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1. Introduction and preliminaries. The aim of this paper is to give the
general form of Gaussian covariance operators in certain Banach spaces in
terms of p-summing operators. Let E be a Banach space with the dual E’,
and R: E' — E a linear operator. The operator R is called symmetric if
(Rx, v') = (Ry', x') for all x', ¥ € E'. Every symmetric operator is con-
tinuous. The operator R is called positive if (Rx, x') =0 for all x' € E.
The operator R is called a Gaussian covariance operator (Gaussian covari-
ance) if it is a covariance operator of some Gaussian Radon probability mea-
sure on E, Every Gaussian covariance operator is symmetric and positive.
For a symmetric positive operator R: E' — E, there exists a continuous
linear operator T from E’ into an everywhere dense subspace of some Hil-
bert space H such that R = T'T, where T denotes the conjugate of T (see
Vakhania [16]). This expression is unique up to a unitary equivalence. The
operator T is called the square root of R and denoted by R*. Then a problem
of our interest is how to find necessary and sufficient conditions on RY?for
which R : E' — E is a Gaussian covariance. As is well known, a necessary
condition is given by the following: If R: E' — E is a Gaussian covariance,
then R'?: E' = H is p-summing for every p > 0 in the sense of Pietsch [11].
Now we shall give a slight generalization of this result by introducing p-
summing operators in locally convex spaces.

Let X be a locally convex space and A a subset of X. Denote by A® the
polar of A, i.e., A =lx' € X': |{x,x')| £1 for all x € A|. Then, by
the Hahn-Banach theorem, the bipolar A of A is the closed convex balanced
hull of A. A linear operator S from X into a normed space Y is called p-
summing, 0 < p < oo, if there exists a neighborhood U of zero in X such that
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for all xy,...,x0, € X. The set of all such S will be denoted by 7,(X, Y).
Then, we have the inclusion m,(X, Y) C (X, Y) for 0 < p < q. Let us
denote by E¢ the dual of a Banach space E equipped with the compact conver-
gence topology ¢(E'. E). In this case, ¢(E’, E) coincides with the topology
of uniform convergence on compact convex balanced subsets of E, and so we
have (E:)' = E. We show that if R : E' - E is a Gaussian covariance, then
RY: E. - His p-summing for every p > 0.

Here we want to characterize Banach spaces E having the following prop-
erty: A symmetric positive operator R: E' - E is a Gaussian covariance if
and only if R*: E. » H is p-summing (0 < p < o). It is known that E has
this property for p = 2 if and only if it is of type 2 (see Chobanjan and
Tarieladze [1] and Linde, Tarieladze and Chobanjan [4]). Under the assump-
tion that E has an unconditional basis, it is also known that E has this proper-
ty for p = 1 if and only if ¢, is not finitely representable in E (see Chobanjan
and Tarieladze [1]). Remark that the second result is false if E does not have
an unconditional basis. We shall extend their results to the general case 0 <
p < oo.

In Section 3, we characterize the Banach space E having the above men-
tioned property. The main results of this section are stated as follows :

(1) E has this property for p € [2, oo) if and only if it is of type 2.

(2) E has this property for p € (0, 1) if and only if it is of cotype (2,
p) in the sense of Mathé [7].

(3) Letl =7 < 2. Then E has this property for some p € (r, 2) if
and only if it is of stable type r and of cotype (2, r).

In Section 4, we characterize Banach spaces E for which ¢, is not fi-
nitely representable in E. It is shown that if E has the above mentioned prop-
erty for some p € (0, ), then ¢, is not finitely representable in E. But in
general, the converse is not true. More precisely, there are Banach spaces
E of stable type p and of cotype 2 which are not of cotype (2, p), where 0 <
p < 2. Now we introduce the class GL.. We say that a Banach space G is in
the class GL if every 1-summing operator from G into any Banach space F’
factors through some L,. It is known that if E has an unconditional basis, or
more generally, if F has local unconditional structure (l.u.st.) in the sense
of Gordon and Lewis [2], then both E and E' are in the class GL (GL-spaces).
Suppose that E' is a GL-space. Then it is shown that ¢, is not finitely rep-
resentable in E if and only if it has the above mentioned property for each
(some) p € (0, 1).

Throughout the paper, we assume that all linear spaces are with real
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coefficients.

2. Type and cotype of Banach spaces. Let 0 < p = 2 and denote
by len} an i.i.d. sequence of Rademacher random variables (r.v.’s), and by
{8} an i.i.d. sequence of p-stable r.v.’s with the characteristic function (ch.
f.) exp(—|t°).

A Banach space E is called of Rademacher type p (R-type p) if for each
sequence | x,| in E, 20, | xa[® < oo implies the series X, xne, converges al-
most surely (a.s.), and, it is called of stable type p(s-type p) if 2, | xn [ < o0
implies the series 2, xn,0%" converges a.s. It is well known that s-type p im-
plies R-type p (see Schwartz [14]), but in general, the converse is not true
except for p = 2. For the case p = 2, s-type and R-type coincide, and so
we call it type 2.

A Banach space E is called of Rademacher cotype q (R-cotype ¢), 2 <
g < oo, if for each sequence |x,} in E, the a.s. convergence of the series
2 nXnen implies 2., [ xn[? < oo, and, it is called of stable cotype q (s-
cotype q), 0 < ¢ = 2, if the a.s. convergence of the series 2, x,83¥ implies
2n | xal|? < co. It is well known that every Banach space is of s-cotype ¢
with ¢ < 2 (see Maurey [8]). For the case ¢ = 2, s-cotype and R-cotype
coincide, and so we call it cotype 2.

Let E, F be Banach spaces. We say that E is finitely representable in
F if for each A > 1 and each finite dimensional subspace E, of E, there ex-
ists a finite dimensional subspace F, of F such that d(E,, F,) < A. Here

d(E,, F\)=inf{|T|-IT'|: T: E, - F, is isomorphism}

denotes the Banach-Mazur distance.

It is well known that E is of R-cotype g for some ¢ € [2, o) if and only
if ¢, is not finitely represntable in E. For the details of type and cotype of
Banach spaces, we refer to Maurey and Pisier [10] and Schwartz [14].

Now we introduce another notion of cotype which is very useful in our
ensuing discussions. et 0 < p <2 and 0 < ¢ < 2. Following Linde [5],
we say that a linear operator T: E' - L, is a Ap-operator if exp(— || Tx ||*),
x' € E’, is the ch.f. of some Radon measure pzon E. Of course, the measure
4 is symmetric and p-stable. Let z, denote the vector topology on E’ defined
by the family of seminorms (quasi-seminorms for p < 1)

x - |Tx)| = € E,

where T varies over all Ag-operators from E' into any space L,. We say
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that E is of cotype (q, p) if each 7,-continuous linear operator T: E' — L,
is a Aq-operator. In other words, E is of cotype (g, p) if each z,-continuous
q-stable symmetric cylindrical measure on E extends to a Radon measure.
The notion of cotype (q, p) has been introduced by Mathé [7], and some inter-
esting results are known for the case 0 < ¢ < p (see [6], [7]). But almost
nothing is known about spaces of cotype (q, p) with p < g =2and ¢ = 1.
As remarked by Linde [6], the most interesting case seems to be ¢ = 2 (and
p < 2). We shall investigate spaces of cotype (2, p) in Sections 3 and 4.
Note that every Banach space is of cotype (2, 2) (see [6] or [7]).

3. Gaussian covariance operators in Banach spaces. let E be a
Banach space, and ¢ a Gaussian Radon probability measure on E. Then there
exists a symmetric positive operator R : E' - E such that

(Rx, ¥) =£_(x, x') {a, y')dﬂ(x)—fs(x, x'>du(x)fE<x, y)du(x)

for all x', y € E’. The operator R: E' - E is called the covariance operator
of u(see Vakhania [16]). As mentioned in Section 1, a symmetric positive
operator R: E' = E is called a Gaussian covariance operator (Gaussian
covariance) if it is a covariance operator of some Gaussian Radon probabili-
ty measure on E. It is clear that by shifting the measure u by an arbitrary
element x € E, the covariance operator remains unchanged. Thus, the oper-
ator R: E' — E is a Gaussian covariance if and only if there exists a sym-
metric Gaussian Radon probability measure x on E such that

(Rx', y') =j);(x, x ), y)dulx) forall x', y € E".

Let R: E' > E be a symmetric positive operator. Then, R'? denotes
the square root of R, that is, R is a continuous linear operator from E’
into an everywhere dense linear subspace of some Hilbert space H such that
R = (RY)' R (see Section 1). It is easy to see that if R is a Gaussian
covariance, then there exist a separable Hilbert space H and a A,-operator
T: E - Hsuch that R = T'T. Note that the operators R'? and T are uni-
tary equivalent (see Vakhania [16, pp. 101]). In this case, T" is a continu-
ous linear operator from H into E such that for the standard Gaussian cylin-
drical measure y, on H, Ty, extends to a Radon measure on E, that is, T :
H — E is 7,-Radonifying.

First we give a necessary condition for a symmetric positive operator
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R: E' — E to be a Gaussian covariance.

Theorem 1. Let R: E' — E be a symmetric positive operator. If R is
a Gaussian covariance, then R : E. - H is p-summing for every p >0,
that is, it is completelv summing.

Proof. Suppose that R is a Gaussian covariance. If we put T = R,
then T: E' - H is a A,-operator. Let u be a Gaussian Radon probability
measure on E with the ch.f. exp(— | Tx'|?). ' € E'. Take a compact convex
balanced set K of E such that u(K) > 0. Then we have #(U nK) =1 by
the 0-1 law. For 0 < p < 1, define the quasi-seminorm on E’ by

=], = (ﬁl (x, x')}? du(x))m), x € E.

Let {x,} be a sequence in E’ such that | x, [, = 0. Then there is a subse-
quence | xp,;} such that xn, = 0 -a.s. Evidently, | Txp,| — 0. But this means
that T: E' — H is continuous with respect to the quasi-seminorm | -[,, and
so there is a constant C> 0 such that

171 < o [1 ¢ sy Paua)”. = € -

By Vladimirskii [17, Theorem 3]. it follows that T: E, — H is p-summing,
and the proof is completed.

Remark. Theorem 1 gives a slight generalization of the well known
fact that every A,-operator from E’ into H is p-summing in the sense of Pietsch
[11]. Here, E' is a Banach space equipped with the strong dual topology.
Note that if T: E; — H is p-summing, then T: E' - H is p-summing, but in
general, the converse is not true except for the case that E is reflexive.

Now we want to characterize Banach spaces E for which a symmetric
positive operator R : E' - E is a Gaussian covariance if and only if RY2 :
E. - H is p-summing.

Lemma 1(Linde [5]). Let 0 < p < 2.  Then the following assertions
are equivalent.

(1) E is of stable tvpe p.

(2) For each Radon probabilitv measure p on E of strong p-th order

(i.e. f"x”" dulx) < 00). there exists a Ap-qpe'rator T: E - L, such that
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1751 = ([ e ) Pdutx)”. = € E

Lemma 2. Lei 0 < p =2 and suppose that E is of stable tvpe p.
Then a linear operator T: Ec — H is p-summing if and only if it is t,-
continuous.

Proof. Let T: E. > Hbe a linear operator. If T is p-summing, then
by Vladimirskii [17, Theorem 3], there exist a compact convex balanced set
K of E and a Radon probability measure x on K such that

| Tx' | < (—/,:I (x, x) I"d;u(x))vp, x € E.

Since E is of stable type p, by Lemma 1, it follows that T: E' - H is 7,-
continuous. Conversely, if T is r,-continuous, then there is a A,-operator
S: E - Lysuchthat | Tx'| < | Sx'| for all ' € E'. By the same way as
in the proof of Theorem 1, S: E; - L, is p-summing, andso is T: E¢ = H.
This completes the proof.

Remark. Without any additional assumption on E, if T: E. = H is tp-
continuous, then it is completely summing.

Corollary 1. For 0 < p <1, a linear operator T: E. > H is p-
summing if and onlv if it is t,-continuouous.

Proof. Since every Banach space is of stable type p with p <1 (see
[12]), the assertion follows from Lemma 2.

Proposition 1. Lei 0 < p = 2 and suppose that E is of stable type p.
Then the following assertions are equivalent.

(1) E is of cotype (2, p).

(2) A svmmetric positive operator R: E' — E is a Gaussian covariance
if and onlv if R : E- — H is p-summing.

Proof. (1) = (2) follows from Theorem 1 and Lemma 2. On the other
hand, suppose that (2) holds. To prove (1). take a linear operator T: E' —
L, which is z,-continuous. Then, by Lemma 2, T: E¢ — L, is p-summing.
Let us put R = T'T. It is clear that R: E' - E is a symmetric positive
operator, and R'?: E.: — H is p-summing. By the assumption (2). it follows
that R is a Gaussian covariance, that is, R is a A,-operator, and so is T.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/21
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But this means that E is of cotype (2, p), and the proof is completed.

Since every Banach space is of stable type p with p < 1(see [12]), by
Proposition 1, we have

Theorem 2. For 0 < p < 1, the following assertions are equivalent.

(1) E is of cotvpe (2, p).

(2) A svmmetric positive operator R: E' - E is a Gaussian covari-
ance if and onlv if R'?: E. - H is p-summing.

Lemma 3. Let 0 < p £ 2 and suppose that E has the following prop-
ertv: A symmeiric positive operaior R : E' = E is a Gaussian covariance if
and only if R": E¢: —» H is p-summing. Then E is of Rademacher tvpe p
and of cotvpe (2, r) for everv r > 0.

Proof. First we show that E is of Rademacher type p. Of course, we
may assume p > 1, since every Banach space is of R-type p with p =< 1 (see
[12]). Let|xn! be a sequence in E with 2, |x. [ < co. Then we define a
continuous linear operator T: [, = E by Te, = x, for all n, where ¢, de-
notes the n-th unit vector of {, (1/p+1/p' = 1). Evidently, T': E. — [, is
p-summing, and so is (TJ) : E. = l,. Here, J denotes the natural injection
from {, into {,. Letus put R = TJ(TJ). It is clear that R: E' » E is a
symmetric positive operator. and R : E. — H is p-summing. By the as-
sumption, it follows that R is a Gaussian covariance, that is. R' is a A,-
operator. and so is (7J)'. Since TJ: I, > E is ¥,-Radonifying, the series
> Xnen = 2on TJenen converges a.s. in E (see [6]). where |e,| isani.i.d.
sequence of Rademacher r.v.’s. But this means that E is of R-type p. On the
other hand, by the same way as in the proof of Proposition 1, it follows that
E is of cotype (2, r) for every » > 0. This completes the proof.

Since every Banach space is of cotype (2, 2) (see [7]). by Proposition 1
and Lemma 3, we have the following result due to Chobanjan and Tarieladze
[1] (see also [4]).

Corollary 2. The following assertions are equivalent.

(1) E isof tvpe 2.

(2) A svmmetric positive operator R : E' = E is a Gaussian covariance
if and only if R" : Ec —» H is 2-summing.

For 2 < p < oo, it is easy to see that a linear operator T: E. - H is
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p-summing if and only if it is 2-summing (see Maurey [9, Proposition 74]).
By Corollary 2, we have

Theorem 3. For 2 = p < co. the following assertions are equivalent.

(1) E isof tvpe 2.

(2) A svmmetric positive operator R : E' > E is a Gaussian covariance
if and onlv if R : E. - H is p-summing.

Finally, we shall consider the case 1 < p < 2.

Theorem 4. For 1 < p < 2, the following assertions are equivalent.

(1) E is of stable tvpe p and of cotvpe (2, p).

(2) Thereis anr € (p, 2) such that a svmmetric positive operator R :
E' = E is a Gaussian covariance if and onlv if R : E: - H is r- summing.

Proof. Suppose that (1) holds. As is well known, stable type p im-
plies stable type 7 for some r € (p, 2) (see e.g., [14]). Of course, cotype
(2, p) always implies cotype (2, r) for every r € (p, 2). Thus, (2) follows
from Proposition 1. On the other hand, suppose that (2) holds. Then, by
Lemma 3, it follows that E is of Rademacher type r and of cotype (2. p).
But R-type r implies s-type p for every p € (0, r), proving (1). This com-
pletes the proof.

4. Gaussian covariance operators in GL-spaces. In this section, we
introduce the class GL. After Gordon and Lewis [2], we say that a Banach
space E is in the class GL (GL-space) if every 1-summing operator from E
into any Banach space F factors through some space L,. As was shown by
Gordon and Lewis [2], if E has local unconditional structure (l.u.st.), then
it is a GL.-space. Let us remark that E has l.u.st. if and only if E’ has it
(see Pisier [13]). It is well known that if E has an unconditional basis, or
more generally, if E has sufficiently many Boolean algebras of projections,
then it has l.u.st., and in particular, both E and E' are GL-spaces. For
the details of Banach spaces with 1.u.st., we refer to Gordon and Lewis [2].

In [1]. Chobanjan and Tarieladze has shown the following:

Theorem 5. Suppose that E has an unconditional basis. Then the fol-
lowing assertions are equivalent.

(1)  co is not finitelv representable in E.

(2) A symmetric positve operator R: E' » E is a Gaussian covariance
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if and only if R": E' - H is 1-summing.

In the following, we shall extend this result.

Theorem 6. Let 0< p <1 and suppose that E is of cotype (2, p).
Then ¢, is not finitelv representable in E.

In order to prove this theorem, we need the following lemmas.

Lemma 4 (Maurey and Pisier [10]). Let le,} (vesp. | 7al) be ani.i.d.
sequence of Rademacher r.v.'s (resp. standard Gaussian r.v.s). Then the
Sfollowing assertions are equivaleni.

(1) co is not finitely representable in E.

(2) For each sequence | x,} in E, the a.s. convergence of 2.in Xnén im-
plies the a.s. convergence of 2in XnYn.

Lemma 5 (Schwartz [14]). Let E C L, be a linear subspace on which
the L, and Lg topologies are equivalent with p < q. Then Lq topology is
equivalent to the L, topology for all r < q, including r = 0.

Proof of Theorem6. Let |xn| be a sequence in E such that the series
D n Xnén converges a.s. Then we define a Radon probability measure on E by
= dist(2n xnen). Evidently, the measure x4 is of strong r-th order for
every r > 0, and in particular, E' C L.(E, u). By the Kahane inequality,
we know that the topologies L, and L, on E' are equivalent for every r > 0
(see Schwartz [14, Theorem 11.1]). Hence, by Lemma 5, it follows that
the topologies L, and L, on E' are equivalent. Take a compact convex bal-
anced set K of E with 4(K) > 0. Then x4(U nK) = 1 by the 0-1 law. By
the same way as in the proof of Theorem 1, there is a constant C > 0 such
that

) ([l ot aua)" s o [ 2 Fduta)”

for all ' € E’. Now we define a linear operator T: [, - Eby Te, = x, for
all n, where e, is the n-th unit vector of /,. Then by the inequality (*), we
have

[T ] = (Do | G Y )
= ([ 2P aut=)” = o 1 0 st

1p
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for all ¥ € E. But this means that T': E. — [, is p-summing (see [17,
Theorem 3]), and so it is z,-continuous (see Corollary 1). Since E is of
cotype (2, p), it follows that T': E' — [, is a A,-operator, that is, the series
S nXnYn = 2on Ten¥a converges a.s. (see [6]). Thus, the assertion follows
from Lemma 4. This completes the proof.

Remark. Theorem 6 is a generalization of the well known fact that if
E is of type 2, then c, is not finitely representable in E. Note that type 2
always implies cotype (2, p) for every p > 0 (see [6]), but in general, the
converse is not true.

Corollary 3. Let 0 < p < o and suppose that E has the following prop-
ertv: A svmmetric positive operator R: E' — E is a Gaussian covariance if
and only if R™: Ec —» H is p-summing. Then co is not finitelv represeni-
able in E.

Proof. The assertion follows from Lemma 3 and Theorem 6.

Theorem 7. Let O < p = 1 and suppose that E' is a GL-space. Then
the following assertions are equivalent.

(1) co is not finitelv representable in E.

(2) A symmetric positive operator R : E' = E is a Gaussian covariance
if and only if R : Ec = H is p-summing.

Proof. Suppose that (1) holds. To prove (2), it suffices to show that if
T: E. - His 1-summing, then it is a A.-operator. Suppose that T: E. —
His 1-summing. Evidently, T: E’ —» H is 1-summing in the sense of Pietsch
(11], and T'(H) C E. Since E' is a GL-space, the operator T: E' - H is
factorized by the bounded linear operators V: E' - L, and W: L, - H. By
the assumption (1), it follows that E” (bidual of E) is of Rademacher cotype
q for some g € (2, ), and so V': L, — E" is 7-summing for every r € (g,
o) (see Maurey and Pisier [10]). But this implies that T": H - E is r-
summing. As is well known, every r-summing operator is r-Radonifying (see
e.g., [14]), and in particular, T : H » E is 7,-Radonifying, that is, T: E’
— His a Aj-operator. Thus, (2) holds. On the other hand, (2) = (1) fol-
lows from Corollary 3. This completes the proof.

Theorem 8. Let 1 < p < 2 and suppose that E' is a GL-space. Then
the following assertions are equivalent.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/21

10



Takahashi and Okazaki: On some properties of Gaussian covariance operators in Banach

ON SOME PROPERTIES OF GAUSSIAN COVARIANCE OPERATORS 231

(1) E is of stable type p.
(2) There is anr € (p, 2) such that a symmetric positive operator R :
E' - E is a Gaussian covariance if and only if R : Ec. — H is r-summing.

Proof. Let us remark that if F is of stable type p, then ¢, is not finitely
representable in E (see e.g., [14]). Thus, the assertion follows from Theo-
rems 2, 4 and 7.

Finally, we remark that Theorems 7 and 8 are false in the case where E’
is not a GL-space. Such a counterexample is given by the following: Let H
be an infinite dimensional separable Hilbert space, and denote by c,(H) a
Banach space of all compact operators on H for which the ¢ ,-norm | T |, =
(trace( T* T)*#%)* is finite (1 < p < o0). It is well known that for 1 < p <
2, ¢p(H) is of Rademacher type p and of cotype 2 (see Tomczak-Jaegermann
[15]). But in this case, we know that c¢,(H) is not of cotype (2, r) for every
r € (0, p) (see Proposition 1 and Kithn [3, Corollary 17]). Of course, if
2 < p < o0, then c,(H) is of type 2, and so it is of cotype (2, 7) for every
r € (0, 2). Let us mention that c,(H), p # 2, does not have 1.u. st., as was
shown by Gordon and Lewis [2]. It is well known that /, is linearly isometric
to a subspace of ¢,(H), and so c,(H) contains an infinite dimensional Banach
subspace with l.u.st. However, we can prove that for each p € (1, 2), there
exists a compact subset K of c,(H) such that every Banach subspace G of
co(H) with K C G, does not have l.u.st. In fact, G’ is not a GL-space.

Acknowledgment. The authors would like to express their hearty thanks
to the referee for his careful reading and important suggestions.

REFERENCES

[1] S. A. CHoBaNJAN and V. . TARIELADZE : Gaussian characterizations of certain Banach
spaces, J. Multivar. Anal. 7(1977), 183—203.

©2] Y. GorpoN and D. R. LEWIS : Absolutely summing operators and local unconditional struc-
tures, Acta Math. 133 (1974), 27-—48.

{3] T.KUnN: y-summing operators in Banach spaces of type p, 1 < p = 2, and cotype q, 2 <
@ < oo, Theory Prob. Appl. 26 (1981), 118—129.

[47 W. Linpe, V. L. TARIELADZE and S. A. CHOBANJAN : Characterization of certain classes
of Banach spaces by properties of Gaussian measures, Theory Prob. Appl. 25 (1980),
159—164.

[5] W.LINDE: Operators generating stable measures on Banach spaces, Z. Wahrsch. verw.
Gebiete 60 (1982), 171—184.

[6] W. LinpE: Infinitely divisible and stable measures on Banach spaces, Teubner-Texte zur
Mathematik Bd. 58, Leipzig, 1983.

Produced by The Berkeley Electronic Press, 1987



232

[7]
(8]
o]
(10]
(11]
(12]
(13]
(14]
(15]

[16]
(7]

Mathematical Journal of Okayama University, Vol. 29[1987], Iss. 1, Art. 21

N.

Y. TAKAHASHI and Y. OKAZAKI

. MATHE : A note on classes of Banach spaces related to stable measures, Math. Nachr.

115 (1984), 189—200.

. MAUREY : Espaces de cotype p, 0 < p < 2, Séminaire Maurey-Schwartz 1972—73,

Exposé VII.

. MAUREY : Théorémes de factorisation pour les opérateurs linéaires a valeurs dans les

espaces L Astérisque 11, Sociéte Mathématique de France, Paris, 1974.

. MAUREY and G. PISIER : Séries de variables aléatoires vectorielles indépendantes et

propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45—90.

. PIETscH : Operator ideals, North-Holland, 1980.
. PISIER : Type de espaces normes, C. R. Acad. Sci. Paris 276 (1973), 1673—1676.
. PISIER : Some results on Banach spaces without local unconditional structure, Compos.

Math. 37 (1978), 3—19.

. SCHWARTZ : Geometry and probability in Banach spaces, Lecture Notes in Math. 852,

Springer, 1981.

, TOMCZAK -JAEGERMANN : The moduli of smoothness and convexity and the Rademacher

averages of the trace classes S, 1 < p < oo, Studia Math. 50 (1974), 163—182.
VAKHANIA :  Probability distributions on linear spaces, North-Holland, 1981.

Yu. N. VLADIMIRSKI :  Cylindrical measures and p-summing operators, Theory Prob. Appl.

26 (1981), 56—68.

DEPARTMENT OF MATHEMATICS
YAMAGUCHI UNIVERSITY *)
AND

KyusHu UNIVERSITY

(Received July 5, 1986)

%) Present address of Y. Takanasui: School of Health Sciences, Okayama
University, Shikata-Cho, Okayama, 700 Japan

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 29/iss1/21

12



