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EXTENTIONS OF ORDERINGS OF HIGHER LEVEL
ON RINGS

SusaN MAUREEN BARTON

1. Introduction. In the 1930’s Artin, Schreier and Baer[1,2,3]
each studied orders on a field. Recently Becker broadened this to orderings
of higher level on a field [7] (with further work in [9] by Becker, Harman,
and Rosenberg). Orders were also generalized by Coste and Coste-Roy to
orderings of level 1 on a commutative ring with unit [14] (see also Becker
[6], and Lam [20]).

In a previous paper [4] we defined orderings of level n on a commutative
ring, modeling the presentation on that of [6]. As defined, orderings of level
n on a commutative ring A are in one to correspondence with sets (g, x),
where g is a prime ideal of A and x is a signature from the quotient field of
A/p into the 22" roots of unity. Thus we identified an ordering of level n
on a commutative ring with a signature, in [8, 20] orderings of higher level
are given a different definition and are identified with the kernels of such
signatures. There also exists a presentation [18,19] based on a definition
of a signature on a ring and the generalization of the infinite primes of
Harrison [17].

We defined the real spectrum of level n of A, denoted R,-specA, to
be the set of all orderings of level n on A. A topology on R,-specA was
defined, and it was shown that R,-spec acts a contravariant functor from
the category of commutative rings with unit into the category of topological
spaces. For other work in this area see also Berr [11] and Kanzaki [18,19].
In future papers we hope to further investigate real algebraic geometry
of higher level. In this paper we will investigate how orderings may be
extended or restricted from one ring to another. We start by restating
some definitions and conclusions of [4].

Giving a ring A, let A = A\ {0}. If p is a prime ideal of A, let k(p) be
the quotient field of A/p. Lastly, let (2n) denote the 2n'" roots of unity
u(2n).

Definition 1.1.  An ordering « of level » on a ring A is an ordered
collection of subsets of A:aq,...,as,, such that
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i)A=01U---Uay,

ii) a; Naj = pq a prime ideal, and denoting af = a; \ pa

iii) af + af C a’

iv) a;‘-a;ga; where k =t+j ifie+j<2n,and k =i+ 37— 2n if
t+ 7> 2n.

Remark 1.2 The arrangement (or indexing) is considered part of
the definition. This yields a bijection between orderings of level n and
pairs (g, x), where p is SpecA and x is a signature of level n on k(p) The
bijection is given by @ — (pa, Xa) Where xa(a: + pa) = ¢t and ¢ = ™/,

Definition 1.3.  The set of all orderings of level n on a ring A is
called the real spectrum of level 7 of A and denoted by R,,-specA.

Definition and Remarks 1.4. If a is an ordering of level n whose
associated signature xo maps k(gp,) onto u(2n), then a and x, are both
said to have exact level n. The set of all orderings of exact level n is
denoted by Ry-specA.

If a is an ordering of level = on A associated with a signature x map-
ping k(pa) into u(2n), then a; = {a € 4 | (a+pa) € x~1((e™/)¥)U{0}}.
If x maps into p(2m) G p(2n), so n/m € Z, then there is an ordering 3
of level m associated to x. This implies 3; = @;.,/m, Where a; = Bjm/m
if n/m divides j and o; = pg if n/m does not divide j. Therefore ev-
ery ordering a of level n associated with a signature x which maps onto
pu(2m) € p(2n) is associated to an ordering 3 of level m. We shall not
distinguish between orderings obtained from the same signature, and will
indicate the level by a left subscript where needed. Thus, for 3 as above,
8 = na. That is, when a is written as an ordering of level m it equals 3.

Definition 1.5. We writea C 3 if a; C 5; for all 7, and we say 8 is
a specialization of a. In this situation, « is called a generalization of 3. Let
a and 3 be orderings of levels m and n respectively, where s = lem(m, n).
Then we write a C 3 if ;a C ;3. Note that « C 3 if and only if ;o C ;3
for all £ divisible by s, and that o C 3 implies the level of 3 is less than or
equal to the level of a.

Definition and Remark 1.6.  In order to topologize R,-specA
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we view f € A as a function from R,-spec into IIk(p,) by setting f(a) =
f+ pa € k(pa). Given x, and ¢ as in Remark 1.2, we define D(f,t) =
{a € Ry-specA| xa(f(@)) = ('} = {a| f € a7} where 1 <t < 2n. The
sets D( f,t) make up a subbasis for a topology of R,,-specA. By definition
its basis is given by the sets NI_,D(fi,t;). This topology is called the
Coste-Roy (C-R) topology on Ry-specA. When considering the topology of
R,-specA this is the topology to which we are referring. There is a second
topology called the Tychonoff topology. A set is called constructible if it
can be obtained from the sets D(f,t) by a finite sequence of taking unions,
intersections, and complements. The constructible subsets of R,-specA
form a basis of the Tychonoff topology. The Tychonoff topology is finer
than the C-R topology. In the C-R topology R,-specA is compact, and in
the Tychonofl topology it is compact and Hausdorff.

2. Extensions of orderings. Let K be a field, V a valuation ring
of K and I the maximal ideal of V. A character x on K is compatible
with V if (1 + I) C kerx. Each character x, compatible with V', yields
a character ¥ of V/I called the pushdown of x (with respect to V). Fur-
thermore, if x is a signature then ¥ is a signature [9]. Therefore if « is
an ordering of level n on K and 14 I C a3, = ker xo, we may define the
pushdown of & on V/I. It is written as @, where a; is defined to be the
image of a; NV under the canonical map *:V — V/I.

Definition and Remark 2.1 Given F a field and a € R,-specF,
let A(a3,) = {a € F| Jieny with t £ a € a3, }. If A(x) is defined as in
Becker, Harman and Rosenberg [9, page 60], and if x, is the signature
associated to @ by Remark 1.2, then A(a3,) = A(xo). Similarly, if P =
a2, and A(P) is defined as by Becker [7, page 14], then A(P) = A(a3,).
The maximal ideal of A(a3,) is I(e3,) = {a € F|Vpen 1/nta € a3, },
and this agrees with the definition of I(P) and I(x ) found in the literature
[7,9, respectively].

Becker has shown [6, Theorem 3.4] that A(a3,) = A(x«) is the small-
est valuation ring compatible with y,, and that the pushdown of x, to
A(as,)/1(a3,) is the signature of an archimedean ordering of level 1 [9,
Theorem 2.7(iii)).

Definition 2.2. Let A D B be rings, with @ € R,-specA and g €

Produced by The Berkeley Electronic Press, 1993



Mathematical Journal of Okayama University, Vol. 35[1993], Iss. 1, Art. 6

48 S. M. BARTON

R,,-specB. If | = lcm(m,n), and ;o and ;8 are defined as in Remark 1.4.
Then we say a (or ;a) is an extension of 3 (or ;3), or a extends 3, if
;N B =3, fori=1,...,2n. If o extends 3, and if the exact level of a
equals the exact level of 3, then a is called a faithful extension of 3.

Thorem 2.3. Let A D B be rings with o € Ry-specA and 3 €
Ry -specB. If a extends 3 then m divides n, so that in particular n > m.

Proof.  Let | = lem(m,n) and assume { # n. By Remark 1.4, we
know ja; = p, if 7 is not divisible by I/n. This implies ;3; = pg when ¢
is not divisible by //n. Therefore Im(x3) C u(2n), but the image of x3 is
p1(2m), so m divides n.

We will now prove a generalized version of Brumfiels place extension
theorem [13, page 152, 7.7.4]. This requires that we extend the idea of
convex sets from the setting of orderings of level 1, [6, pages 26 and 27], to
that of orderings of level n. It also requires that we define an archimedean
property similar to that of Becker [5, pages 20-21].

Definition 2.4. Let A D B berings, and let a € R,-specA. If I is
a subset of B we say I is convex in B with respect to a, if given ¢, d, and
c¢—din (a3, N B) then ¢ € I implies d € /.

Definition 2.5. Let K D F be fields, and a € R,-speck’. We say
K is archimedean over F' with respect to « if for all @ € K there exists
b € (a3, N F)such that b+ a € o},,.

Theorem 2.6. Let L be a field of characteristic zero, and o« €
Ry-specL. If R is a local subring of L whose mazimal ideal M is convex
in R with respect to o, and U(R) is the units of R then

i) Zt C (U(R) N «3,), where ZT is the positive integers.

it) R = {a € L|3r € (U(R)Na3,) such that r+a € a3} is a valuation
ring compatible with xo and has mazimal ideal M = {a € L|Vr € (U(R)N
aj,) we have r +a € o3, }.

iii) R is dominated by R (ie. RC R and MNR=M).

iv) Since x4 ts compatible with R we may push doun Xa t0 Xa a sig-
nature of R/M [9). The residue field R/M is archimedean over R/M
with respect to the ordering on R/ M induced by Ta, (where archimedean
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is defined as in Definition 2.5 since Y, is not necessarily of level 1).

Proof. 1) This is clear since Z* C (RN a3,) and M is convex in R.

ii) Clearly 1 and 0 are in R, and if a € R then —a € R. Let a,b € R
then there exists 7, and rp in (U(R) N a3,) such that r, + @ and r, £ b
lie in a3,,. This implies ro + rp £ (a+ b) and 7, + 75 + 1 £ (a + b) are in
a3.. Since both 7, + r5 and 7, + 75+ 1 lie in a3, and at least one of them
lies in U(R), there exists an r € (U(R) N a3, ) such that r + (a + b) € a3,,.
Therefore R is additively closed. Note also that (rary + ab) = (1/2){(rs +
a)(ry + b) + (ry — @)(ry — b)} is in a3,,, and that a similar identity implies
(rars — ab) € a3,. So (rars £ ab) € a3, and R is multiplicatively closed.
Therefore R is a ring. By definition R contains A(Xa): but A(xa) Is a
valuation ring compatible with y,. Therefore, by [9], R is also a valuation
ring compatible with x,.

Let a,b € M and » € R. To show M is an ideal, we note that if
te (U(R)Nas,) thentt(a—b) =(¢t/2+a)+(t/21d)isin a},. So (a—1b)
is in M. It remains to show that ra € M. By definition, (¢ + a) € o}, for
all tin (U(R)Na3,), and there exists s, € (U(R)N a3, ) such that (s, £ )
is in a%,. As above [s,t £ 7a] € a},. Since any s in (U(R) N a3,) can be
written as s,t for some ¢t € (U(R) N a3,), we see that (s + ra) lies in a3,
for all s in (U(R) N a3,). Therefore ra € M and M is an ideal.

If I is the maximal ideal of R then I D M, and since R is compatible
with y we have 1 + 1 C kerxo = a3,. Let a € I and r € (U(R) N a3,),
then r+a=r(1+7 %) € (a3,)1+I)Caj,. Thusael=aec M.
Hence M is the maximal ideal.

iii) By Hardy and Wright [16, page 235, using d = 2n]

2n—1
271)‘)( Z( 1 2n—-1- h(zn )[(‘X + h)?n h‘zn].
h=0
for X € R. Since (2n)! € (R)QQQn) this implies R C (a5, NR) — (a3, N

R). Thus R C Rif (RN a3,) C R. By definition (U( )Nnas,)C R. So
assume m € (M Nal,), then (m+ 1) € (U(R)Na3,) C R. Since 1 € R
this implies m € R. Therefore R C R.

Since R C R we have M D (J‘I N R), it remains to show M C MNR.
Let a € M and suppose a € M (so a # 0); then a®* € (M N a3,) but
a? ¢ M. Let b = a*". Then 1/b € R, which implies there exists r €
(U(R)Na3,) such that (r+1/b) € a3,. But b € a3, and r € (U(R)Na3,),
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so (bx1/7) € o3,,. Thus by the convexity of M we have 1/r € M. This is
impossible since r € U(R), therefore (M N R) = M.

iv) Since R is a valuation ring of L compatible with y,, we know
that Yo is a signature of R/'l/I So Yo induces an ordering on R/M via
%a(€) = x(¢). Let € R/M, if z € R then by definition of R there exists
y € (U(R) Nker x4) such that (y £ z) € ker x4, but then (§ £ Z) lies in
ker X, wWith § € (R/M N ker x,). Therefore R/ M is archimedean over
R/M.

The following theorem follows directly from [7, Satz 3.1], even with
our more restrictive definition of a faithful extension.

Theorem 2.7. Let L/K be a finite extension of fields and o €
R,-specK. Let k be the residue class field of A(a3,), and & the pushdown
of a. Let A be a valuation ring of L such that AN K = A(e3,), and let
I be the residue class field of A. If [v(A):v(A(a3,))] is relatively prime to
n, and & has a faithful extension to I; then o has a faithful extension to
L.

Definition 2.8. Given a field F with « € R, -specF, we define
K to be a real closure of level n of (F,a), if K is a maximal algebraic
extension of F' admitting a faithful extension of a. If & is that extension
we write (K, &) is a real closure of (F,a). A field L is a real closed of level
n if for some 3 € R,-specL, (L, (3) is the real closure of (L, 3).

Remark 2.9. By Becker [7, Satze 3.6 and 3.7], if (L,3) is real
closed of level n, and « is any ordering in R,,-specL, then aq, = J2,. By
[9, Proposition 3.21] x, and x5 have the same exact level and xo = (x3)"
where (r,n) = 1. Therefore there are exactly ¢(n) orderings of exact level
n, and if & € R,-specL then a; = 3; where £ = ij mod 2n and (j,n) = 1.
Thus if (L, ) is real closed of level n for some 3, then L is real closed of
level » with respect to all of its orderings of level n. Since our definition
of faithful extension is more restrictive than in Becker [7], our definition
of real closure is different. In our case (A, &) is a real closure of (F,a)
implies &; N F' = ay; in Becker’s notation it only implies &2, N F = ag,.
Thus in Becker’s notation there are ¢(n) choices for the ordering on K
that make K a real closure of (F,«). However the definitions of when L
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is real closed of level n agree, since in our case (L, 3) real closed of level n
implies it is real closed for all orderings of level n on L.

Definition 2.10. Let A be a commutative ring and « € R,-specA.
We will denote by & the induced ordering on k(p,) = ¢f(A/ps). Fur-
thermore we shall denote by k(a) an arbitrary real closure, of level n, of

(k(9a), @).

Definition 2.11. Let A and B be commutative rings with orderings
« and 3 respectively, both of level n. Then any ring homomorphism A: 4 —
B is called order preserving if A(a;) C 5; for all 1.

With this definition the following lemma is clear.

Lemma 2.12. Ifa and 3 are in R,-specA, then a C 3 if and only
if pa C pg and the canonical homomorphism pq g: Afpa - Afog C k(pga)
defined by pag(a+ pa) = (@ + pg) is order preserving.

In order to prove our next thorem we need the following lemma.

Lemma 2.13 Let (K.,a&) and (k,3) be two real closed fields of level
n. If there erists a place A from K onto k U co with valuation ring V and
a; = (&; NV), then there ezists an v with (r,n) = 1 such that Ma;) = f;
for some j = ir mod 2n.

Proof.  Without loss of generality we may assume A is the canonical
place associated to V' and k is its residue class field. By Becker, Harman
and Rosenberg [9, Theorem 1.12 and Prop. 2.5], there exists an ordering
of exact level n on K, called it 7, such that A(y; NV) = 3;. And by
Remark 2.9, we see &; = y; where j = ir mod 2n and (n,r) = 1. Therefore
Mai) = AMé@;nV) = Ay; N V) = 3; where j =ir mod 2n and (n,r) = L.

Theorem 2.14. For a,3 € Ry-specA, a C 3 implies po C pg
and the map pog:Afp — Afpp extends to a place fi:k(a) — K U oo
where K is a real closed (of level n) extension of (k(pg),5) and k(a) is an
arbitrary real closure of (k(ga),a). Conversely, if po C pg and the map
P8t Afpa — Afpp extends to a place ji:k(a) — K Uoo where K is a real
closed of level n extension of(k(pg),ﬁ) then a; C 3; where j = ir mod 2n
for some r such that (r,n) = 1.
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Proof.  The second statement can be proved using Lemma 2.13. To
prove the first statement we assume o C 3. Then p, g: Afpa — Afpg is
order preserving and kerpo g = 9p/pa- Set Aap = (A/Pa)kerpq - The
ring A, g is a local subring of £(p.) and p, 3 extends uniquely to a homo-
morphism p: Ay g — k(pa) via pu(r/s) = ptag(7)/tta,s(s) where s is not in
the kernel of py 5. Since p, g is order preserving clearly p is as well.

To apply Theorem 2.6 we need to show that the maximal ideal of
Au g, which is (ker “a».@)kerua,g = ker 4, is convex on A, g with respect to
a. Let ¢ € (kerpnasz,) with d and ¢ —d in (a3, N A, g), by Definition 2.4
we need to show that d € keru. Let € = (¢ — d) € (&3, N Aa.g), then
p(e) = p(e —d) = p(e) — p(d) = —p(d). Since p is order preserving both
—u(d) = p(e) and p(d) are in 3,,. This implies u(d) = 0, so d € ker p,
and the maximal ideal of A, 3 is convex in A, g.

Applying Theorem 2.6 we may extend y to a place [i as in the following
diagram.

k(a)
o
/iaﬁ -u—> K
U U
Aap — k(o)

Here Aaﬂ@ is a valuation ring compatible with the ordering associated with
k(a), and we may assume K is the residue field of k(a) under fg.

The only statement left to prove in the first direction is that K is a
real closed (of level n) extension of (k(so,g),_[?). Using the notation & for
the faithful extension of & to k(a) we see (& N Ay ) gives an ordering of
exact level n on A,3. Now i = ¢-i*, where ¢ is an isomorphism and
1* is the canonical pushdown map onto the residue class field. Therefore,
since the level of the pushdown of any ordering is less than or equal to the
level of the original ordering, if 3; = ji(&; N A, ), then 3 is an ordering of
level less than or equal to n on K. On the other hand 3 extends 3, so by
Theorem 2.3, the exact level of 8 is greater than or equal to n, the exact
level of 5 Therefore ,é is an ordering or exact level n.

If K is not real closed of level n, then there is a ﬁnjte extension NV of
K which has an ordering that is a faithful extension of 3. Let m = [N: K.
By Endler [15, Theorem 27.1, page 206], there exists a finite separable
extension L of k(a) of degree m, with valuation ring B over A, g and
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associated valuation w lving over the valuation v of i’iah@, whose value
group is the value group of v, and whose residue class field is N. Now by
Theorem 2.7 there is a faithful extension of & from k(a) to L. But this
contradicts the fact that k(a) is real closed of level n. Therefore K is real
closed of level n.

3. Real closures of higher level.  We first note some definitions
and results of [4]. Let A and B be commutative rings and ¢:A — B
be a unitary ring homomorphism. If 3 € R,-specB, and a is the indexed
collection of subsets of A where a; = ¢~1(3;), then « lies in R,-specA. The
map @.: Ry,-specB — Ry-specA defined by ¢.(3) = a where a; = ¢~ 1(5;)
is continuous in the C-R topology of the nth level real spectra, and in the
Tychonoff topology. Note 3 C 6 if and only if ¢.(3) C ¢.(6). In addition
R,-spec is a contravariant functor from the category of commutative rings
with unit into the category of topological spaces, thus (¢t). = ¥up..

For clarity in the proof of the next theorem we here restate a theorem
of Becker using the definitions and notations of this paper.

Theorem 3.1 [10, Theorem 3.8].  If 8 is an ordering of level n on
a field L then the following statements are equvalent:

i) (L,B) is real closed.

i) A(33,) is henselian, and its residue field is real closed of level 1.
If v is the valuation associated with A(J33,). then v(33,) = nv(L) and
pr(L) = v(L) for every rational prime p not dividing n.

Theorem 3.2. Let (k,&) be a real closed extension of (F,a); as
defined in Definition 2.8. Let (R, &) be the algebraic closure of (F,«) in
(K,&), then (R, &) is also real closed.

Proof.  Since (K,a) is real closed, all the conditions of statement
Theorem 3.1(ii) hold for A(a3,). We must show that they hold for A(a3,,).
Note that by definitoin, A(&3,) = A(63,) N R and A(a3,) = A(a3,) N F.
For ease of notation we let A = A(a3,), A = A(G3,) and A = A(a3,). The
maximal ideals were defined in Definition 2.1 and are denoted I = I(a3,,),
I = I(&3,), and I = I(a3},). We shall denote the respective residue class

fields by k, & and k. If 9, # and v are the respective valuations, then
5(}3) = #(R) and #(F) = #(F) = ©(F), so we may write all the valuations
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as v.

Let f(z) € A[z] be a monic polynomial, and let by € A C A such that
bo is a simple root of f(z) in k. Since A is henselian there exists a root
b of f(z) in A such that b = by mod I~.~This b also lies in R, since R is
algebraically closed in K, so b € (RN A) = A. Now since (I n A) = I,
this implies b = by mod I. Therefore A is a henselian valuating ring. It is
easy to show that k is algebraically closed in k, a real closed field of level
1, and hence k is a real closed of level 1.

It remains to show v(a3,) = nv(R) and pv(R) = v(R) for ev-
ery rational prime p not dividing n. To show pv(R) = v(R) we note
pv(R) = v(RP) = v(KP N R) which Brown [12, Prop. 2.5] has shown
is v(K?) N v(R). If p does not divide n, then since K is real closed
v(KP) = v(K). Therefore, pp(R) = (v(K) N v(R)) = v(R), if p does
not divide n.

To show v(a3,) = nv(R), we start by showing_ v(&3, N R) = (v(a3,)N
2(R)). Obviously, v(&3, N R) is contained in v(a3,) N »(R). To obtain
the other inclusion, let @ € K such that nv(a) is an arbitrary element of
(ne(K)Nno(R)) = (v (é%) N z(R)). Then v(a™) = v(b) for some b in R,
where a™/bis a unit of A. Consider the pushdown a™/b of a"/b. Since & is an
ordering of level 1 either a"/b or —a?/bis in a,. Without loss of generality
we may assume a™/b € @z, since v(b) = v(—b). Because the residue class

field k is real closed of level 1, the polynomial z* — a*/b in k[z] has a root

in k. Since A is henselian, K" contains a root of the polynomial z™ — a’/b.
Therefore a™/b = d" for some d € K. This implies (a/d)" =b€ R, so
nv(a) = v(b) = v((a/d)") € v(K™ N R). But since K™ C (&3, U —a3,), we
also have (a/d)" € +a3,,. Therefore since v(—(a/d)”) = v((a/d)") we see
that nv(a) = v(b) = v((a/d)"*) € v(a3, N R).

We have shown v(a%, N R) = (v(a3,) N v(R)). Therefore, v(@3,)
v(é3, N R) = v(a3,) N v(R) = no(K)Nv(R) = v(K™) Nv(R) = v(R") =
nv(R).

It

Lemma 3.3. Let K and L be fields, and let ¢ be an isomorphism
from K onto L, where a and 3 are orderings of exact level n of K and L,
respectively. Assume further that ¢*(3) = a, then given any real closure
k(a) of (K,a), ¢ can be e:z:tended to an isomorphism ¢ from k(a) onto
some real closure of (L,3). (We shall show later that @ is unique in the
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(93]
[, ]

sense that for a particular k(a) and L, if this isomorphism ezists, it is
unique.)

Proof.  Since k(a) is an algebraic extension there exists a normal
closure, F, of k(«) over K. This F is the splitting field over K of some set
S of polynomials in K[z]. Let S’ be the corresponding set of polynomials
in L[z], and let L be the splitting field of 5" over L. Then ¢ extends to an
isomorphism @: F — L and we have

F 2 1
|
k(o)

|

K = L

Let L = @(k(a)), and let 3; = @(&;) where 4; is the extension of a; to k(a).
Clearly the 3; form and ordering. Since e~ 1(3NL) = L,E“l(,i-) Nneg~Y(L) =
&; N K = a; we see that ;5’.; N L = j;, therefore L has an ordering of level
n that extends 3. By Theorem 2.3 it has exact level n. Therefore 8is a
faithful extension of 3.

We now have

F >—»i
| o
k(a) —» L
| |
Eo—w L

where L is an algebraic extension of L with an ordering of higher level
faithfully extending the ordering of L. If L is not real closed of level n we
may repeat the above argument on @': L — k(a) to get an isomorphism
from a real closure of L to an algebraic extension of k(o) having a faithful
extension of a. Since k(a) is real closed of level n, this extension must be
k(o) itself. Hence L is a real closure of (L, ).

The following corollary is clear.

Corollary 3.4. If (K,a) is a real closed field of level n and L is
isomorphic to K, then L is real closed of level n for some (and hence by
Remark 2.9 all) orders of level n.
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Lemma 3.5. Let (fJ,B) be a real closure of (L,3) where 3 (and
thus 3) has ezxact level n. If ¢ is an automorphism of L fixing L, then it
is the identity. That is, Aut(L/L) = 1.

Proof. Assume 72 is odd, then by Becker [7, Satz 3.6], L has a
single ordering of level 1, namely & where a; = L? and &; = —L?. Since
¢(G2) = ¢(L?) = L? = @3, by the theory of ordinary real closed fields we
see that ¢ extends to a unique automorphism of the real closure of level 1
of L [1], here denoted by (K,&). In this case Gp = K2 and a; = —K2. In
addition, we have

(K,&) % (K,6)
I I
(z,la) LR (i,la)
AN §

Since K is a real closure of level 1 of L we know that Aut(K/L) = 1.
Therefore ¢ is the identity and this implies ¢ is the identity.

Next we assume n is even, then by Becker [7, Satz 3.7] L has exactly
two orderings of level 1; v, = L2U L% and §; = L2 U —7L? where 7 € L
such that 7 ¢ L2 U — L2, Either ¢(v2) = 72 and (62) = 62 or ¢(72) = &2
and ¢(62) = 72. Note that 3;n (L?U —L?) = § for every odd i, but that
(B;NL) # 0 since 3 is a faithful extension of 3. Therefore we may pick 7 in
L but not in (L2U —L?) such that 7, = L2UTL? and §;, = L?u—7L% We
now see 2 N L = L?urlL? # L?U—-7L?2=6NL. ThusyoNLand 62N L
are distinct orderings of level 1 on L. Furthermore, ¢(é2N L) = éNL
and ¢(y2 N L) = 42 N L since ¢ is the identity on L. Thus ¢(y2) = 72 and
©(62) = 6. Therefore any automorphism ¢: (L, 3)» (L, 3) sends each of
the two orderings of level 1 of L to itself. Now, by the theory of ordinary
real closed fields 1], we see that ¢ extends to an automorphism of a real
closure of (L,v), here denoted by (K, &). Thus we have

(K,7) 5 (K.,7)
I |
(Lyy) 5 (L,y)

|
4o
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Since Aut(K'/L) = 1, the isomorphism ¢ is the identity. Therefore if
(L,3) is a real closure of level n of (L,3) then Aut(L/L) = 1.

Lemma 3.5 allows us to add uniqueness to the statement of Lemma 3.3,
We restate the lemma here as Theorem 3.6.

Theorem 3.6. Let ¢: K — L be an isomorphism from K onto
L where o and 3 are orderings of ezact level n of K and L respectively,
such that .(3) = a. Then given any real closure k(a) of (K,a), ¢ can
be extended to an isomorphism @ from k(a) onto some real closure, L, of
(L,3). The extension is unique in the sense that, for a particular k(«)
and L, if this is isomorphism exists it is unique.

Proposition 3.7. Let A S B % C be ring homomorphisms and
a, 3 and v orderings of A, B and C respectively.

i) If pu(B) = @ then for each k(3). a real closure of (k(pg),B), there
exists a monomorphism from some real closure of k(py) into k(3). This
monomorphism is the unigue monomorphism between these fields extending
.

i) If 9«(3) = a and ¥.(y) = 3, and if ¥ is an extension of ¥ mapping
a real closure k(3), of (k(pa),3), into a real closure k(y), of (k(9+):%),
and & is an extension of ¢ mapping a real closure k(a), of (k(pa), &), into
k(3), then there is an ertension 6 of ¥ - mapping k(a) into k() such
that -3 = 6.

Proof. 1) By [4] the map ¢ induces an order preserving monomor-
phism @:(k(pa), @) — (k(goa),s) Threrefore, we have k(py)smM C
k(pg). Let k(3) be a real closure of (k(p3).3) and M be the algebraic
closure of M in k(3). Then by Lemma 3.2, the field M is real closed of
level n. By Lemma 3.3, there is an extension, ¢! of ¢~', mapping M
isomorphically onto some real closure of level n of (k(p4), &), denote it by
k(a). Thus (¢7')~! = ¢ maps k(a) isomorphically onto M C k(8). If
o:k(a) — k(3) is another such monomorphism then we have

k(a) 2 M Ck(B) ko) »— N Ck(3)
| and )
k(pa) —— M Ck(pp) k(pa) == M C k(pp)

where N is a real closed of level n by Corollary 3.4. In fact N is a real

Produced by The Berkeley Electronic Press, 1993

13



Mathematical Journal of Okayama University, Vol. 35[1993], Iss. 1, Art. 6

58 S. M. BARTON

closure of M, since k(a) is algebraic over k(g,) implies that V is algebraic
over M. If M # N then we consider M N, the composite of M and N in
k(8). Then M N is algebraic over M, and since MN C k({3) we see that
the field M N has an ordering faithfully extending the ordering of M. But
M is real closed, therefore MN = M. Similarly N = MN, so M =
Therefore, by the uniqueness in Theorem 3.6, we have ¢ = ¢.

ii) We have the diagrams

ko) & k(B L k() k(lﬂ
| | |
A % B X ¢ 4% ¢

Since Li/-c,a is an extension of ¥ - mapping k(a) monomorphically into
k(7), such extensions exist. Let # be any extension of ¥ - mapping k(a)
monomorphlcally into k(7). By the uniqueness of such extensions in part
(i) we have § = ¥ - .

Theorem 3.8. Let o € R,,-specA, and p: A — B a ring homo-
morphism, so that B may be viewed as an A algebra. Then we have the
commutative diagram

B _l* B ®a k(pa)
ol |5
=% k(pa)
where k(pa) = ¢f(A/pa), To is the canonical map a — a+ p, and it and j
are the canonical maps given by i(b) = b® 1 and j(c) = 1 ®c. Let & be the
ordering on k(pqy ) induced by o, then the map i. induces a homeomorphism
between j; (@) and ;! (a).

Proof.  We first assume j;!(&) is not empty. Since ig = jr, we
know that ¢,i, = Ta+j.. This implies @ i.(j71(@)) = Todu(JT1(@)) =
Ta, (@) = a, therefore i,(j71(&)) C ¢; (). To show i. maps j; !(&) onto
@y 1(&) we first show that ¢ !'(a) C imagei.. Let 3 € Rp-specB with
@«(B) = a. By [4] there exists an order preserving map @:k(pa) — k(fg)
such that @7, = mgp. Therefore, we may define 7: B ®4 k(pa) — k(pg)
via 7(b®¢) = 7r,3(b)<,5((‘) since mg(b)@(c) is bilinear and balanced over
A. By definition mi = =g, thus if 3 is the unique ordering on k(pg)
extending 3 then i.x (ﬂ~) 7g+(3) = B. Therefore 3 € imagei.. Let y €
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Rp-spec(B ®4 k(pa)) such that 3 = i,(7). Then a = ¢.(8) = ¢.i(y) =
o+ J-(7). Thus, ju(7) = &, so that v € jZ'(&). Hence, 3 € ¢! (a) implies
B € i.(7 (@) and so iu(j71(&@)) = ' (a)

To show 4, is one-to-one on j (&), we first note that since k(p,) =
qf(A/pa), every element of (B ®4 k(g )) can be written as b® 1/a@ where
a € A/py and b € B. Therefore, to show two orderings on (B ® 4 k(¢,))
are the same it is enough to examine elements of the form b ® a. Let
B8 = i.(y) = i.(6) with v and é in j7!(&). Then 1 ® ¢ € v if and only
if 1®@c € 6. Similarly b6 ® 1 € v; if and only if 6® 1 € é;. Since
bRc=(b@1)(1®c) we see that b®@ c € §; if and only if b® ¢ € =,
Therefore ¥ = é and i. is one-to-one on j; !(&).

We have shown i,:j71(&) — ¢ (&) is a bijection. It remains to
show i, is homeomorphic on j;!(&). By [4, Prop. 4.4] the map i, is
continuous, so we need only show 7, is an open map. Note that ¢71(a)
is a Tychonoff closed subset of the compact Tychonoff space R,-specB,
and j71(a) is a Tychonoff closed subset of the compact Tychonoff space
R.-spec(B®ak(pq)). Therefore i,:j7 (@) — ¢;!(a)is a homeomorphism
in the Tychonoff topology, since it is continuous and both spaces are com-
pact. Now since é C v if and only if 7,(8) C i.(y) we see by [4, Prop. 3.6]
that 7, is an open map. Hence i, is a homeomorphism from j (&) to
e (a).

We now consider the case jo!(@) = 0. Suppose v.(8) = a so that
@-1(a) # 0. We shall construct an ordering ¥ on B ® 4 k(o) such that
J«(7) = @&. Define b® 1 € v; if and only if b € 3;, and define 1@ ¢ € v;
if and only if ¢ € &;. Now define b® ¢ € v, if and only if (b ® 1)) € 1
and (1® c¢) € v;, with ¢ and j such that k = i+ j if i + 7 < 2n and
k=i+j—-2n if i+ j > 2n. As above, every element of (B ®. k(pa))
may be written as b® ¢, so we examine only b® c. If (b® ¢) = (d® €) then
(b®@c)=(bRef) = (bs(f) ®e) for some f € k(py), therefore it is easily
shown that two representations of the same element lie in the same ;. It
remains to verify that the +; form an ordering.

From the definition it is clear that B ® 4 k(o) = 1 U -+ U7z, If
(a ®b) lies in (4; N 7;) then either a € (8, N 3;) = pg for some r and s or
b € (&m N &,) = 0 for some m and n. Therefore a ® b € (y; N 7;) if and
only if a ® b € pg ®4 k(pa). This is a prime ideal, since pg is prime and
k(ps) has no zero divisors.

To show ¥* + 4 C 47, let a®b and ¢ ® d be in 77, then a and ¢ do
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not lie in g, and neither b nor d are zero. As before, a®b = e® 1/f
and c®d = g®1/f where e ® 1/] and g ® 1/f lie in 47. Therefore
(0®b)+(c®d) = (d@1/))+(901/]) = (e +9)®1/]) € ¢ since e, g
and e + g are all in the same ,6’;.

Lastly, it is easy to see 7/ -7 C 7} where k =i+ ifi+7<2n and
k=1i4+3j—2n if i+ j > 2n. Therefore 7y is an ordering on (B &4 k(pa))
with j.(7) = & But this contradicts j; (&) = 0, so j;'(&) = 0 implies
@l (a) = 0.
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