

Mathematical Journal of Okayama University

Volume 33, Issue 1

1991

Article 15

JANUARY 1991

Linearly compact dual-bimodules

Yoshiki Kurata* Shigeyuki Tsuboi[†]

Copyright ©1991 by the authors. *Mathematical Journal of Okayama University* is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Yamaguchi University

[†]Yamaguchi University

Math. J. Okayama Univ. 33 (1991), 149-154

LINEARLY COMPACT DUAL-BIMODULES

Dedicated to Professor Kentaro Murata on his 70th birthday

Yoshiki KURATA and Shigeyuki TSUBOI

Let R and S be rings with identity and ${}_RQ_S$ an (R, S)-bimodule. In the previous paper [3], it is shown that if Q_S is quasi-injective and the canonical ring homomorphism $\lambda \colon R \to \operatorname{End}(Q_S)$ is surjective, then the pair of functors

$$H' = \operatorname{Hom}_{R}(-, Q) : {}_{R}M \to N_{S} \text{ and } H'' = \operatorname{Hom}_{S}(-, Q) : N_{S} \to {}_{R}M$$

defines a duality between $_R\underline{M}$ and \underline{N}_S , where $_R\underline{M}$ is the full subcategory of R-mod of finitely generated Q-torsionless R-modules and \underline{N}_S is the full subcategory of mod-S whose objects are all the S-modules N such that there exists an exact sequence of the form $0 \to N \to Q^n \to Q^l$ for some n > 0 and some set I.

In this note, we shall give, in the first section, some characterizations of self-cogenerators and then point out that the linearly compactness of a ring is very closed to the existence of some kind of left dual-bimodules. Characterizing these left dual-bimodules, in the second section, we shall show that, for a left dual-bimodule $_RQ_S$ with $_RQ$ finitely generated, Q_S quasi-injective and λ surjective, Q_S is linearly compact if and only if the duality mentioned above can be extended to a duality between $_R\overline{FG}$ and \overline{N}_S (see bellow for the definition).

1. An S-module Q_S will be called a *self-cogenerator* provided that every right S-module isomorphic to a submodule of a factor module of Q^n , $n = 1, 2, \dots$, is Q-torsionless [7, Definition 3.1]. Trivially each cogenerator in mod-S is a self-cogenerator. First, we shall give some characterizations of self-cogenerators. As is easily seen, we have

Lemma 1. Let Q_s be an S-module. Suppose that

$$0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0$$

is an exact sequence of right S-modules such that N' and N'' are Q-torsionless and Q is N-injective. Then N is Q-torsionless.

Lemma 2. Let Q_s be a quasi-injectic S-module. Suppose that every

factor module of Q is Q-torsionless. Then every factor module of Q^n is also Q-torsionless for $n = 1, 2, \cdots$.

Proof. We may show the case where n=2. Let Q' be any submodule of Q^2 and let $p: Q^2 \to Q$ be the canonical projection. Then the induced homomorphism $\bar{p}: Q^2/Q' \to Q/p(Q')$ is an epimorphism with Ker \bar{p} Q-torsionless. By assumption Q/p(Q') is Q-torsionless and hence Q^2/Q' is also Q-torsionless by Lemma 1.

An (R, S)-bimodule Q will be called a *left dual-bimodule* provided that $\ell_R \gamma_Q(A) = A$ for every left ideal A of R and $\gamma_Q \ell_R(Q') = Q'$ for every S-submodule Q' of Q (see [3]). A ring that has the double annihilator property ($[1, Exercise\ 24.11]$) will be called a *dual ring*. Hence a dual ring R is a left dual-bimodule regarded as an (R, R)-bimodule. It is also a right dual-bimodule by defining symmetrically. In $[3, Lemma\ 1.3]$, it is shown that if $_R Q_S$ is a left dual-bimodule, then every factor module of Q_S is Q-torsionless. Hence we have

Corollary 3. Let $_RQ_S$ be a left dual-bimodule with Q_S quasi-injective. Then Q_S is a self-cogenerator.

Proposition 4. Let $_RQ_S$ be an (R, S)-bimodule with Q_S quasi-injective and λ surjective. Then the following conditions are equivalent:

- (1) Q_s is a self-cogenerator.
- (2) Every factor module of Q^n is Q-torsionless for $n = 1, 2, \dots$
- (3) Every factor module of Q_s is Q-torsionless.
- (4) $r_0 \ell_{\mathcal{B}}(Q') = Q'$ for every submodule Q' of $Q_{\mathcal{S}}$.
- (5) $N_s = \{N_s | 0 \rightarrow N \rightarrow Q^n \text{ is exact for some } n > 0 \}.$
- (6) Every submodule of Q^n is Q-reflexive for $n = 1, 2, \cdots$.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3) are evident. The equivalence of (3) and (4) follows from [3, Lemma 1.3] and (3) \Rightarrow (5) follows from Lemma 2.

- (5) \Rightarrow (6). Let N_s be a submodule of Q^n . Then $N \in \underline{N}_s$ and $0 \to N \to Q^m \to Q^I$ is exact for some m > 0 and I. Since Q_s is Q-injective and Q-reflexive, Q is Q^m -injective and Q^m is Q-reflexive. Hence by [3, Lemma 3.1], N must be Q-reflexive.
 - $(6) \Rightarrow (1)$ also follows from [3, Lemma 3.1].

Remarks. (1) The equivalence of (1) and (3) of Proposition 4 has already shown in [5, Lemma 1.1].

(2) In case Q_s is a finitely cogenerated cogenerator, then a right S-module N is finitely cogenerated if and only if there is an n > 0 such that $0 \to N \to Q^n$ is exact by [1, Exercise 10.3]. For example, each dual-bimodule $_RQ_s$ with Q_s injective and λ surjective is a finitely cogenerated cogenerator as an S-module by [3, Proposition 1.8 and Lemma 3.5].

Corollary 5. For a ring R with R_R injective, the following conditions are equivalent:

- (1) R_R is a self-cogenerator.
- (2) Every finitely generated right R-module is torsionless.
- (3) Every cyclic right R-module is torsionless.
- (3') Every simple right R-module is torsionless.
- (3") R_R is a cogenerator.
- (4) $r_R \ell_R(A) = A$ for every right ideal A of R.
- (5) $N_R = \{ N_R | 0 \rightarrow N \rightarrow R^n \text{ is exact for some } n > 0 \}.$
- (5') $\underline{N}_R = |N_R| N_R$ is finitely cogenerated |.
- (6) Every submodule of R_R^n is reflexive for $n = 1, 2, \dots$
- (6') Every finitely cogenerated right R-module is reflexive.

Proof. (3) \Rightarrow (3') and (3") \Rightarrow (3) are evident and (3') \Rightarrow (3") follows from [1, Proposition 18.15].

Assume (5). Then since (3) and (5) are equivalent, R_R is an injective cogenerator and hence is a finitely cogenerated cogenerator by [6, Satz 3]. Assume (5'). Then since R is in N_R , R_R is finitely cogenerated and injective. Hence it is a finitely cogenerated cogenerator again by [6, Satz 3]. Therefore, the equivalence (5) and (5') follows from Remarks (2).

 $(6) \Rightarrow (6') \Rightarrow (3')$ are evident. Hence (6) and (6') are equivalent.

A ring R is a cogenerator ring in case both $_RR$ and R_R are cogenerators [1, Exercise 24.10].

Corollary 6. For a ring R with R_R injective, the following conditions are equivalent:

- (1) R is a dual ring.
- (2) $_{R}R$ and R_{R} are self-cogenerators.
- (3) R is a cogenerator ring.

Proof. $(1) \Rightarrow (3)$. As we shall show in Corollary 11, if R is a dual ring. then R_R injective is equivalent to R_R being injective. Hence, from Corollaries 3 and 5 $(1) \Rightarrow (3)$ follows.

152

Y. KURATA and S. TSUBOI

- $(3) \Rightarrow (2)$ is evident.
- $(2) \Rightarrow (1)$. To prove $(1) \Rightarrow (4)$ of Proposition 4, it is sufficient to assume that λ is surjective. Hence, in Corollary $5(1) \Rightarrow (4)$ is always valid. Thus (2) implies (1).

Let N_s be an S-module, $(x_i)_I$ an indexed set of elements of N and $(N_i)_I$ an indexed set of submodules of N. Then the set of congruences $|x \equiv x_i \pmod{N_i}|$ is said to be *solvable* (*finitely solvable*), if there is a y in N (a y_F in N for each finite subset F of I) such that $y-x_i$ in N_i for each i in $I(y_F-x_i)$ in N_i for each i in F).

If every finitely solvable set of congruences in N is solvable, then N will be called *linearly compact* ([7, Definition 2.1]). Using this notion we can characterize left dual-bimodules.

Proposition 7. Let $_RQ_S$ be an (R, S)-bimodule with Q_S linearly compact quasi-injective and λ an isomorphism. Then the following conditions are equivalent:

- (1) Q is a left dual-bimodule.
- (2) Q_s is a self-cogenerator and has essential socle.

Moreover. if this is the case, RQ is injective and RR is linearly compact.

Proof. (1) \Rightarrow (2) follows from Corollary 3 and [3, Proposition 1.8].

 $(2) \Rightarrow (1)$. By [7, Lemma 3.7] every cyclic left *R*-module is *Q*-torsionless. Hence by Proposition 4 and [3, Lemma 1.2] *Q* is a left dual-bimodule. The last part follows from (2) by [7, Lemmas 3.5 and 3.7].

Corollary 8. For a ring R with R_R linearly compact and injective, the following conditions are equivalent:

- (1) R is a dual ring.
- (2) R_R is a self-cogenerator and has essential socle.
- (3) $_{R}R$ is a self-cogenerator and has essential socle.

Proof. As is remarked in the proof of Proposition 7, (2) implies that $_{R}R$ is linearly compact and injective. Hence, again by Proposition 7, (3) is equivalent to R being a dual ring.

As a consequence of Proposition 7 and [7, Theorem 3.10], we have

Theorem 9. A ring R is left linearly compact if and only if there exists a left dual-bimodule $_RQ_S$ such that Q_S is linearly compact quasi-injective and λ

is surjective.

2. A subcategory of the module category will be called *finitely closed* if it is closed under submodules, factor modules and finite direct sums [4, p. 465]. Let $_RQ_S$ be an (R, S)-bimodule. Following [7], consider the full subcategory of R-mod consisting of all modules isomorphic to factor modules of submodules of R^n for $n = 1, 2, \cdots$. This is the full subcategory consisting of all modules isomorphic to submodules of factor modules of R^n for $n = 1, 2, \cdots$ and hence is equal to

$$|_{R}M|_{0} \to M \to M'$$
 is exact for some $M' \in {_{R}FG}|_{*}$.

As is easily seen, this is the smallest one of the finitely closed subcategory containing either R or $_RFG$. We shall denote this by $_R\overline{FG}$, where $_RFG$ means the full subcategory of finitely generated left R-modules.

Similarly, the full subcategory of mod-S consisting of all modules isomorphic to factor modules of submodules of Q^n for $n=1,2,\cdots$ coincides with one consisting of all modules isomorphic to submodules of factor modules of Q^n for $n=1,2,\cdots$. This is the smallest one of the finitely closed subcategory containing either Q or the class of S-modules

$$\{N_s|0 \to N \to Q^n \text{ is exact for some } n > 0\}.$$

By Proposition 4 this is the smallest one of the finitely closed subcategory containing \underline{N}_s in case Q_s is a quasi-injective self-cogenerator and λ is surjective. Hence we shall denote this by \overline{N}_s . Furthermore, \overline{N}_s also coincides with

$$|N_s|N' \to N \to 0$$
 is exact for some $N' \in N_s$.

We are now ready to characterize those left dual-bimodules mentioned in Theorem 9 by means of a duality.

Theorem 10. Let $_RQ_S$ be a left dual-bimodule with $_RQ$ finitely generated and λ surjective. Then the following conditions are equivalent:

- (1) Q_s is a linearly compact quasi-injective module.
- (2) The pair (H', H'') defines a duality between ${}_{R}\overline{FG}$ and \overline{N}_{S} .
- (3) $_{R}Q$ is an injective cogenerator.

Proof. (1) \Rightarrow (2) follows from Proposition 7 and [7, Theorem 3.8].

(2) \Rightarrow (3). Assume (2). Then since $_RQ \in _R\overline{FG}$, we can apply [1, Exercise 20.5] to show that, for each $M \in _R\overline{FG}$, σ_M is an epimorphism by a

154

Y. KURATA and S. TSUBOI

similar way as in [1, Theorem 23.5]. In particular, every cyclic R-module is Q-reflexive by [3, Lemma 1.2] and thus Q_s is quasi-injective by [3, Theorem 3.2]. Furthermore, if $N \in \overline{N}_s$, then H''(N) is in ${}_R\overline{FG}$ and hence $\sigma_{H'(N)}$ is an epimorphism, which shows that $N \cong H'(N)$ is Q-reflexive [1, Proposition 20.14]. In particular, every factor module of Q_s is Q-reflexive. Hence, by [2, Theorem 10], ${}_RQ$ is an injective cogenerator.

 $(3) \Rightarrow (1)$ follows from [2, Theorem 10] and [7, Theorem 3.6].

The following corollary follows from Theorem 10 and [3, Lemma 3.5].

Corollary 11. For a dual ring R, the following conditions are equivalent:

- (1) R_R is linearly compact and is injective.
- (2) $_{R}R$ is lenearly compact and is injective.
- (3) $_{R}R_{R}$ defines a duality between $_{R}\overline{FG}$ and \overline{FG}_{R} .
- (4) $_{R}R$ is injective.
- (5) R_R is injective.

Finally, we shall remark that a cogenerator ring is also a dual ring satisfying the equivalent condition of Corollary 11 [1, Exercise 24.12].

REFERENCES

- F. W. ANDERSON and K. R. FULLER: Rings and Categories of Modules, Springer-Verlag, New York Heidelberg Berlin. 1973.
- [2] J. L. GOMEZ PARDO: Counterinjective modules and duality, J. Pure and Appl. Algebra 61 (1989), 165-179.
- [3] Y. KURATA and K. HASHIMOTO: On dual-bimodules, to appear in Tsukuba J. Math.
- [4] R. N. S. MACDONALD: Representable dualities between finitely closed subcategories of modules, Can. J. Math. 31 (1979), 465-475.
- [5] R. W. MILLER and D. R. TURNIDGE: Co-Artinian rings and Morita duality, Israel J. Math. 15 (1973), 12-26.
- [6] T. ONODERA: Koendlich erzeugte Moduln und Kogeneratoren, Hokkaido Math. J. 2 (1973), 69-83.
- [7] F. L. SANDOMIERSKI: Linearly Compact Modules and Local Morita Duality, in: R. Gordon, ed., Ring Theory (Academic Press, New York 1972).

Department of Mathematics Yamaguchi University Yoshida, Yamaguchi 753

(Received October 15, 1991)