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Abstract 

Reinforcement learning is very effec#ive for robot 
learning. Because it does not need prior knowledge 
and has higher capability of reactive and adaptive be- 
haviors. In our previous works, we proposed new re- 
inforce learning algorithm: "Q-learning with Dynamic 
Structuring of Exploration Space Based on Genetic Al- 
gorithm (QDSEGA)". It is designed for complicated 
systems with large action-state space like a robot with 
many redundant degrees of freedom. However the ap- 
plication of QDSEGA is  restricted to static systems. 

A snake-like robot has many redundant degrees of 
freedom and the dynamics of the system are very im- 
portant to complete the locomotion task. So applica- 
tion of usual reinforcement learning is very dificult. 
In this paper, we extend layered structure of QD- 

SEGA so that it becomes possible to apply it to  real 
robots that have complexities and dynamics. We apply 
it to acquisition of locomotion pattern of the snake-like 
robot and demonstrate the effectiveness and the valid- 
ity of QDSEGA with the extended layered structure by 
simulation and experiment. 

1 Introduction 
Reinforcement learning [l] is very effective for robot 

learning. It does not need prior knowledge, and has 
higher capability of reactive and adaptive behaviors. 
By applying reinforcement learning to the robot with 
many redundant degrees of freedom, adaptive autonomous 
system can he realized. So applying reinforcement 
learning to the robot with many redundant degrees of 
freedom is very attractive. However, there are some 
significant problems in applying it to them. Some 
of them are deep cost of learning and large size of 
action-state space. In the &-learning 121: witch is one 
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of the most famous and the most effective reinforce- 
ment learning algorithm, the size of Q-table increase 
exponentially with increase of degrees of freedom. So 
by using the conventional Q-learning, only a few de- 
grees of freedom robots can he controlled. 

In our previous works, we took it into consideration, 
and proposed new reinforcement learning algorithm: 
"Q-learning with Dynamic Structuring of Exploration 
Space Based on Genetic Algorithm (QDSEGA)[3, 41". 
It is designed for complicated systems with large action- 
state space like a robot with many redundant degrees 
of freedom. In QDSEGA, Q-learning is applied to 
a small subset of exploration space to acquire some 
knowledge ofa  task, and then the subset of exploration 
space is restructured utilizing the acquired knowledge, 
and by repeating this cycle, effective subset and effec- 
tive policy in the subset is acquired. So without prior 
knowledge, efficient search, compare to trial and er- 
ror, is possible. By applying QDSEGA to the robot 
with many redundant degrees of freedom, an effective 
movement for each task is selected automatically from 
the various movements that can be realized by the 
redundancy of the robot. Effectiveness of QDSEGA 
and the adaptive autonomous systems were demoii- 
strated using simulations of a 12-legged robot[4], and 
a 50-link manipulator[3]. However the applications of 
QDSEGA were restricted to static systems, and have 
never been applied to the real robots yet. 

On the other hand, a snake-like robot is one of the 
most difficult examples of control problem. Because it 
has many redundant degrees of freedom and the dy- 
namics of the system are very important to complete 
locomotion. So in the previous works of reinforcement 
learning, control of real snakelike robot have not been 
realized. 

In this paper, we extend the layered structure of 



the QDSESA so that it can be applicable to the real 
robots with many redundant degrees of freedom. To 
demonstrate the effectiveness and the validity of the 
extended QDSEGA, we apply it to acquisition of loco- 
motion pattern for the snakelike robot in simulations 
and experiments. 

2 Proposed Algorithm 

2.1 Outline 

Fig. 1 shows the outline of QDSEGA. The learning 
process is as follows. At first, small subset of explo- 
ration space is extracted from the large exploration 
space which is composed of state space and action 
space. Next, reinforcement learning is applied to the 
subset and some knowledge of the task is obtained. 
And then new subset of the exploration space is cre- 
ated utilizing the acquired knowledge. The reinforce- 
ment learning is applied to the new subset, and by 
repeating this cycle, effective subset and effective pol- 
icy in the subset is acquired. 

By extracting the closed-subset, it becomes possi- 
ble to apply the reinforcement learning t o  the small 
extracted exploration space. And by utilizing the ac- 
quired knowledge to restructure the subset, the search 
becomes more efficient compare to trial and error only. 

The function to extract the subset is realized by 
layered structure of learning architecture and the re- 
inforcement learning is realized by Q-learning. The 
subset is restructured using genetic algorithm. 

In our previous works[3, 41, we had assumed that 
the lower agents of the layered structure have enough 
ability to control each joint, and considered ideal static 
systems in the simulated world. In this paper, we im- 
prove QDSEGA to  withdraw the assumption, and we 
consider the real robots that have dynamics, complex- 
ity and limited ability. To realize the improvements 
we extend the layered structure. Details are written 
as subsection 2.3. 

. 

2.2 Interior State and exterior State 

In this paper, we define an interior state and an 
exterior state as follows. The interior state is the set 
of states that the agent can control directly. And the 
exterior state is all the state except for the interior 
state. 

2.3 Extended Layered Structure 

Proposed algorithm has 2 level layered structures. 
Fig. 2 shows an example of application to a snake-like 
robot. An upper agent plans all trajectories of inte- 
rior state, and passes them to lower agent as a desired 
state. Each lower agent corresponds to an actuator of 
the snake-like robot by one to one, and controls each 
joint angle so that it becomes the desired state. 

In our previous works, we had assumed that the 

Figure 2: Hierarchal Structure 

lower agent has enough ability and each interior state 
converges to desired state within each time step. In 
this paper we withdraw the assumption and extend 
the layered structure. 

At first, we extend the conventional one-way com- 
munications between the upper agent and the lower 
agents to tw*way communication. 

Next we extend the lower agents to return some in- 
formation to the upper agent. If a lower agent can 
not realize the desired state that is given by the upper 
agent, the lower agent returns the information to the 
upper agent as a penalty. 

Next, we extend the upper agent to catch the penal- 
ties form the lower agents. If the upper agent catches 
a penalty from any lower agent, the upper agent with- 
draws the desired states that, is given to lower agents, 
and plans new desired states. So by repeating the 
learning process, desired states that can not he re 
alized by lower agents are rejected, and a trajectory 
that complete given task is composed of only realiz- 
able states. 

By the above improvements, extended QDSEGA can 
be applied to the real systems that have dynamics and 
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complexity, because the lower agents are interfaces of 
real hardware system to software systems, and our im- 
provements make it possible to apply QDSEGA to  real 
lower agents that have limited ability. 

2.4 Extraction of Closed Subset 

A set of desired states that are given by the upper 
agent to the lower agents at a step can be regarded 
as an action of reinforcement learning of the upper 
agent. In case that the lower agents accomplish the 
action, which means that each interior state converges 
to the desired state, a set of actions is equivalent to a 
set of desired interior state. So by restricting usable 
actions, the upper agent can restrict necessary inte- 
rior states, and it becomes possible to extract a closed 
subset from the exploration space. The term "closed" 
means that any interior state that can be transited 
by any action in the subset is surely contained in the 
subset. By this nature, we can apply reinforcement 
learning to the small subset instead of the large explo- 
ration space. 

If the lower agents cannot accomplish an action, a 
penalty is imposed to upper agent and new trial is 
started form the initial state. So the learning process 
is preceded in the restricted exploration space. 

We can structure the subset of exploration space dy- 
namically by structuring the action space dynamically. 
In QDSEGA, the actions are structured using genetic 
algorithm in the learning process of the upper agent. 

2.5 Learning Process of Upper Agent 

The proposed algorithm bas two dynamics. One is 
a learning dynamics based on $-learning and the other 
is a structural dynamics based on Genetic Algorithm. 
Fig. 3 shows the flowchart of the learning process of 
the upper agent. 

Each action is expressed as a phenotype of genes 

initial set of population is structured randomly, and 
the Q-table that consists of phenotype of the initial 
population is constructed. The Q-table is reinforced 
using learning dynamics and the finesses of genes are 
calculated based on the reinforced Q-table. Selection 
and reproduction are applied and new population is 
structured. Repeating this cycle, effective behaviors 
are acquired. Details are written in subsection 2.6- 
2.9. 

2.6 Encoding 

In this algorithm, each individual expresses the se- 
lectable action on the learning dynamics. It means 
that subsets of actions are selected and learning dy- 
namics is applied to the subset. The subset of action 
is evaluated and a new subset is restructured using 
Genetic Algorithm. The number of individuals means 
the size of the subset. 

2.7 Create Q-table 

To reduce the redundancy of actions, the genes that 
have a same phenotype are regarded as one action and 
the Q-table consists of all different actions. The inte- 
rior states consist of states that can be transited by 
the generated actions. By repeating the structural dy- 
namics using GA, actions that have a same phenotype 
are increased, and then the size of t,he Q-table is de- 
creased. 

2.8 Learning dynamics 

In this paper, the conventional Q-learning[P] is em- 
ployed as a learning dynamics. The dynamics of Q- 
learning are written as follows. 

Q ( s , ~ )  + (1 - e ) Q ( s , a ) + a { r ( s , a )  +r:?~Q(s',a')l (1) 

where s is the state, a is the action, T is the reward, 
cy is the learning rate and y is the discount rate. 

2.9 Fitness 

2.9.1 Fitness of Q-table 
The fitness of genes is calculated at  two steps. The 

first step is regulation of the Q-table and the second 
step is calculation of the fitness from the regulated 
Q-table. At first, we calculate the maximum and min. 
imum value of the state as follows. 

Then Q' of the regulated Q-table is given as follows 
Figure 3: Learning process of the upper agent 

Q(*,a) + P (2) 
1 - P  

VmadS) 
if Q(s,a) > O  then Q ' ( s , a )  = - and restructured by Genetic Algorithm. At first, an 
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where p is a constant value which means the ratio of 
reward to  penalty. Next, we fix the action to  ai and 
sort Q’(s,ai)  according to their value from high to  
low for all states, and we define them as the Qi(s, ai) 
and repeating the operation for all actions. For exam- 
ple Q i ( l , a i )  means the maximum value of &‘(.,ai) 
and QL(N,,ai) means the minimum value of &‘(.,ai), 
where N ,  is the size of state space. In the second step, 
we calculate the fitness. The fitness of the individual 
whose phenotype is ai is given as follows 

where tui is a weight which decides the ratio of special 
actions to  general actions. 
2.9.2 Fitness of frequency 

We introduce the fitness of frequency of use to save 
efficient series of actions. We define the fitness of fre- 
quency of use as follows 

where N, is a total number of actions of one generation 
and Nu(a,) is the number of times which ai was used 
for in the Q-learning of this generation. 

2.9.3 Fitness 

we define the fitness as follows 
Combining discussion in the subsections 2.9.1, 2.9.2 

fit(.<) = fitQ(.i) + kf ’ f i tu (a<)  (6) 

where k f ( k f  2 0) is a constant value to  determine the 
rate of f i tq and f i t u .  

2.10 Selection and Reproduction 

Various methods of selection and reproduction that 
have been studied can be applied to  our proposed algn 
rithm. The method of the selection and reproduction 
should he chosen for each given task. In this paper the 
method of the selection and reproduction is not main 
subject so the conventional method is used. 

to  the real robot to  demonstrate the validity of the 
acquired behavior in applying to  the real robot which 
has dynamics and complexity. 

3.1 Snake-like robot 

We employ real snake-like robot [5] that consist of 
5 links that can move in the same horizontal plane. 

Fig. 4 shows the snake-like robot. Each joint has 
stepping motor to  drive the link. A passive wheel is 
attached to  the bottom of each link. The wheel can 
rotate to  the direction that is parallel to  the link. So 
the friction to  the parallel direction is smaller than 
that of rectangular direction. By winding the body 
suitably, the snake-like robot can move using the dif- 
ferences of friction. The size of each link is 80[mm] x 
80[mm] x 130[mm], and weight is SOO[g] 

I 
Figure 4 Snake-like Robot 

3.2 Task 

The task is how to  get closer t o  the goal. Fig. 5 
shows the outline of the task. The goal is far enough 
from the start position and the reward is calculated 
using the distance from the goal. 

3 Acquisition of Locomotion Patterns 

In this section, we apply the proposed method to  
acquisition of locomotion pattern for snake-like robot. 
At first the learning process is carried out in the sim- 
ulated world, and then acquired locomotion is applied 

wr 
100 

Figure 5:  Task 
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3.3 Simulation model 

In this simulation we ernploy the dynamic model of 
the snakelike robot with considering friction between 
robot body and environment, proposed by Iwasaki et 
a1 [6]. 

The model of stepping motors and lower agents are 
realized as follows. At first the constant angler veloc- 
ity b(t,+l) of each joint that realizes the desired state 
within each time step is calculated from the differ- 
ences of the current state B(t,) with the desired state 
Od( t " , l ) .  

Next we take the ability of the stepping motor into 
consideration, we consider two cases. One is the case 
when the calculated angular velocity is enough small 
compare to the ability of the stepping motor. In that 
case, we regard that each joint move to the desired 
state by the calculated angular velocity. In the other 
case, this means that the calculated angular velocity 
is too large to move the robot by the stepping motor, 
we regard that the stepping motor can not move and 
a penalty is returned to the upper agent. 

3.4 Simulation 

<Formation of genetic algorithm> 
The dynamics of GA of the proposed method is com- 

posed as follows. At first we describe the encoding. 
We define the action as the desired angles of the joints. 
Fig. 6 shows the encode method. One action expresses 
all joint angles of one sharp of the snake-like robot. 
One action is encoded one chromosome and the chro- 
mosome has a same number of genes as the number 
of joints. One gene expresses the angle of one joint. 
One gene has 9 characters that express the angles from 
-2Ojdegl to 20[deg] cvery 5 degrees. 

The number of individuals is 30. And roulette se- 
lection is employed. The probability of the crossover 
is 0.5 and uniform crossover is employed. The proba- 
bility of mutation is 0.02. And 30 times reproduction 
is carried out. 
<Formation of Q-learning> 
The action space consists of the phenotypes of the 

generated genes. The state space consists of the initial 
state and the states that can be transited by generated 
actions. The roulette selection using Boltzmann dis- 
tribution is employed. The learning rate is 0.5 and 
discounting rate is 0.9. The number of trials of each 
learning dynamics is 1000 times. Reward is calculated 
as follows and it is given by each step. Where d ( t )  is 
a distance between the robot and the goal in step t. 

Reward = 100{d(t ~ 1) - d ( t ) }  (7) 

Figure 6:  Encode method 

3.5 Simulation Result 

Fig. 7 shows the acquired behavior. We can find 
that the winding motion is acquired and the task is 
accomplished. It means that proposed algorithm is 
effective for not only the task in the static world but 
also the task in the dynamic world. 

The locomotion task is a same as that of our previ- 
ous works of the multi-legged robot [4]. We can also 
find that the different suitable behaviors for each dif- 
ferent body are emerged by the same algorithm. It 
means that the QDSEGA has autonomy, flexibility 
and adaptability. 

Figure 7 Acquired behavior 
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Figure 8: Transient Responses 
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4 Experiment 
Figure 9: Realized behavior 

Experiments have been carried out to demonstrate 
the effectiveness and the validity of the acquired be- 
haviors. The acquired locomotion patterns in the sim- 
ulation are implemented to  the snakelike robot. 

Five different patterns are implemented and all pat- 
terns could be realized by the real robot and the lo- 
comotion is completed. Fig. 7 shows the transient 
responses of each joint. The circle in the Fig. 7 means 
the desired state that is acquired by the learning pro- 
cess of the upper agent, and the dotted line means the 
desired joint angle that is realized by the lower agent, 
and the line means transient responses of real robot. 

We can find that the joint angles of the real robot 
converge to the desired values that are acquired by 
the proposed learning architecture. It means that the 
acquired behavior consist of only possible actions and 
we can conclude that the two-way communication of 
the layered structure is valid and the proposed algo- 
rithm is applicable for real robot that have actuators 
with limited ability. 

Fig. 9 shows the realized locomotion by the real 
robot. We can find that the winding motion is real- 
ized and the task is accomplished. It means that the 
proposed algorithm is effective for not only idealized 
simple systems in the simulated world but also coni- 
plicated system in the real world. 

R .  

5 Conclusion 
In this paper we proposed the new reinforcement 

learning algorithm for the real robots with many de- 
grees of freedom by extending QDSEGA. To demon- 
strate the effectiveness of the proposed algorithm, sim- 
ulations of acquisition of locomotion patterns for a 

snakelike robot have been carried out, and the ac- 
quired locomotion have been applied to the real snake- 
like robot. As a result, winding motions have been 
acquired automatically and the locomotion has been 
realized by the real robot. We can conclude that the 
proposed algorithm is effective for not only idealized 
simple systems in the simulated world but also com- 
plicated system in the real world. 
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