4, xi0 = xi1 increases along the trajectory of ∇f . On the other hand, xi2

decreases along the trajectory, because from (3.3) we have at q

〈−Xi2(q),∇f(q)〉 = −(ai0 + ai1)‖X
>‖2(q)/ai2 < 0,

and 〈−Xi2(r),∇f(r)〉 < 0, r ∈ U for small U .

If k > 2, then from Lemma 3.5 there exists at least one index i2 (0 ≤ i2 ≤

k) different from i0, i1 such that 〈Xi2 ,∇f〉 > 0. It follows again that xi0 =

xi1 increases while xi2 decreases for such an i2 along the trajectory of ∇f .

Therefore, along the trajectory we reach the point r2 such that the values

of xi0 , xi1 , xi2 are equal, while the value of other xj(= ‖Fj‖) (j 6= i0, i1, i2) is

not less than this value, namely a point of C̄i0,i1,i2 for some i2. Note that for

a starting point r ∈ Di0 the stratum CI , I ⊃ {i0, i1, i2} of C(p) containing

the above r2 is uniquely determined and the trajectory is transversal to CI

at r2 unless I = K. We have l = 2 for generic r, and then we denote the

above r2 also by ri2 . Let zi1 the parameter value of r2 of the trajectory,

namely zi1 = d(p, ri2) − d(p, ri1)( > 0), which is also uniquely determined

from r and depends smoothly on r. Now for generic r ∈ Di0 , repeating

this procedure k times, we may have ri1 , . . . , rik and zi0 , . . . , zik−1
, where

rik ∈ Ck+1,q and zik−1
= d(p, rik) − d(p, rik−1

)(> 0). Recall that we have

local coordinates (xk+1, . . . , xn) of Ck+1 around q adapted to the smooth

Morse function f := dp | Ck+1,q.

On the other hand, if r ∈ Di0 moves along γr to r1 ∈ CI , I = {i0, . . . , ia}

(a < k), then γr intersects CI transversely. In this case, we set ri1 = · · · =

ria := r1, and zi0 = d(p, r1)−d(p, r) = lr −d(p, r) > 0, zi1 = · · · = zia−1
= 0.

We make a similar arrangement for the case where the starting point r

(resp. rj) belongs to CI (a < k) (resp. CI (j < a)), and we get ri1 , · · · , rik

and zi0 , · · · , zik−1
(≥ 0) for every r ∈ D̄i0 , the closure of Di0 . For instance,

for r ∈ CI we set ri1 = · · · = ria := r and zi0 = · · · = zia−1
= 0, zia =

d(p, ria+1
) − d(p, r), etc.

Then setting Di0,I (I = {i0, i1, . . . , ia} ⊂ K = {0, 1, . . . , k}) as the set of

points r ∈ Di0 such that r reaches the point r1 of CI along the geodesic γr in

the above manner, Di0 is stratified by Di0,I ’s. Indeed, Di0,I is a submanifold

21

Itoh and Sakai: Cut Loci and Distance Functions

Produced by The Berkeley Electronic Press, 2007



86 J. ITOH AND T. SAKAI

of codimension a − 1 and is independent of the order of {i1, . . . , ia}, in fact

we have Di0,I = (D̄i0 ,i1 ∩ · · · ∩ D̄i0,il) \ C(p). It follows that

U = {C(p) ∩ U}
⋃

{∪0≤i0≤k(∪I3i0Di0,I)},

namely, U is stratified into submanifolds given by {Di0,I} and the stratifi-

cation {CI} of C(p) given in §2. The boundary ∂Di0 ,I of Di0,I consists of

CJ ⊂ C(p) with J ⊃ I and Di0,J with J ) I.

Note that on Di0 we have the smooth unit vector field −Xi0 = ∇dp which

is transversal to the boundary, and on a stratum CI ⊂ C(p) where I is a

proper subset of {0, 1, . . . , k} with ]I ≥ 2 we have the nonvanishing smooth

vector field −X>
I = ∇fI transversal to the boundary. For I with ]I ≥ 2 we

also write DI = CI in the above notation. Then ri1 , . . . , rik , zi0 , . . . , zik−1

mentioned above are obtained by the successive trajetories of these vector

fields on DI . Indeed, for ∅ 6= I0 ( I1 ( · · · ( Il ( K := {0, . . . , k}

we denote by DI0,I1,...,Il
the set of points r ∈ DI0 that reach the points

π(r) = rik of Ck+1∩U along the successive trajectories of −Xi0(or −X>
I0

) and

−X>
I1

, . . . ,−X>
Il

. We have an adapted chart (xk+1, . . . , xn) on Ck+1 around

q to the Morse function f := dp | Ck+1, and we set xk+j(r) := xk+j(π(r)).

Then DI0,I1,...,Il
is a submanifold of codimension k − l − 1 and its closure

consists of DĪ0,...,Īl′
(l′ ≤ l) with I0 ⊂ Ī0, . . . Il′ ⊂ Īl′ . Once DI0,I1,...,Il

is fixed,

(xk+1, . . . , xn, zi0 , . . . , zik−1
) are uniquely determined for r ∈ DI0,I1,...,Il

and

smooth where precisely (l + 1) of zi’s are positive. Note that

DI0,I1,...,Il
3 r 7→ (xk+1(r), . . . , xn(r), zi0(r), . . . , zik−1

(r))

is an embedding into R
n, since r 7→ (ri1 , zi0) 7→ (ri2 , zi0 , zi1) 7→ · · · 7→

(rik , zi0 , . . . , zik−1
) define an embedding at each stage. U is stratifed into

submanifolds DI0,I1,...,Il
and DK := Ck+1 ∩ U (corresponding to l = −1),

and above embeddings are piecewise smoothly extended to the whole U .

Thus we have “local coordinates” (xk+1, . . . , xn, z1, . . . , zk) around q, where

(z1, . . . , zk) is given by (zi0 , . . . , zik−1
) when restricted to DI0,I1,...,Il

and Lip-

schitz on U .

Now recalling the local structure around q of M given by the cone struc-

ture of the cut locus mentioned above, we see that for a fixed point r ∈ Ck+1∩

U with z1 = . . . = zk = 0, the set defined by the equation z1 + . . . + zk ≤ δ
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(resp.= δ) with xk+1 = xk+1(r), . . . , xn = xn(r) is homeomorphic to k-

disk (resp.(k − 1)-dimensional sphere). Indeed, we reverse the above pro-

cedure of defining (z1, z2, . . . , zk). First for a fixed r ∈ Ck+1 ∩ U , note

that the equation z1 = · · · = zk−1 = 0, zk = δ represents k points (i.e.,

0-disks) rik ∈ CK\{ik} with d(r, rik) = δ such that rik moves to r along

the trajectory of ∇fK\{ik} in CK\{ik}. Next the intersection of the set

z1 = · · · = zk−2 = 0, zk−1 + zk = δ with CK\{ik−1,ik} is a curve (i.e., 1-disk)

joining rik−1
and rik . Then z1 = · · · = zk−2 = 0, zk−1 +zk = δ defines a fam-

ily of curves corresponding to the 1-skelton of the triangulation of S̃k−2(q)

given in Lemma 2.6. Repeating the procedure we see that the intersection

of the set z1 + · · · + zk = δ with each D̄i0 is a (k − 1)-disk, and that the set

given by z1 + · · · + zk = δ is Lipschitz homeomorphic to a (k − 1)-sphere.

Now suppose k < n. Since q is a nondegenerate critical point of f :=

dp|Ck+1,q by Lemma 3.2, we may take local coordinates {xk+1, . . . , xn}

around q in Ck+1,q so that we may write

d(π(r), p) = d(rik , p) = d(p, q) ± x2
k+1 ± · · · ± x2

n.

It follows that we have for r in an open neighborhood U of q

(3.4) dp(r) = d(p, q) ± x2
k+1(r) ± · · · ± x2

n(r) − z1(r) − · · · − zk(r),

where xk+j are smooth and zj are nonnegative Lipschitz functions. There-

fore, we may consider that the index of dp at the critical point q ∈ Ck+1 is

given by the sum of the index of f := dp|Ck+1,q at q and k, where k is also

equal to the degree of q (see Definition 3.1).

If k = n, then dimCn+1 = 0 and Cn+1 consists of vertices, i.e., strata of

dimension 0 of C(p). If such a vertex q is a critical point of dp in the angle

sense, then above procedure implies that we may write around q

dp(r) = d(p, q) − z1(r) − · · · − zn(r)

with zj ≥ 0 and we may consider that q is a critical point of index n.

Summing up we have

Lemma 3.6. Let q ∈ Ck+1 be a critical point in the angle sense of nondegen-

erate distance function dp. Then we have a stratification of a neighborhood

U of q by submanifolds DI0,I1,...,Il
’s and embeddings

φ : DI0,I1,...,Il
3 r 7→ (z1(r), . . . , zk(r), xk+i(r), . . . , xn(r)) ∈ R

n
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with zi(r) ≥ 0 such that

dp(r) =d(p, q) − z1(r) − · · · − zk(r) − xk+1(r)
2 − · · · − xk+j(r)

2

+ xk+j+1(r)
2 + · · · + xn(r)2

where j is the index of f := dp|Ck+1 at q in the usual sense. i := k + j is

called the index of dp at the critical point q. φ’s are piecewise smoothly ex-

tended to the whole U and xk+i’s are smooth and zi’s are Lipschitz functions

on U . Moreover for a fixed point r ∈ Ck+1∩U with z1 = . . . = zk = 0, the set

defined by the equation z1+ . . .+zk ≤ δ with xk+1 = xk+1(r), . . . , xn = xn(r)

is homeomorphic to k-disk.

Now if q is not a critical point of dp, we may make use of the isotopy

lemma. Next suppose q ∈ C(p) is a critical point of index i of dp in the

angle sense that is isolated by the nondegeneracy assumption. Then we

may apply the usual procedure of Morse theory ([14]). Indeed, around q we

have

dp(r) = d(p, q) − z1 − · · · − zk − x2
k+1 − · · · − x2

k+j + x2
k+j+1 + · · · + x2

n,

where i = k + j is equal to the index of q. Then the subset defined by

−z1 − · · · − zk − x2
k+1 − · · · − x2

k+j + x2
k+j+1 + · · · + x2

n = c

(resp. − z1 − · · · − zk − x2
k+1 − · · · − x2

k+j + x2
k+j+1 + · · · + x2

n = −c)

for sufficiently small c > 0 is homeomorphic to Sn−k−j−1 × Ik+j (resp.

(Sj−1 ∗ Sk−1) × In−k−j, where Sj−1 ∗ Sk−1 denotes the spherical join and

homeomorphic to Sk+j−1).

Then for sufficiently small ε > 0, levels d−1
p (t) ∩ U are homeomorphic to

Sn−i−1×Ii (resp. Si−1×In−i) for t with 0 < t− l ≤ ε (resp. −ε ≤ t− l < 0),

and {r ∈ U | d(p, r) ≤ l+ε} has the homotopy type of {r ∈ U | d(p, r) ≤ l−ε}

with an i-cell attached. In the above, we set Sn−i−1×Ii = ∅ for i = n. Since

we may construct a nowhere vanishing gradient-like vector field of dp outside

of a small neighborhood of the set of critical points of dp, we apply the usual

procedure of Morse theory to get the following main result in this section.

Theorem 3.7. Let (M, g) satisfy the condition (C) at p. Suppose all cut

points of p are nondegenerate cut points and dp is a nondegenerate distance

function. Let q be a critical point of dp in the angle sense. Note that q is

24

Mathematical Journal of Okayama University, Vol. 49 [2007], Iss. 1, Art. 5

http://escholarship.lib.okayama-u.ac.jp/mjou/vol49/iss1/5



CUT LOCI AND DISTANCE FUNCTIONS 89

a cut point of p and we denote by k the degree of q, namely q ∈ Ck+1(p).

Then q is a critical point of a smooth function f := dp|Ck+1 on Ck+1,q and

we define the index of dp at q as the sum of k and the index of f at q in

the usual sense. Then M has the homotopy type of a CW-complex, with one

cell of dimension i for each critical point in the angle sense of index i.

Remark 3.8. Among all Riemannian metrics on M satisfying the condition

(C) at p, is the set of Riemannian metrics on M such that all cut points of

p are nondegenerate cut points and dp is a nondegenerate distance function

dense in C∞ topology ? For two-dimensional case, V. Gershkovich asserts

that the assertion holds ([3], [5]).

Now we consider the case where the Riemannian metric g satisfies the

following condition (F):

Definition 3.9. A compact Riemannian manifold (M, g) satisfies the condi-

tion (F) at p ∈ M , if for any unit speed geodesic γ emanating from p and any

Jacobi field J along γ satisfying the initial condition Y (0) = 0,∇γ̇Y (0) 6= 0,

we have 〈Y (t),∇γ̇Y (t)〉 > 0 for parameter values t > 0 up to the cut distance

to p along γ.

If (M, g) satisfies the condition (F) at p, then minimal geodesics are con-

jugate points-free, namely the condition (C) holds. However, considering the

real projective spaces of positive constant curvature for which the cut locus

of any point is disjoint from the conjugate locus, we see that the converse

does not necessarily holds. On the other hand, if (M, g) is of nonpositive

sectional curvature, then it satisfies the condition (F) at every point p ∈ M .

Note that the condition (F) means that cut points are not focal points, and

is also essentially given in [5].

Lemma 3.10. Suppose (M, g) satisfies the condition (F) at p. Then for

any critical point q ∈ Ck+1 (k < n) of dp in the angle sense, that is also a

critical point of the smooth function f = dp|Ck+1,q, its Hessian D2f(q) is

positive definite. Namely, f assumes a local minimum at r.

Proof. To see the assertion recall the second variation formula (2.10). As

before choose ai ≥ 0 (0 ≤ i ≤ k) with
∑

ai = 1 so that
∑

aiXi = 0 holds.

Recall that dimCk+1,q > 0. Then for any u ∈ TqCk+1(u 6= 0) take a unique
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Jacobi field Yi along γi with Yi(0) = 0, Yi(l) = u, l = d(p, q). By (2.10) we

obtain

D2f(u, u) =
∑

aiD
2f(u, u)

=
∑

ai〈Yi(l),∇γ̇i
Yi(l)〉 − 〈

∑

aiXi,∇uẋ(s)〉

=
∑

ai〈Yi(l),∇γ̇i
Yi(l)〉 > 0,

(3.5)

and this completes the proof of the lemma. Note that here we do not need to

assume that the critical point q is nondegenerate in the sense of Definition

3.3. �

Therefore, we may abbreviate the condition (2) in Definition 3.3 of non-

degeneracy for a distance function dp if the condition (F) is satisfied. Now

suppose a compact Riemannian manifold (M, g) of dimension n satisfies the

condition (F) at p and the cut locus C(p) consists of nondegenerate cut

points. Let q ∈ Ck+1 be a critical point of a nondegenerate dp. We want to

describe the behavior of the distance function dp in a neighborhood U of q,

and follow the argument as before. For instance, if k = 1 then by (3.2) and

Lemma 3.10 we have

(3.6) dp(x) = dp(q) + y2
1 + · · · + y2

n−1 − z,

with z = d(p, x1) − d(p, x) where x1 denotes the cut point of p along the

minimal geodesic joining p to x. Therefore, we may consider that the index

of dp at the critical point q is given by 1, which is also equal to the degree

of q (see Definition 3.1). Next, suppose k < n. Since q is a local minimum

point of f := dp|Ck+1,q by Lemma 3.10, we may take local coordinates

{xk+1, . . . , xn} around q in Ck+1,q so that we may write for r ∈ Di0

d(rik , p) = d(p, q) + x2
k+1 + · · · + x2

n,

where rik ∈ Ck+1,q is uniquely determined from r by the procedure given

before the statement of Theorem 3.7. It follows that we have for r ∈ U

(3.7) dp(r) = d(p, q) + x2
k+1 + · · · + x2

n − z1 − · · · − zk,

where zj are nonnegative and given by (zi0 , zi1 , . . . , zik) as described before.

Therefore, we may regard that the index of dp at the critical point q ∈ Ck+1

is given by k, which is also equal to the degree of q (see Definition 3.1). If

k = n, then the situation is the same as before.
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Note that if (M, g) satisfies the condition (F) at p then Cn+1 6= ∅ for C(p),

since points which are furthest from p are of index n and therefore of order

n + 1.

Theorem 3.11. Suppose (M, g) satisfies the condition (F) at p. If all cut

points of p are nondegenerate and dp is a nondegenerate distance function,

then we may perform the k-cell attaching at each critical point in Ck+1 of

dp in the angle sense.

Finally we give an easy application of Theorem 3.11.

Corollary 3.12. Let (M, g) be a Riemannian manifold satisfying the con-

dition (F) at p ∈ M . If all cut points of p are nondegenerate cut points

and dp is a nondegenerate distance function, then the number of connected

components of Ck+1 is greater than or equal to the k-th Betti number of M .

Proof. The critical points of the distance function are local minimal points

on Ck+1. Then the index of each critical points on Ck is equal to k and we

get the corollary by the Morse inequality. �

Remark 3.13. In [11] some kind of Morse theory was discussed by using

distance function. In particular, in section 3 of [11] one of the authors

constructed a metric by using handle attaching in Morse theory.
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