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SOME CHARACTERIZATIONS OF RIGHT co-H-RINGS

DinH vaN Huyne and Puan DAN

1. Introduction. In (9] and [10] Harada introduced and investigated the
following two conditions about a given ring R:

() Every non-small right R-module contains a non-zero injective submodule.
(I) Every non-cosmall right R-module contains a non-zero projectitive direct
summand.

Following [15], a ring R is called a 7ght H-ring (in honour of Harada’s
works [9], [10]) if R is a right artinian ring satisfying (I). Dually. R is called a
right co-H-ring if R satisfies ([I) and the ACC on right annihilators. It is shown
in [15] that every quasi-Frobenius ring is a right co-H-ring and every right
co-H-ring is a semiprimary QF-3 ring. Moreover, the following characterizations
of right co-H-rings are known.

Theorem 1 ([15, Theorem 3.18)). For a ring R the following conditions are
equivalent :

(1) R is a right co-H-ring.

(2) FEuvery projective vight R-module is an extending module.

(3) Every vight R-module is a direct sum of a projective module and a sigular
module.

4y  The family of all projective vight R-modules is closed under taking
essential extensions.

Theorem 2 ([16, Theorem 2]). A ring R is a right co-H-ring if and only
if R satisfies the following three conditions :
(@) R is right perfect,
(b) R satisfies ACC on right annihilators,
(¢) RrDPR: is an extending module.

In this paper we shall prove the following theorem.
Theorem 3. Let R be a ring and w denote the cardinality of the set N of
all natural numbers. The following conditions are equivalent :
(i) R is a right co-H-ring.

(i) R is right perfect and RY is an extending module.
(ill) R is vight perfect and every w-generated right R-module is a direct sum of
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a projective module and a singular module.

(iv) R is right perfect and every essential extension of RE® is a projective
module.

(V) R is a right perfect ving satisfying ACC on vight annihilators and every
essential extension of Rr is a projective module.

Recall that a module M is said to be semiperfect if every factor module of M
has a projective cover. In view of [19, 43.9], condition (i) can be replaced by
condition

(i) REY is a semiperfect and extending module.

Concerning condition (iii) we would like to note that if R is a ring such that
every w-generated right module is a direct sum of a projective module and an
injective module, then R is right artinian and each singular right (or left)
R-module is injective ([5, Theorem 2]).

2. Definitions and notation. We assume throughout that all rings are
associative rings with identity and all modules are unitary. For a module M we
denote by E(M), J(M) and Z(M) the injective hull, Jacobson radical and the
singular submodule of M, respectively. We write My (resp. M) to indicate that
M is a right (resp. left) R-module.

Let 7 be an index set and @ = card(f). Then the direct sum of a copies of
a module M is denoted by @:M, M" or also M'“. If a module N is generated
by a (or fewer) elements, N is called a-generated. A module M is called a local
module if M contains a greatest proper submodule, and M is called an exiending
module if each submodule A of M is an essential submodule of a direct summand
of M.

A module M is said to be a small module if M is small in E(M), i.e. for any
proper submodule of H of E(M), M+ H += E(M). If M is not small, M is called
a non-small module. Dually, M is called a cosmall module if for any projective
module P and any epimophism f : P — M, ker(f) is essential in P, i.e. for each
non-zero submodule H of P, ker(f)NH 0. If M is not cosmall, M is called
a non-cosmall module (see [9], [17]). A module M is defined to be completely
indecomposable in case End(zR) is a local ring. Let {N;; 7 € I} be an indepen-
dent set of submodules N; of M. Then @.N: is defined to be a locally divect
summand of M if for each finite subset F of I, @=N; is a direct summand of M.

Let {M:; i € I} be a system of completely indecomposable modules, Then
{M:; i € I} is defined to be locally semi-T-nilpotent (cf. [11]) if for any countable
system of non-isomorphisms {fi,: Mi,— M., ; n = 1} with i, # i» for n + #’

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 34/iss1/17



Huynh and Dan: Some Characterizations of Right co-H-rings

SOME CHARACTERIZATIONS OF RIGHT co-H-RINGS 167

and for any x € M, there exists an integer #m depending on x such that
FinSima®*fulx) = 0. It is shown in [13] that {M.; i € I} is locally semi-T-
nilpontent if and only if for any independent set {N;; ; € J} of submodules N;
of M = ®&M;, @;N; is a direct summand of M whenever it is a locally direct
summand of M.

A module M is called Z-injective if for any index set I, M'" is injective. The
following results are useful for our investigation.

Lemma 1 ([7, Proposition 20.3A)). For an injective right R-module M the
Jollowing conditions are equivalent :
(1) M is Zinjective.
2y MW is injective.
(3) R satisfies ACC on annihilators of subsets of M.

Lemma 2 ([9, Theorem 3.6]). Let R be a semiperfect ring. Then R satisfies
(II) ¢f and only if

Ry = QIR@ e @enRe_)flR@ st @me

where {er, +++, enfU(fi, *++, fm} @& a set of mutually orthogonal primitive
idempotents such that the following conditions are satisfied :
(@ n=1and for each 1 < i < n, e:R is injective,
(b) for any 7, 1 < j < m, theve exists an e; € {e\, * -, en} such that f:R is
isomorprhiic to a submodule of e:R,
() for each i, 1 < i < n, there exists an integer t; such that e.J' is projective
Jor each t < t; and e J"'R is singular where ] = J(Rz).

Let M be a module. By [9] and [17] we see that M is non-cosmall if M =+
Z(M), and, if M contains a non-zero projective submodule, then M is non-
cosmall. From this and the definition of non-cosmall modules we have :

Lemma 3. Let R be a ving and o be a cardinal. Then the following
conditions are equivalent : -
(i) R is an extending module.
(i) Every a-genervated vight R-module is a divect sum of a projective module
and a singular module.

We note that M is an extending module if and only if every closed sub-
module of M is a direct summand of M. Hence we have:
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Lemma 4. If M is an extending module then every direct summand of M
s also an extending module,

3. Semiprimary QF-3 rings. The class of rings each of which is perfect
and contains a faithful injective right ideal and a faithful injective left ideal (i.e.
perfect QF-3 rings) has been investigated in [4] and in [18]. It is shown in [4]
that such a ring R is semiprimary and by [18], E(Rr) and E(zR) are both
projective.

Proposition 5 (cf. [4, Theorem 1.3]). For a ring R the following conditions
are equivalent :
(i) R is a perfect QF-3 ring (i.e. a semiprimary QF-3 ring).
(i) R is right perfect and E(P) is projective for each projective module P.
(i) R is right perfect and R contains a faithful X-injective right ideal.

Here we prove the following theorem.

Theorem 6. For a ring R the following conditions are equivalent :

(@ R is a semiprimary QF-3 ring.

(b) R is right perfect and E(RE’) is projective.

(c) R is a right perfect ring satisfying ACC on right annihilators and E(Rg)
is projective.

Proof. (a)=— (b) by Proposition 5.
(b)==(c). Assume (b). Since E(R%) is isomorphic to a direct summand of
E(R{"), E(R:) is projective. Further, by (b) we have

E(RYY) = (B1,e1R)D + - ®(D1.exR) (1

where ey, * -+, e, are primitive idempotents of K. By Lemma 1 it is enough to
show that E(R¥Y) is injective. By (1) and since E(R%) is projective, there are
subsets F; of I; (j = 1, ++-, k) such that

E(Rz) = (®r,e1R)D + -+ B(Dr.exR). (2)
Hence
E(R:)™ = (©1,&:R)D - - D(Dr.enR))™. 3)

Since E(R#)™ is isomorphic to a submodule of E(Rz"’) we can apply (3) and [7,
Theorem 21.15] to see that E(Rr)™ is injective.
()= (a). Assume (c). In order to show (a), by Proposition 5 it is enough

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 34/iss1/17



Huynh and Dan: Some Characterizations of Right co-H-rings

SOME CHARACTERIZATIONS OF RIGHT co-H-RINGS 169

to show that R contains a faithful X-injective right ideal eK. Note that R =
e R® -+ @exR where {e:; 1 < i < n} is a set of mutually orthogonal primi-
tive idempotents. Since E(Rz) is projective by (c), there is at least one e: such
that e:R is injective. We may assume that e, R, **+, e.R are injective and
xR, <+, e.R arenot. Pute = e+ +++ +ex. Then eR = e, RD -+ DerR
is a non-zero injective right ideal of R. We may use (2) to have

E(Rz) = (Br.aR)D - - - D(Pr.exR)

and this is isomorphic to a submodule of @reR where F = FiU ++* UF..
Hence, if P = anng(eR), then E(Rz)NP = 0. It follows that P = 0, showing
that eR is faithful. By (c) R satisfies ACC on annihilators of subsets of eR.
Hence eR is X-injective by Lemma 1. This completes the proof.

Corollary 7. Let R be a right perfect ring with ACC on right annihilators.
If E(Rz) is projective then E(Rz) is also projective.

Proof. Let R be as above and assume that E(R¢) is projective. Then, by
Theorem 6, R is a semiprimary QF-3 ring. Hence, by [18], E(R%) is projective.

Corollary 8. Let R be a perfect ring such that E(Rz) is projective. Then
E(Rz) is projective if and only if R satisfies ACC on right annihilators.

Proof. One direction is clear, by Corollary 7. Now let R be a (right and left)
perfect ring such that E(Rz) is projective and E(Rg) are projective. It follows
from [4] that R is a semiprimary QF-3 ring. Hence, by Theorem 6, R has ACC
on right annihilators.

Remark. By [14, Example 3], there is a semiprimary ring R such that
E(R:) is projective but E(zR) is not projective.

4. The proof of Theorem 3. Statement (i) implies (ii) by Theorem 2(a) and
Theorem 1(2).

(i)= (i). Assume (ii). Then in particular R¥" is an extending module for
each » € N, by Lemma 4. By Theorem 2 it is enough to show that R has ACC
on right annihilators. In order to do so, by Lemma 1 it is suffices to show that
E(Rr) is Z-injective, or, equivalently, E(R)™ is injective (see Lemma 1).

Since R is right perfect and Rz R is an entending module, R satisfies (II)
by [16, Theorem 1]. Hence, by Lemma 2, R has a decomposition
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R =eR® - @eROARD -+ OfuR

where {e), *++, ex}U{f, ***, fu} is a set of mutually orthogonal primitive
idempotents with # = 1 such that e1R, *+*, e.R are injective and each ;R is not
injective. Moreover, for each f; there is an e: (1 < ¢ < n) such that f;R is
isomorphic to a submodule of e;R. Put e = e;+ *+* +e. Since E(Rg) =
e R® -+ De.ROE(/LR)D + -+ PE(fwR) and since each E(f»R) is isomorphic
to some e;R, we have

E(Rz) = (®1,a1R)® +++ BD(B1,enR) (4)

with finite sets i, «*+, f.. Let I = LU -+ Ul, It follows that E(Rz) is
isomorphic to a submodule of @eR. Put E = E(Rz). Let U be a submodule
of Rr and ¢: Ur — E™ be an R-homomorphism. We shall show that ¢ can be
extended to a homomorphism in Homz(Rz, E™), i.e. E™ is injective. We may
assume that Uz is essential in Rg.

Consider @ = RxPE™. Since E® is isomorphic to a direct summand of
(P1eR)™ which in turn is isomorphic to a direct summand of (B:R)™ it follows
that @ is isomorphic to a direct summand of Rz@(P:Re)™. Since I is finite,
we have

RR@(@IRR)(N) = R&N).

By (ii) and Lemma 4, @& is then an extending module. Hence there exists a
submodule U* of Qr such that {# —¢(%); u € U} is an essential submodule of
U* and

Qr = U*®Q*. )

We have U*NE®™ =0 and moreover U is a submodule of U*@E™. In
particular, U¥*@®E™ is essential in @r. Let p be the projection of @ onto Q*
given by (5).

First we show that p(E™) = Q*. Clearly, pp = (p| E™V) is a monomor-
phism. For convenience, instead of E™ we write @sen E. with E, = E. Since
M is monomorphic, {pi(E.); @ € N} is an independent set of submodules in Q*.
Since each pi(E.) is injective, @i : = @aen p1(E.) is a locally direct summand
of @*. By (1) and by the definition of @, @* is projective. It follows that @* =
@:er Q: where each Q. is isomorphic to some eR with a primitive idempotent
of e of R. Hence {Q.; t € T} is a set of completely indecomposable projective
modules and therefore @.<r @: has the exchange property by [12] or [20]. Thus
{Q:: t € T} is a locally semi-T-nilpotent set by [10, Corollary 2]. From this
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and [13] it follows that @ is a direct summand of @*, say @* = QD Q..

Suppose that @» #+ 0. Then there is a non-zero element x in @:N
(U*PE™). Wehave x = u+v where u € U* and v € E™. Hence x = p(x)
= plu)+p(v) = p(v) € @, a contradiction. Hence p(E™) = Q = Q*.
Therefore @ = U*@E™. Now let p. be the projection from U*@E™ to E™,
Then (p: | Rr) is an extension of ¢. Thus E™ is injective.

(ii) & (iii) by Lemma 3 and (i) = (iv) by Theorem 2(a) and Theorem 1(4).

(ivy== (v). Assume (iv). Then E(R$") is projective. Hence by Theorem
6, R satisfies ACC on right annihilators. Further let C be an essential extension
of Re. Then C™ is an essential extension of R§". By (iv), C'™ is projective.
Hence Cr is projective.

(v)==(i). Assume (v). Then R is semiprimary by [7, Lemma 24.19].
Note that R = e.R® -+ @e.R where {e, *+*, en} is a set of mutually orth-
ogonal primitive idempotents of £. We may assume that e R, *++, exR are
injective and ex+1 R, ***, exR are not. Since E(Rz) is projective, we have 2 >
1. In order to show (i) it is enough to show that R satisfies (a), (b) and (c) of
Lemma 2.

For each 7, k+1 < j < n, we show the existence of an e; € {ei, **+, ex}
such that e;R is isomorphic to submodule of e:R. Put e = e;. Since E(R%) is
projective, E(eR) is also projective. Hence E{(eR) =~ (e\R)"V® +++ P(e R)"™
= B, say. Let & be an isomorphism of E(eR) onto B and put F = e(eR). Then
F =~ eR and F is an essential submodule of B. Since eR is a direct summand
of Rk, using (v) we see that every essential extension of eR is projective. Hence
every essential extension of Fk is also projective. For convenience we write B
= @ierB:where T = LU +++- Ul,and B; = e:R ifandonly if t € I; for i =
1, *++, k. Let p: be the projection @®:cr B: — B for each ¢ and put F: = p.(F).
Then F; #+ 0 for each ¢ and F is a submodule of @7 F:. Since F is essential
in B, it follows that F is essential in @:er F:. Hence, as we have just seen,
@:er B: is projective, implying the projectivity of every F..

Now for a fixed ¢, t = 1 say, we put ¢ = (p1 | F) and consider the exact
sequence

F2 F—0

with non-zero projective Fi. Then F = ker(q:)®G for some submodule G of F.
Since F' = eR is indecomposable, ker(g:) = 0. Hence F, =0 forall ¢t += 1. It
follows that @:er B: = By. Thus E(eR) =~ e;R. In fact we have seen that (a)
and (b) of Lemma 2 are satisfied.

To check condition (c) of Lemma 2 put e = e; for 1 < 7 < k. First we show
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that every submodule Nk of eR is either projective or singular. Let Z = Z(eR)
and suppose that Z is a proper submodule of N. It is clear that there exists a
submodule M of eR such that Z C M C N C eR and M/Z is simple. Assume
that there is an element x € M such that xR is not contained in Z and xR = M.
Then the set

{X; X is proper cyclic submodule of M and X+2Z = M)

contains a minimal element, X say, since R is semiprimary. Hence X has the
following properties :
(d X+Z =M and
(e) for any x € X with xR + X we have xR+Z + M.

Let I = XNZ. Then X/I ~(X+Z)/Z =~ M/Z. Hence I is maximal in Xx.
Let y€E X with YR+ X. If yv& I then y&¢ Z and hence yR+Z = M,
contradicting (e). Therefore y € I and so ¥R is a submodule of /. It follows that
1 is the greatest proper submodule of X, i.e. Xz is a cyclic local module. By [7,
Proposition 18.23], there exists an e; € (e, *+*, ex} such that X =~ ¢;R/B for
some submodule B of ¢;R. As proved above, ¢;R is uniform. Then X is either
projective (i.e. B = 0) or singular (i.e. B # 0). The latter case implies that Z+ X
is singular, a contradiction. Hence X = ¢;R. From this and (v) we can easily
see that every essential extension of X is projective. Hence M is projective. It
follows that there is a primitive idempotent f of R such that Mz =~ fR. Hence
Me is a local module and so Z is the greatest proper submodule of Mz, a
contradiction to our assumption above. Hence for each x € M with x & Z we
have xR = M. This shows that M is local and cyclic. By {7, Proposition 18.23]
and the previous argument we see that Mz = ¢;R for some e, € {e, * **, ex}.
By (v) we can see that any essential extension of Mr is projective. Thus Nz is
projective, since M is essential in the submodule N of eR.

Now let K be any submodule of eR. Put U = KNZ. Suppose that U #
K and U+ Z. Then (K+Z)/U = K/[UDZ/U. As proved above, K+Z is
cyclic, projective and local. Hence K/U and Z/U are cyclic and it follows that
K/U and Z/U have maximal submodules. Hence K +Z contains two different
maximal submodules, a contradiction. Thus we must have K € Z or Z € K.
Using these facts and the argument used to prove [9, Theorem 3.6] we see that
R satisfies (c) of Lemma 2.

This completes the proof of Theorem 3.

Remark. Recently it was proved in Clark and Huynh [3] that a semiper-
fect ring R is QF if and only if R is right self-injective and every uniform
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submodule of any projective right R-module P is contained in a finitely generated
submodule of P, if and only if R is right quasi-continuous and every projective
right R-module is extending. From this and Theorem 3 the following two
conjectures are equivalent :

)

(i1)

[10]
[11]

[12]

[13]
(14]

[15]
(16]
[17]
(18]
[19]

[20]

For every right self-injective right perfect ring R, R is an extending
module.
Every right self-injective right perfect ring is quasi-Frobenius.
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