Mathematical Journal of Okayama University

Some Toda Bracket in $\pi^{s}{ }_{26}\left(\mathbf{S}^{0}\right)$

Yoshihiro Hirato*

Juno Mukai ${ }^{\dagger}$

*Okayama University
${ }^{\dagger}$ Shinshu University
Copyright (c) 2000 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

Math. J. Okayama Univ. 42 (2000), 83-88

SOME TODA BRACKET IN $\pi_{26}^{S}\left(S^{0}\right)$

YOSHIHIRO HIRATO AND JUNO MUKAI

1. Introduction

Throughout this note, we work in the 2-primary components of homotopy groups of spheres. Let $\iota \in \pi_{0}^{S}\left(S^{0}\right), \eta \in \pi_{1}^{S}\left(S^{0}\right), \nu \in \pi_{3}^{S}\left(S^{0}\right), \sigma \in$ $\pi_{7}^{S}\left(S^{0}\right), \quad \varepsilon, \quad \bar{\nu} \in \pi_{8}^{S}\left(S^{0}\right), \mu \in \pi_{9}^{S}\left(S^{0}\right), \zeta \in \pi_{11}^{S}\left(S^{0}\right), \kappa \in \pi_{14}^{S}\left(S^{0}\right), \rho \in$ $\pi_{15}^{S}\left(S^{0}\right), \omega, \eta^{*} \in \pi_{16}^{S}\left(S^{0}\right), \bar{\mu} \in \pi_{17}^{S}\left(S^{0}\right), \nu^{*}, \xi \in \pi_{18}^{S}\left(S^{0}\right), \bar{\zeta}, \bar{\sigma} \in \pi_{19}^{S}\left(S^{0}\right)$ and $\bar{\kappa} \in \pi_{20}^{S}\left(S^{0}\right)$ be generators ([10], [6]). We know the following ([4], [5], [8]): $\pi_{21}^{S}\left(S^{0}\right)=\mathbf{Z}_{2}\left\{\sigma^{3}\right\} \oplus \mathbf{Z}_{2}\{\eta \bar{\kappa}\}, \pi_{22}^{S}\left(S^{0}\right)=\mathbf{Z}_{2}\{\nu \bar{\sigma}\} \oplus \mathbf{Z}_{2}\left\{\eta^{2} \bar{\kappa}\right\}, \pi_{23}^{S}\left(S^{0}\right)=$ $\mathbf{Z}_{16}\{\bar{\rho}\} \oplus \mathbf{Z}_{8}\{\nu \bar{\kappa}\} \oplus \mathbf{Z}_{2}\{\phi\}, \quad \pi_{24}^{S}\left(S^{0}\right)=\mathbf{Z}_{2}\{\delta\} \oplus \mathbf{Z}_{2}\{\bar{\mu} \sigma\}, \quad \pi_{25}^{S}\left(S^{0}\right)=$ $\mathbf{Z}_{2}\left\{\mu_{3, *}\right\} \oplus \mathbf{Z}_{2}\{\eta \bar{\mu} \sigma\}$ and $\pi_{26}^{S}\left(S^{0}\right)=\mathbf{Z}_{2}\left\{\eta \mu_{3, *}\right\} \oplus \mathbf{Z}_{2}\left\{\nu^{2} \bar{\kappa}\right\}$.

About a Toda bracket $\langle\sigma, 2 \sigma, \zeta\rangle$, Mahowald obtained the equality $\langle\sigma, 2 \sigma, \zeta\rangle=\nu^{2} \bar{\kappa}$ and he has the several proofs of that. The purpose of this note is to give a proof of this fact by using the calculations based on the composition methods [10].
Theorem 1. $\nu^{2} \bar{\kappa}=\langle\sigma, 2 \sigma, \zeta\rangle=\langle\zeta, \sigma, 2 \sigma\rangle=\langle\sigma, \zeta, \sigma\rangle=\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle=$ $\left\langle\nu^{*}, 2 \sigma, 8 \iota\right\rangle=\left\langle 2 \sigma, 8 \iota, \nu^{*}\right\rangle=\langle\eta \phi, \eta, 2 \iota\rangle=\langle\varepsilon \omega, \eta, 2 \iota\rangle$.

The equality $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle=\nu^{2} \bar{\kappa}$ is used to determine the group extension of the 2-primary component of $\pi_{41}\left(F_{4} / G_{2}\right)$ ([2]). The fact $\langle\zeta, \sigma, 2 \sigma\rangle=\nu^{2} \bar{\kappa}$ gives an information that the element $v \in \pi_{35}\left(S^{9}\right) \quad$ ([8], Part I. (8.22)) becomes stably $\nu^{2} \bar{\kappa}$.

The key step to the equality $\langle\sigma, 2 \sigma, \zeta\rangle=\nu^{2} \bar{\kappa}$ is to use Oda's relation $4 \Sigma^{2} \delta^{\prime \prime}=\nu_{9}^{3} \bar{\kappa}_{18}([7])$. We use the result, the notation of [10] and the properties of Toda brackets freely.

The authors wish to thank Mahowald for giving the definite information.

2. Equalities of the Toda brackets

We denote by $S O(n)$ the rotation group and by $J: \pi_{k}(S O(n)) \rightarrow$ $\pi_{n+k}\left(S^{n}\right)$ the J-homomorphism. In general we have

$$
J(\alpha \circ \beta)=J(\alpha) \circ \Sigma^{n} \beta
$$

and

$$
J\{\alpha, \beta, \gamma\} \subset\left\{J(\alpha), \Sigma^{n} \beta, \Sigma^{n} \gamma\right\}
$$

Suppose that n is a sufficiently large integer and s, t, u, a, b, c are integers with $a=3$ or 7 . We denote by $\alpha_{s, a}(n) \in \pi_{8 s+a}(S O(n)) \cong \mathbf{Z}$ ([1]) a generator and we set $J\left(\alpha_{s, a}(n)\right)=j_{s, a}(n) \in \pi_{n+8 s+a}\left(S^{n}\right)$ and $j_{s, a}=\Sigma^{\infty} j_{s, a}(n) \in \pi_{8 s+a}^{S}\left(S^{0}\right)$. Suppose that $\beta \in \pi_{8(s+t)+a+b}\left(S^{8 s+a}\right)$ and $\gamma \in \pi_{8(s+t+u)+a+b+c}\left(S^{8(s+t)+a+b}\right)$ are elements such that

$$
\alpha_{s, a}(n) \circ \beta=0, \beta \circ \gamma=0 \text { with } a+b+c \equiv 2,3,4,5,6 \bmod 8
$$

and that the order of γ is finite. Then a Toda bracket $\left\{\alpha_{s, a}(n), \beta, \gamma\right\}$ is trivial, because $\pi_{8(s+t+u)+a+b+c+1}(S O(n))=0$ or $\cong \mathbf{Z}$ ([1]) and

$$
d\left\{\alpha_{s, a}(n), \beta, \gamma\right\}=-\alpha_{s, a}(n) \circ\left\{\beta, \gamma, d \iota_{8(s+t+u)+a+b+c}\right\}
$$

is finite [9], where d is the order of γ.
Since $\pi_{k}(S O(n)) \cong 0 \quad$ if $k \equiv 2,4,5$ or $6 \bmod 8([1])$, we have the following: $\alpha_{s, a}(n) \circ \nu_{8 s+a}=0$ if $s \geq 1$ or $s=0$ and $a=7$; $\alpha_{1,3}(n) \circ \eta_{11}=0 ; \alpha_{s, a}(n) \circ \sigma_{8 s+a}=0$ if $s \geq 1 ; \alpha_{0,7}(n) \circ \kappa_{7}=0 ; \alpha_{1,3}(n) \circ$ $\zeta_{11}=0 ; \alpha_{0,7}(n) \circ \bar{\zeta}_{7}=\alpha_{0,7}(n) \circ \bar{\sigma}_{7}=\alpha_{1,7}(n) \circ \zeta_{15}=0$.

We often use the anti-commutativity of the composition of two elements of $\pi_{*}^{S}\left(S^{0}\right)$ ([10], (3.4)). We know that $\nu^{\prime} \zeta_{6}=0, \nu_{11} \sigma_{14}=$ $0, \sigma_{12} \nu_{19}=0$ and $2 \sigma_{16}^{2}=0([10])$. Hence we have the following.

Lemma 2.1. (i): $\nu \sigma=0, \eta \zeta=0, \nu \zeta=0, \nu \rho=\sigma \zeta=0, \sigma \kappa=$ $0, \sigma \rho=\zeta^{2}=0, \sigma \bar{\zeta}=\sigma \bar{\sigma}=\zeta \rho=0$.
(ii): $0 \in\langle\sigma, \nu, 2 \nu\rangle, 0 \in\langle\nu, 2 \nu, \zeta\rangle, \quad 0 \in\left\langle j_{s, a}, \nu, \sigma\right\rangle \quad$ if $s \geq 1, \quad 0 \in$ $\left\langle j_{s, a}, \sigma, \nu\right\rangle$ if $s=1$ and $a=7$, or if $s \geq 2$ and $0 \in\left\langle j_{s, a}, \sigma, 2 \sigma\right\rangle$ if $s \geq 2$.

The indeterminacy of $\langle\sigma, \nu, 2 \nu\rangle$ is σ^{2}. By Lemma 2.1.(i), the indeterminacy of $\langle\nu, 2 \nu, \zeta\rangle$ is $\nu \circ \pi_{15}^{S}\left(S^{0}\right)+\pi_{7}^{S}\left(S^{0}\right) \circ \zeta=0$ and that of $\langle\rho, \nu, \sigma\rangle$ is $\rho \circ \pi_{11}^{S}\left(S^{0}\right)+\pi_{19}^{S}\left(S^{0}\right) \circ \sigma=0$. This implies the following.

Lemma 2.2. (i): $\langle\sigma, \nu, 2 \nu\rangle \ni 0 \bmod \sigma^{2}$ and $\langle\nu, 2 \nu, \zeta\rangle=0$.
(ii): $\langle\rho, \nu, \sigma\rangle=0$.

By the definition of ν^{*} and by use of (3.9).i), (3.5).ii) and (3.10) of [10], we have

$$
\nu^{*} \in-\langle\sigma, 2 \sigma, \nu\rangle=-\langle\nu, 2 \sigma, \sigma\rangle=-\langle\nu, \sigma, 2 \sigma\rangle=\langle\sigma, \nu, \sigma\rangle
$$

So we have

$$
\sigma \nu^{*} \in-\sigma \circ\langle\nu, \sigma, 2 \sigma\rangle=-\langle\sigma, \nu, \sigma\rangle \circ 2 \sigma \ni-2 \sigma \nu^{*} \bmod 0
$$

This implies the relation

$$
\sigma \nu^{*}=0
$$

We recall that $\pi_{15}^{S}\left(S^{0}\right)=\mathbf{Z}_{32}\{\rho\} \oplus \mathbf{Z}_{2}\{\eta \kappa\}$ and $\pi_{19}^{S}\left(S^{0}\right)=\mathbf{Z}_{8}\{\bar{\zeta}\} \oplus$ $\mathbf{Z}_{2}\{\bar{\sigma}\}$ ([10]). From the facts $\bar{\sigma} \in\langle\nu, \sigma, \eta \sigma\rangle, \quad \nu^{*} \in\langle\sigma, \nu, \sigma\rangle$ and $\eta \nu^{*}=0$ ([10]), it follows that

$$
\sigma \bar{\sigma} \in \sigma \circ\langle\nu, \sigma, \eta \sigma\rangle=-\langle\sigma, \nu, \sigma\rangle \circ \eta \sigma \ni \nu^{*} \eta \sigma=0 \bmod 0
$$

So we have $\sigma \bar{\sigma}=0$.
The indeterminacies of Toda brackets $\langle\zeta, \sigma, 2 \sigma\rangle$ and $\langle\sigma, \zeta, \sigma\rangle$ are trivial because $\zeta \circ \pi_{15}^{S}\left(S^{0}\right)=0$ and $\sigma \circ \pi_{19}^{S}\left(S^{0}\right)=0$. Hence, by (3.10) of [10], we have

$$
\langle\zeta, \sigma, 2 \sigma\rangle=\langle\sigma, \zeta, \sigma\rangle
$$

By Proposition 12.20 of [10], $\sigma \mu=\eta \rho$ and $\omega \equiv \eta^{*} \bmod \sigma \mu$. By Theorem 14.1 of [10], $\nu \rho=0$ and $4 \nu^{*}=\eta^{2} \eta^{*}$. Since

$$
4 \nu^{*}=\eta^{2} \eta^{*} \equiv \eta^{2} \omega \bmod \eta^{3} \rho=4 \nu \rho=0
$$

we have $4 \nu^{*}=\eta^{2} \omega$. So, by the fact $\eta \sigma \omega=\eta \phi=\varepsilon \omega$ ([5], (6.3)), we have

$$
\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle \supset\langle\eta \phi, \eta, 2 \iota\rangle \bmod \sigma \circ \pi_{19}^{S}\left(S^{0}\right)+2 \pi_{26}^{S}\left(S^{0}\right)=0
$$

Therefore we have $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle=\langle\eta \phi, \eta, 2 \iota\rangle=\langle\varepsilon \omega, \eta, 2 \iota\rangle$.
Next, by the symmetry of the stable Toda barcket ((3.9).i) of [10]) and (3.10) of [10], we have $\nu^{*} \in\langle 2 \sigma, \sigma, \nu\rangle$. By (3.9).i) and (3.5).ii) of [10], we have

$$
\langle\sigma, 2 \sigma, \zeta\rangle=\langle\zeta, \sigma, 2 \sigma\rangle .
$$

By the Jacobi identity ((3.7) of [10]) and by the fact $\nu^{*} \in\langle\nu, \sigma, 2 \sigma\rangle$, we have

$$
0 \in\langle\langle\sigma, 2 \sigma, \sigma\rangle, 4 \nu, 2 \iota\rangle-\langle\sigma,\langle 2 \sigma, \sigma, 4 \nu\rangle, 2 \iota\rangle\rangle+\langle\sigma, 2 \sigma,\langle\sigma, 4 \nu, 2 \iota\rangle\rangle
$$

By the proof of Lemma 8.2 of [4], $\langle\sigma, 2 \sigma, \sigma\rangle=0$. By Lemma 9.1 of [10], we have $\zeta \in\langle\sigma, 4 \nu, 2 \iota\rangle$. The indeterminacies of $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle$ and $\langle\sigma, 2 \sigma, \zeta\rangle$ are $\sigma \circ \pi_{19}^{S}\left(S^{0}\right)+2 \pi_{26}^{S}\left(S^{0}\right)=0$ and $\sigma \circ \pi_{19}^{S}\left(S^{0}\right)+\pi_{15}^{S}\left(S^{0}\right) \circ \zeta=0$ respectively. So we have $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle=\langle\sigma, 2 \sigma, \zeta\rangle$.

By the Jacobi identity, we have

$$
\begin{aligned}
\left\langle\sigma, \nu^{*}, 8 \iota\right\rangle & =\langle\sigma,\langle\nu, \sigma, 2 \sigma\rangle, 8 \iota\rangle \\
& \equiv\langle\langle\sigma, \nu, \sigma\rangle, 2 \sigma, 8 \iota\rangle+\langle\sigma, \nu,\langle\sigma, 2 \sigma, 8 \iota\rangle\rangle \\
& =\left\langle\nu^{*}, 2 \sigma, 8 \iota\right\rangle+\langle\sigma, \nu, \rho\rangle
\end{aligned}
$$

So, by Lemma 2.2.(ii), we have $\left\langle\sigma, \nu^{*}, 8 \iota\right\rangle=\left\langle\nu^{*}, 2 \sigma, 8 \iota\right\rangle$. Since the indeterminacy of $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle$ is trivial, we have $\left\langle\sigma, 4 \nu^{*}, 2 \iota\right\rangle=\left\langle\sigma, \nu^{*}, 8 \iota\right\rangle$.

By (3.9).i), of [10], we have

$$
\begin{aligned}
\left\langle 2 \sigma, 8 \iota, \nu^{*}\right\rangle & =\left\langle\nu^{*}, 8 \iota, 2 \sigma\right\rangle \\
& \subset\left\langle\nu^{*}, 8 \sigma, 2 \iota\right\rangle \\
& \supset\left\langle\nu^{*}, 2 \sigma, 8 \iota\right\rangle .
\end{aligned}
$$

By Lemma 12.24 of [10] and Part II. (6.3) of [8], we have $\nu^{*} \varepsilon=\xi \varepsilon=0$. By Lemma 12.24 of [10], Part II. (6.3) of [8] and Lemma 2.1.(i) we have $\nu^{*} \bar{\nu}=\xi \bar{\nu}=\sigma \bar{\sigma}=0$. Hence the indeterminacy of $\left\langle\nu^{*}, 8 \sigma, 2 \iota\right\rangle$ is $\nu^{*} \pi_{8}^{S}\left(S^{0}\right)+$ $2 \pi_{26}^{S}\left(S^{0}\right)=\left\{\nu^{*} \varepsilon, \nu^{*} \bar{\nu}\right\}=0$. Thus we have $\left\langle 2 \sigma, 8 \iota, \nu^{*}\right\rangle=\left\langle\nu^{*}, 2 \sigma, 8 \iota\right\rangle$. This concludes that all Toda brackets of Theorem 1 are equal. We show
Lemma 2.3. $\left\langle 2 \sigma, 8 \iota, \nu^{*}\right\rangle \ni 0 \bmod \nu^{2} \bar{\kappa}$.
Proof. By the Jacobi identity, we have

$$
\begin{aligned}
\left\langle 2 \sigma, 8 \iota, \nu^{*}\right\rangle & =\langle 2 \sigma, 8 \iota,\langle 2 \sigma, \sigma, \nu\rangle\rangle \\
& \equiv\langle\langle 2 \sigma, 8 \iota, 2 \sigma\rangle, \sigma, \nu\rangle-\langle 2 \sigma,\langle 8 \iota, 2 \sigma, \sigma\rangle, \nu\rangle
\end{aligned}
$$

We have $\langle 2 \sigma, 8 \iota, 2 \sigma\rangle \subset\langle\sigma, 16 \sigma, 2 \iota\rangle=\langle\sigma, 0,2 \iota\rangle \ni 0 \bmod 2 \rho$ and $\langle 2 \rho, \sigma, \nu\rangle=$ $\langle 2 \sigma, \rho, \nu\rangle \ni 0 \bmod \nu^{2} \bar{\kappa}$. This completes the proof.

3. Proof of the theorem

First we prepare the materials. We recall the element $\sigma_{16}^{*} \in \pi_{38}\left(S^{16}\right)$ ([3]). By [7], there exist elements $\delta^{\prime} \in\left\{\sigma^{\prime \prime} \circ \sigma_{13}, \sigma_{20}, 2 \sigma_{27}\right\}_{3} \subset \pi_{35}\left(S^{6}\right)$ and $\delta^{\prime \prime} \in\left\{\sigma^{\prime} \circ \sigma_{14}, \sigma_{21}, 2 \sigma_{28}\right\}_{4} \subset \pi_{36}\left(S^{7}\right)$, which satisfies the relations $2 \delta^{\prime \prime}=-\Sigma \delta^{\prime}, \Sigma^{2} \delta^{\prime \prime}=2\left(\sigma_{9} \sigma_{16}^{*}\right)$ and $2 \delta^{\prime} \equiv \nu_{6}^{3} \bar{\kappa}_{15} \bmod \nu_{6} \sigma_{9} \bar{\sigma}_{16}$. By Part III. Proposition 4.5.(2) of [8], $\nu_{9} \sigma_{12} \bar{\sigma}_{19}=0$. So, by Part III.Theorem 3.(a) of [8], we have

$$
\nu_{9}^{3} \bar{\kappa}_{18}=4 \Sigma^{2} \delta^{\prime \prime}=8\left(\sigma_{9} \sigma_{16}^{*}\right) \neq 0
$$

By (10.7) and (12.25) of [10], we know $\nu_{8} \zeta_{11}=4 \Sigma \sigma^{\prime} \circ \sigma_{15}$ and

$$
\zeta_{10} \sigma_{17}=2 \sigma_{10} \zeta_{17}=\left[\iota_{10}, \mu_{10}\right] .
$$

We show the following.
Lemma 3.1. $\nu_{9}^{3} \bar{\kappa}_{18}=\nu_{9} \circ \Sigma\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}_{5}$.
Proof. We have

$$
\begin{aligned}
4 \Sigma^{2} \delta^{\prime \prime} & \in \Sigma\left\{4 \Sigma \sigma^{\prime} \circ \sigma_{15}, \sigma_{22}, 2 \sigma_{29}\right\}_{5} \\
& =\Sigma\left\{\nu_{8} \zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}_{5} \\
& \supset \nu_{9} \circ \Sigma\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}_{5} \\
& \bmod \\
& \Sigma\left(4 \Sigma \sigma^{\prime} \circ \sigma_{15}\right) \circ \Sigma^{6} \pi_{32}\left(S^{17}\right)+2 \Sigma \pi_{30}\left(S^{8}\right) \circ \sigma_{31} .
\end{aligned}
$$

We have $\Sigma\left(4 \Sigma \sigma^{\prime} \circ \sigma_{15}\right) \circ \Sigma^{6} \pi_{32}\left(S^{17}\right)=8\left\{\sigma_{9}^{2} \circ \rho_{23}\right\}=0$ and $2 \Sigma \pi_{30}\left(S^{8}\right) \circ \sigma_{31}=$ $2\left\{\sigma_{9} \rho_{16} \sigma_{23}\right\}=0$ by Lemma 6.2 of [3] and [4]. This completes the proof.

By Part I.Theorem 1.(b) of [8], we have
$\pi_{37}\left(S^{11}\right)=\mathbf{Z}_{8}\left\{\tau^{\prime \prime \prime}\right\} \oplus \mathbf{Z}_{2}\left\{\theta^{\prime} \circ \kappa_{23}\right\} \oplus \mathbf{Z}_{2}\left\{\nu_{11}^{2} \bar{\kappa}_{17}\right\} \oplus \mathbf{Z}_{2}\left\{\sigma_{11} \bar{\sigma}_{18}\right\} \oplus \mathbf{Z}_{2}\left\{\eta_{11} \mu_{3,12}\right\}$. By the proof of Part I.Proposition 4.2.(1) of [8], $\tau^{\prime \prime \prime} \in\left\{2 \sigma_{11}, \nu_{18}, \rho_{21}\right\}_{1}$. Then we show

Lemma 3.2. $\tau^{\prime \prime \prime} \notin\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}_{1}$.
Proof. By (7.21) of [10], $\left[\iota_{10}, \eta_{10}\right]=2 \sigma_{10} \nu_{17}$. So, by Proposition 2.6 of [10], we have

$$
H\left\{2 \sigma_{11}, \nu_{18}, \rho_{21}\right\}_{1}=-\Delta\left(2 \sigma_{10} \nu_{17}\right) \circ \rho_{22}=\eta_{21} \rho_{22} \neq 0
$$

On the other hand, we have

$$
H\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}_{1}=-\Delta\left(\zeta_{10} \sigma_{21}\right) \circ 2 \sigma_{30}=2 \mu_{21} \sigma_{30}=0
$$

This completes the proof.
So the rest of our work is to investigate the elements $\nu_{9} \Sigma \theta^{\prime} \circ \kappa_{24}$ and $2 \nu_{9} \circ \Sigma \tau^{\prime \prime \prime}$.
Lemma 3.3. $\nu_{9} \Sigma \theta^{\prime} \circ \kappa_{24} \equiv 0 \bmod \eta_{9} \varepsilon_{10} \bar{\kappa}_{18}$.
Proof. By Lemma 7.5 of [10], $\theta^{\prime} \in\left\{\sigma_{11}, 2 \nu_{18}, \eta_{21}\right\}_{1}$. By (7.19) of [10], $\Sigma \sigma^{\prime} \circ \nu_{15}=x \nu_{8} \sigma_{11}$ for x odd. So we have

$$
\begin{aligned}
\nu_{9} \Sigma \theta^{\prime} & \in \\
& \subset \nu_{9} \circ\left\{\sigma_{12}, 2 \nu_{19}, \eta_{22}\right\} \\
& =\left\{\nu_{9} \sigma_{12}, 2 \nu_{19}, \eta_{22}\right\} \\
& \left.\supset 2 \sigma_{9} \nu_{16}, 2 \nu_{19}, \eta_{22}\right\} \\
& 2 \sigma_{9} \circ\left\{\nu_{16}, 2 \nu_{19}, \eta_{22}\right\} \\
\bmod & \nu_{9} \sigma_{12} \pi_{24}\left(S^{19}\right)+\pi_{23}\left(S^{9}\right) \circ \eta_{23} .
\end{aligned}
$$

Since $\left\{\nu_{16}, 2 \nu_{19}, \eta_{22}\right\} \subset \pi_{24}\left(S^{16}\right) \cong \pi_{8}^{S}\left(S^{0}\right) \cong \mathbf{Z}_{2} \oplus \mathbf{Z}_{2}$, we have $2 \sigma_{9} \circ$ $\left\{\nu_{16}, 2 \nu_{19}, \eta_{22}\right\}=0$. We have $\nu_{9} \sigma_{12} \pi_{24}\left(S^{19}\right)+\pi_{23}\left(S^{9}\right) \circ \eta_{23}=\left\{\sigma_{9}^{2} \eta_{23}, \kappa_{9} \eta_{23}\right\}$ ([10]). By Proposition 7.2 of [4], $\sigma_{9}^{2} \eta_{23} \kappa_{24}=\sigma_{9} \eta_{16} \sigma_{17} \kappa_{24}=0$. By Part III. Proposition 2.4.(3) of [8], $\kappa_{9} \eta_{23} \kappa_{24}=\eta_{9} \kappa_{10}^{2}=\bar{\varepsilon}_{9} \kappa_{24}=\eta_{9} \varepsilon_{10} \bar{\kappa}_{18}$. This completes the proof.

Next we show
Lemma 3.4. $2 \nu_{9} \circ \Sigma \tau^{\prime \prime \prime}=0$.
Proof. By (7.20) of [10], we have $4 \nu_{9} \sigma_{12}=0$. So we have

$$
\begin{array}{rll}
2 \nu_{9} \circ \Sigma \tau^{\prime \prime \prime} & \in & 2 \nu_{9} \circ\left\{2 \sigma_{12}, \nu_{19}, \rho_{22}\right\} \\
& \subset & \left\{4 \nu_{9} \sigma_{12}, \nu_{19}, \rho_{22}\right\} \\
& =\left\{0, \nu_{19}, \rho_{22}\right\} \\
\bmod & \pi_{23}\left(S^{9}\right) \circ \rho_{23} .
\end{array}
$$

By Part II. Proposition 2.1.(4) and (6) of [8], we have $\sigma_{9}^{2} \rho_{23}=2 \sigma_{9} \rho_{16} \sigma_{31}=$ $\Sigma^{2}\left(\sigma^{\prime} \rho_{14} \sigma_{29}\right)=0$. By Part III. Proposition 2.4.(4) of [8], $\kappa_{9} \rho_{23}=0$. So we have $\pi_{23}\left(S^{9}\right) \circ \rho_{23}=\left\{\sigma_{9}^{2} \rho_{23}, \kappa_{9} \rho_{23}\right\}=0$. This completes the proof.

Now we show the following result implying the result $\langle\zeta, \sigma, 2 \sigma\rangle=\nu^{2} \bar{\kappa}$.

Lemma 3.5. $\nu_{11}^{2} \bar{\kappa}_{17} \equiv\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\} \bmod 2 \tau^{\prime \prime \prime}, \theta^{\prime} \circ \kappa_{23}, \sigma_{11} \bar{\sigma}_{18}, \eta_{11} \mu_{3,12}$. Proof. By Part I.Theorem 1 of [8] and Lemma 3.2, $\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}$ consists of elements $2 \tau^{\prime \prime \prime}, \theta^{\prime} \circ \kappa_{23}, \nu_{11}^{2} \bar{\kappa}_{17}, \sigma_{11} \bar{\sigma}_{18}$ and $\eta_{11} \mu_{3,12}$. By Lemma 3.3, $\nu_{9} \Sigma \theta^{\prime} \circ \kappa_{24}=a \eta_{9} \varepsilon_{10} \bar{\kappa}_{18}$ for $a=0$ or 1 . We have $\nu_{8} \eta_{11} \mu_{3,12}=0$. So $\nu_{9} \circ \Sigma\left\{\zeta_{11}, \sigma_{22}, 2 \sigma_{29}\right\}$ consists of elements $\nu_{9}^{3} \bar{\kappa}_{18}$ and $a \eta_{9} \varepsilon_{10} \bar{\kappa}_{18}$. By Part III.Theorem 3.(a) of [8], $\nu_{9}^{3} \bar{\kappa}_{18}=8\left(\sigma_{9} \sigma_{16}^{*}\right)$ and $\eta_{9} \varepsilon_{10} \bar{\kappa}_{18}$ are independent. Thus Lemma 3.1 leads to the assertion, completing the proof.

References

[1] R. Bотt: The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
[2] Y. Hirato, H. Kachi and M. Mimura: Homotopy groups of the homogeneous spaces F_{4} / G_{2} and $F_{4} / \operatorname{Spin}(9)$, JP Journal of Geometry and Topology 1 (2001), 59109.
[3] M. Mimura: On the generalized Hopf homomorphism and the higher composition. Part I. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22, J. Math. Kyoto Univ. 4 (1964), 171-190.
[4] M. Mimura: On the generalized Hopf homomorphism and the higher composition. Part II. $\pi_{n+i}\left(S^{n}\right)$ for $i=21$ and 22, J. Math. Kyoto Univ. 4 (1965), 301-326.
[5] M. Mimura, M. Mori and N. Oda: Determinations of 2-components of the 23- and 24 -stems in homotopy groups of spheres, Mem. Fac. Sci. Kyushu Univ. 29 (1975), 1-42.
[6] M. Mimura and H. Toda: The $(n+20)$-th homotopy groups of n-spheres, J. Math. Kyoto Univ. 3 (1963), 37-58.
[7] N. Oda: On the 2-components of the unstable homotopy groups of spheres. II, Proc. Japan Acad. 53, Ser. A(1977), 215-218.
[8] N. Oda: Unstable homotopy groups of spheres, Bull. of the Inst. for Advanced Research of Fukuoka Univ. 44 (1979), 49-152.
[9] J.-P. Serre: Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505.
[10] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49, Princeton, 1962.

Yoshihiro Hirato
The Graduate School of
Natural Science and Technology
Okayama University
Okayama, 700-8530 Japan
e-mail address: hirato@math.okayama-u.ac.jp
Juno MUKAI
Department of Mathematical Sciences
Faculty of Science
Shinshu University
Matsumoto, 390-8621 Japan
e-mail address: jmukai0@gipac.shinshu-u.ac.jp
(Received August 14, 2000)

