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Math. J. Okayama Univ. 22(1980), 185—194

ON THE HOMOTOPY TYPES OF THE ORBIT
SPACES OF FREE 72-ACTIONS ON S2x S5 (II)

KENJT HOKAMA

The purpose of this paper which is a continuation of [3] is to deter-
mine the homotopy type of the orbit spaces of free actions of the torus 7T
of rank 2 on the product S® X S° of spheres of dimension 3 and 5 respect-
ively. The main result of this paper is the following: The integral
cohomology rings of the orbit spaces are rings R=2Z1[x, y]/(H(x, »), ¥(x, y))
of type 1 or 2 (see § 2) and there is only one (up to homotopy equivalence)
simply connected finite CW complex having the given integral cohomology
ring R.

1. Let L be the product space CP(3) X CP(3) of the complex projective
spaces of dimension 6, and ¢ a generator of H?(CP(3); Z). We identify
a map f and the homotopy class [ f] represented by f and use the braket
notation [ , ] for Whitehead products. In the product cell decomposition
of L, the 4 skelton L“ is

StV SHuU ,-l»,,e]’ U rz"he:‘z U [i].tzle;

where ¢, and 7, are inclusions of S? into S} and S} respectively, and
% is the Hopf map. The dual cohomology classes of S? and S% are x=¢X1
and y = 1 X ¢ respectively. We represent the 6 skelton L® of L as
follows LU, efUeiUreiU.gl, where the dual cohomology class of ¢} is
%7 y"'(i=1, ---, 4). The first few homotopy groups of L’ are as follows:
7 (L) =27 with generators #; and i, 73(L®)=7,(L®)=0 and #5(L?) =
4AZ with generators k(i =1, -, 4)

" Lemma 1.1. =(L") is isomorphic to 3Z + 4Z, and generated by
Uiy, k), [isy ki) and koS*(h) (i =1, -+, 4) where S*(h) denotes the three
fold suspension of h.  There holds the following :

(1) [ih kz] + [izy kl] = [il: k4] + [iz; ks] = 0.
(2) [, ks] + [io, ko] = koo S*(h) + kyoS*(h).
(3) [y, kil = kyoS°(h) and [iy, ky] = kyoS* (h).

Proof. First we show the above relations modulo the torsion subgroup
of =s(L®) by the method of J. P. Meyer [5]. Let (X, p., q.) be a
Postnikov system of L“> where p,: X, —> X, , is a fiber map with fiber

185

Produced by The Berkeley Electronic Press, 1980



Mathematical Journal of Okayama University, Vol. 22 [1980], Iss. 2, Art. 10

186 K. HOKAMA

F, and ¢,: L' — X, is an n-equivalence. Then, =,(Z?), (L) and
76(L®) are identified with 7,(X;), #s(Xs) and =4(F;), respectively. Let
m:F;, X X;,—> X; be a map such that m|F,V X; =i, \V id. and
(papips)om = (pspsps)er where i;: F; —> X, is the inclusion and = is
the projection of F; X X; onto X;. Then, by [5] we have the following
formula :

(1.2) Z([e, B1) = e(mu(Z(B) X Z(a))), (@ € = (LP), 8 & =5(L(y,)) where
Z and ¢ are the Hurewicz homomorphism and the transgression respectively.
As X; = X; = X, a simple calculation shows that H"(X;; ;Z)=3Z and
H* (X5 Z)_422, and hence ns(L®)=3Z+4Z,. Let {:;®, i=1, -, 4}
be a base of H®(F;;Z) with <, Z(k)> =4, where F is Eilen-
berg-MacLane space K(4Z, 5). It is not difficult to show the following :

m*(@) =1 Xa + 2 X — 82 X,

where a;(1=1,2,3) isabaseof H'(Xs; Z), ¢¥(s) = x and ¢¥(s) =y.
Then we have

<a, m*(E (kz) X E(il)) >

=<<1Xa+ 4§ X 6 — ¢ X 1, Z (k) X E() > = Jis1,2

= — <a, m(Z (k) X Z(3,)) >
Thus, m.(Z(ky) X =) + m,(Z (k) X 5(,) is a torsion element of
H;(Xs; Z). Since T and ¢ are isomorphisms, [, k,] + [i;, k] =0
mod torsion by (1. 2). Similarly we can show that the other relations hold
modulo the torsion subgroup.

The relation (3) follows from the fact that [z,(CP(2)), =s(CP(2))] 0
[see, 1p.240]. Next, we shall show (1) and (2). Let L bea subcomplex
LPU4eUriUe® (= CP(2) X CP(2)) of L andlet L® be the 6 skelton
of L. Then, =(L®) is isomorphic to 2Z, and generated by k;°S%(h)
and k.oS%h), and ! generates a free part of =;(L®) = Z+ 2Z,, We
consider the following part of the homotopy exact sequence of the pair
( I.-,(“’), L9):

2 (£9) L5 7 (£9, L)~ 7 (L) > 1, (£9) —> 0.

Let {k,, %5} be the base of = 76 (L®, L®) such that 6(k;) = k(i = 2, 3). By
Theorem (1. 4) in [4], we see that =; (I®, L("’) is isomorphic to 4Z + 22,
and generated by [, k,] [Z,, k,] and k, h(] = 2,3) where hois a
generator of =;(D% S®). Then, from the above exact sequence we see
that [iy, k5], [, k] and k;oS*) (i =1, ---, 4) generate =g(L?). Let
p be the projection of L® onto L®/L® = St\/ Si. Now, from the first
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part of the proof we can put
3u(0) = [y, ksl + [ioy ko] + nthooh + migole

for some integers # and m. Then p.(l) = ni,® o S*(h) + mi,®™ o S*(k)
where i*: S® — S§(j = 2, 3) is the inclusion. Let u, be the dual
cohomology class of S5(j=2,3), and p: L—>(SEV S9) Ure® an
extension of p. Then we have

< S¢?(uy), &> = < Sg*(p* (uy), 8> = < Sqg*(x%y), &>=1.

This implies # = 1, and similarly m=1. Now, from 9j,({)=0 we
obtain the relation (2). Similarly, we can prove (1).

2. Let R= Z[x,3]/(¢(x,9), ¢(x,¥) be a graded ring where deg
x=degy=2, P(x,9) = 222+ 2xy + 233> and ¢(x, y) = px° + p.x’y +
#yxy® + pyy® with integers 2; and p, satisfying the following equation

iy A 23 00
0 A 2 23 O
(2.1) 0 0 24 2 23, =%x1,
My g sy iy 0
0 1 w2 ps

If R is the integral cohomology ring of a topological space, then R Z,
must be compatible with the cohomology operation Sg?.. Now, we see that
any ring R satisfying the above condition has one of the following three
types:

1. j; iseven. In thiscase, RQ Z, is isomorphic to Z,[x, y]/(x?% y°).

2. i, isodd and /,4; is even. In this case, R Z, is isomorphic
to Z,[x, y]/(x* + xy, ¥°).

3. 11, Az and 23 are odd and R® Z, is isomorphic to Z,[x, y1/(x*+
%y + 3% 5°).

In the following, we show that for any ring R having one of the
above three types, there is a simply connected finite CW complex with R
as its integral cohomology ring. Let A= (a;,) be a 3 X 3 unimodular
matrix and put A 7' = (1) where 2; = 2;. We consider an another cell
decomposition (St V S}) U.eiU.eiU.e of the complex L® (see §1)
where a; = ay (i,°h) + ap[iy,4,] + ai(ieh). Then the dual cohomology
class of ¢} is 2ux®+ 2y + 43y°.  Let K be a subcomplex (S?V S2) U
eiU., e of L. Then, in H*(K®; Z) we have ¢(x,y) =0.
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Lemma 2.2, = (K“)=2Z If 14, }, and 1, are odd then =,(K®)
= 0, Ts (K“)) = ZZ, otherwise Ty (K“)) = Zz, Ts (KG)) =27+ Zz.

Proof. Let (X, p., g¢.) be a Postnikov system of K, Then
H®*(X;;Z)=0, and H®(X;; Z) is isomorphic to 2Z or 2Z+ Z, according
as 2, A, and 2, areodd or not. If J;, 2, and i; are odd then we see
7y (K®) =0, and hence X; = X, and =; (K®) = 2Z. Similarly we can
prove the remaining case.

By (2. 1), there is an 4 X 4 unimodular matrix M = (m;,) such that
I dp A3 0
0 A4 4 13

My g My Jy
Vy Vy V3 U

M=

4
We put x; = j‘;l, myk;, then {x, i=1,---,4} isabaseof =5(L?®). Let

L be the complex L®U.eiUe;. Then the dual cohomology classes of
¢! and e} are 2,x° + 1,2’y + 23xy® and i;x%y + A,xy% + 153°, respectively.
Let g: K ——> L® and g: K> ——> L be inclusions. We may assume
that g is a fiber map with fiber F. Let {¥: S* — F be a map which
represents a generator of m,(F). Then, 7,9:7,(S% —> a(F) is 1—1
if j<4 and ontoif j <5, since H,(F)= H;(F) =0 from the coho-
mology spectral sequence of 7 .

Now, assume R is of type 1 or 2. Then, since =,(K“)=2Z, by
Lemma 2.2 and =,(F) = Z,, from the homotopy exact sequence of g we
see that g, :ms(K“) —> (L) is onto. Let « and 8 be such that
Zx(a) = £, and g4(3) = x,. Then we have

2.3 g«(a) = £, and g.(f) = &,.

We put K=K®U#’. Then itisclear from the construction of K that
H*(K; Z) isisomorphic to R.

Next, we assume R is of type 3 and show that there is a 3 € n5(K)
such thct ¢, (8) = &, Putting K= K® Ux® we have H*(K; Z)=R.
Now, let L, = LU,.¢} and L, = L U.¢} andlet ¢, and ¢, be the inclu-
sions of K into L, and L, respectively. Then we have the following

Lemma 2.4. Coker g =0 and Coker gq,,=2Z, where gix:ms(K?)
—>as(L) (1 = 1,2).

Proof. Let F, be a fiber of q,. We consider the cohomology spectral
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sequence of the fiber space K®>——L,. It isclear that {x}(x, y), yb(x, ),
#(x,9)} is a base of H%L,; Z). Since q,*(¢(x,y)) = 0, there is an
a € H¥(F,; Z)= Z such that d,(a) = ¢(x,y). Now, we see thatd,: E}*
—> E$ is injective, and hence E?° is isomorphic to Z and generated
by ¢(x,5), EX* =0 and H*(F,; Z) = 0. Thus ds: H(F,; Z) = E}* —>
E¥° is an isomorphism. We also have H%(F,; Z)=5Z and 4°=0. In
order to show Sg%(a) =0, we consider the spectral sequence of the coefici-
ents mod 2. Since R is of type 3, by (2. 1) we see ¢(x, y)=3y* mod
{xp(x,y), yb(x,y)} where ¢(x, y)=2*+xy+y°. Now, we have ds(S¢*(a))
=S¢ (¢(x,9)) = By + 2y’ =y =¢(x,9) #0. Thus Sg*(a) # 0.

Let f: F, —> K(Z, 3) be a map such that f*(¢) = ¢ where ¢ is a
generator of H*(K(Z, 3); Z). Now, from the cohomology spectral sequence
of the principal fibration G— F; induced by f, we see that HY(G; Z)=0
and H%(G; Z)=Z Then »,(G)=H,(G; Z) =0 by the Hurewicz isomor-
phism, and hence =;(F,) = 0. Now from the homotopy exact sequence of
the fiber space F, —> K —> L,, it follows that Coker g, = 0. We
can see that Coker ¢,. = Z, by making use of the similar argument.

Since 7, (K®) =0 by Lemma 2.2 and =,(F)= Z,, we obtain Coker
gx=2Z,. Then we see by Lemma 2. 4 that there is g & n;(K“) such that

qx(B) = &,.

Theorem 2.5. Let R= Z[x,y]/($(x,9), ¢(x,5)) be aring of type 1,
2 0r 3. Then there exists only one (up to homotopy equivalence) simply
connected finite CW complex K such that H*(K; Z) = R.

Proof. It remains to show the uniqueness of K. It is clear that the
4 skelton K™ is well determined by the cohomology ring structure of X,
and hence the homotopy type of K depends only on the homotopy class of
the attaching map of the 6 cell. First, let R be aring of type 3. Then,
g* 1 75 (K®) —> =5 (L) is injective, since 7;(K“’)=2Z by Lemma 2. 2.
Hence the attaching map B is well determined by the cohomology ring
structure of K. Thus, in this case, K is unique up to homotopy equiva-
lence.

Now suppose that R is a ring of type 1 or 2. In this case, 7;(K“) =
2Z+ Z, is generated by «, 8 and 7" = {®S(h)>S*(h) where i is a
generator of w;(K°) (see (2.3)). Thus there are two attaching maps 3
and B+ 7 for the 6 cell. We show by a slight generalization of the proof
of Theorem 2.5 in [3] that there exists a homotopy equivalence f of K%
such that f,(f) = 8+ 7. Then this will show the uniqueness of K.

By (2. 1), we may take such a base {u,»} of H*(K; Z)= R* (R*
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the homogeneous part of R of degree 4) that » and » are the respective
duals of x and y in RQ Z,, u=2xy, v=7* and x°=0 (mod 2) if R
isof type 1, and # =xy =" and v=y® (mod 2) if R is of type 2. Let
g: K® —-> S* be a map such that g*(<) = u where ¥ is a generator
of H*(S*; Z), and r: K——> K™ \/ S* a deformation of id. X g. We
put f = (id. \V (i®oS(h)))o». Then f is a homotopy equivalence of K.
Let i be a generator of =,(S*). Since, in the decomposition =5 (K’ S*)
= 75 (K®) + 75(S*) + 0ng( K x S*, K¥VS*), the last summand is generated
by [i;,#] (i=1,2) we have r*(8) =3+ g.(8) + nli,, i1 + m[i,, i] for
some integers # and m. In the complex S* U, e’ S¢°(«”)%0 or 0
according as R is of type 1 or 2, and hence we see that g,(3%) #0 or
0 according as R isof type 1 or 2. Similarly we have =0, m=1 or
n=m=1 (mod 2) according as R isof type 1 or 2. Now, suppose that
R isof type 1. Then, we have

(2.6) f(B) = B+ 7+ [i, ¥ S(h)].

If we put # = A;22° + 2900y + 2323 and v = ;2% + Jyxy + A1y% then
the defining matrix A of K becomes the following: ¢ =a,;=a; =1
(mod 2) and the other a@; =0 (mod 2) by the choice of # and ». Thus
we have 4,0k = {® and [4;, i,] =0 (mod 27; (K*")) and therefore

[7z, i®o S(h)] = [d, d10h° S(h)]
= [fy, £,] o S(h) o S*(h) — [[iz, 4], 4] ° S* (W)
=0.
Hence, f.(8) =8+ 7 by (2.6). Similarly we can prove the case that R
is of type 2.

3. Let Y and #® be the inclusions of S*® and S° into the one point
union S®V S°® respectively, and ¢ and £ the generators of 7;(S%) = Z,
and 7;(S%) = Z, respectively. We put E,=(S*V S°) U.e' where
ay= [, 8] + &g, ap=[{®, iP] + iV and ay= [, 9]+ Dot + {Dok.
Then we have the following

Lemma 3.1. Let E be a simply connected finitd CW complex. If
H*(E; Z)=H*(S® X S*; Z), then E is homotopy equivalent to one of
the following complexes: S* % S°, E((i=1,2,3,) and SU(3).

Proof. We can suppose E = S®U.’ U’ First, assume Sq¢*=0,
e a=0. Itiswell known that =,(S®V S®)=Z+ 2Z, with generators
[i®, 9], i{Po¢ and {®o&  Then, from the cohomology ring structure of
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E, we see that B iseither [i*®, ] or a; (i =1, 2, 3). Itis clear that
these 4 complexes have different homotopy type.

Now, suppose Sg?~0. Then E = S®Usue® Ued. Since SU(3)
is such a complex, we have SU (3)=~ E® U,e where E® is the 5 skelton
of E. Since =, (SU(3))=0, we see that m,(E®)=Z is generated by 7.
Now, from the cohomology ring structure of E, we have =7, and hence
E is homotopy equivalent to SU(3).

It is well known that E, is homotopy equivalent to SU(3) X sucyS?,
where SU(2) acts on S* via the non trivial homomorphism SU(2) —
SO(3) — SO4).

Lemma 3.2. Let E be a simply connected smooth manifold of dimen-
sion8. If H*(E; Z)=H*(S* X S°; Z), then E is homeomorphic to
S? X S% SU@3) X sunS® or SU3).

Proof. Let f:S*——> E be a smooth imbedding such that [f]
generates 7;(E). Since the normal bundle of $* is trivial, we have an
extension f:S*XDS—>E of . Let M =E—f (Int(S® X D)) U7D* x S*.
Then M is a homotopy sphere. Thus, E#(—M) is diffeomorphic to
S —g(Int(D*x S*))U, S* X D* for some smooth imbedding g: D*XS'—>
S®.  Since the imbedding g|0 X S* of S* into S*® is isotopie to the
standard imbedding (see, [2]), we see that E# (— M) is the orthogonal S?*
bundle over S°. On the other hand, an orthogonal S*® bundle over S° is
diffeomorphic to S* X S5, SU(3) X sueyS® or SU(3) ([6]). These facts
completes the proof.

The following theorem together with Theorem 2.5 determines com-
pletely the homotopy types of the orbit spaces of free 7T2-actions on S®XS®
and SU(3).

Theorem 3.3. Let K be a simply connected finite CW complex. Then
holds the following :

a) K 1s homotopy equivalent to the orbit space of a free T*action on
S¥XS® if and only if H*(K; Z) is a ring of type 1 or 2.

b) K is homotopy equivalent to the orbit space of a free T*action on
SU3) if and only if H*(K ; Z) is a ring of type 3.

Proof. The ‘only if part’ follows from [3]. Let E—— K be the
2-connected principal 72 bundle. Then it follows from [3] that H*(E; Z)
=H*(S*xS%;Z) and S¢*#0 or 0 on E according as H*(K; Z) is of
type 3 or not. Now, assume H*(K; Z) is of type 3. By [7], K has
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the homotopy type of a closed smooth 6-manifold, and hence we may assume
that E is a compact smooth manifold. Then E is homeomorphic to SU(3)
by Lemmas 3. 1 and 3. 2. This proves b).

Now, suppose that H*(K; Z) is of type 1 or 2. In order to show a),
it is sufficient to show that £=S°® X S°. By Lemma 3.1, this follows
from the fact [#;(K), 75(K)] = 0. We may suppose, by Theorem 2.5,
that K = K® U ,e® and =;(K) is generated by a and 7 = i® o S(k)S2(h).
Recall that g¢.(a) = #; and ¢.(8) = &, (see, (2.3)). From the homotopy
exact sequence of the pair (K, K°) and Lemma 3. 1, we have the following
split exact sequence:

0 —> m; (K, K®) —> 7(K) g (K) 0.

Thus, by [4] we see that 7;(K‘°) is isomorphic to 2Z+ 2Z, + Z;; and
generated by [iy, 81, [i,, Bl, @°S*(h), B°S°(h) and {®op where p is
a generator of w;(S%). Then we have

[ih al = 5T (i, A1 + Cas (73 B] + Cj3 e S? (h) + (:4,190 Ss(h)
+ ¢58%0p  (§=1,2)

for some integers c¢;;. Now, we determine ¢;; mod 2. We may assume
that ¢(x,y) =% ¢(x,y)=7* (mod 2)if R isof typel, and ¢ (x, y)=
2+ xy, ¢(x,y)=y* (mod2) if R isof type2. Then, we may assume
that »; in the matrix M ™! cited in §2 are as follows : v;=v, =, =0, r,=1
(mod 2). Thenif R isof typel, g«(@)=k,, q.(B)=Fk; (mod 275(L®))
andif R isof type 2, gu(@) =k, g (B)=Fk, + b, + ks (mod 275 (LY)).
Now, if R isof type 1, by Lemma 1.1 we have

/% ([ils a]) = [il: k4], Q% ([iz, a]) = k4 ° Ss(h)
g+ ([i1, 1) = [y, ks] and g4 ([4,, 1) = [4y, &4l
These imply ¢;;=0 and ¢;; =1 (mod 2). By the same argument we can

see that the same relations hold also in case R is of type 2. Thus we have
shown the following relations in 7 (K):

(mod 275 (L)),

[Z.lr a] = 6511.(3)0P’ [iz, a] = aos3(h) + CSZiQ)OP .

Since 7,(K)==2Z, by Lemma 3.1 and {®=i,¢h, [i;, .] =0 (mod
27,(K)) (see, the proof of Theorem 2.5), we have

59, o] = [4,0h, o] = [i,aS*(h) — [[i, l, 4]
= i 0 po S (h).

On the other hand, by the Jacobi identity, we have
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0 = [[iy, 2], @] = [[in al, i] + [[i, al, i)
=[i}, ) e S*(h) = ¢5:i e poS*(h).

Thus [/, a] =0, and hence [#;(K), n°(K)] = 0. This completes the
proof.

Since [73(E.), ms(E)] <0 (i =1,2,3), we ha§e

Corollary 3.4. There is no free T -action on the complexes E.(i =
1,2,3).

4. We consider some examples of rings R treated in §2. We use

a, b,c, a, B, v and & instead of iy, -+, #y. Then (2. 1) becomes
@ 1) Ao + ac’f? + aci? + a*8* — bclfapf + (b%c — 2act)yar

) + (3abc — b®)ad — abcfi + (ab® — 24%c)B6 — a®bié = + 1.
Now, we suppose a0 and 5% — 4ac 5~ 0, and put
(4.2) X= —bca+ acB — a5, Y = (ac — b®)a + abP — a’r.
Then, (4. 1) becomes the following
4.3) aX?—bXY+ cY? = + a?.

In the following, we consider the isomorphism classes of the rings R
of type 1 such that ¢(x,y) = 32> + 20xy + 7y>. In this case (4. 2) and
(4. 3) become

3X*—20XY+ 7Y = =+9 and Y=2X (mod9).
Ifweput X=u + 4v and Y = 2u + 17v, then we have
(4. 4) u? —T79v* = + 1.

Since the fundamental unit of the real quadratic field Q(1/79) is 80+91/79,
we have # + vy/79 = (80 + 9v/79)" where » is an integer. We may
assume without changing the isomorphism class of R that o« =1 or 2 and
f=0, 1 or 2. Then the integral solutions of (4.1) in our case are as
follows :

4.5) a=1,=2,7=—(2u+ 17v+ 259)/9 and 6= — (u+ 4v +98)/9

where # and v are given by # +v1/79= (80 + 91/79)* or —(80+9/79)**
and
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(4.6) a=2,8=0, ¥ =—(2u+ 170+ 758)/9 and &= — (u+ 4v + 280)/9
where # + v1/79 = (80 + 9v/79)**' or — (80 + 91/79)* with integer I.

Proposition 4.7. The rings R carrespahding to the different values
of a, B, 7 and & in (4.5) and (4. 6) are not isomorphic.

Proof. It is well known that linear transformations which preserve
a quadratic form of 2 variables are obtained by the solutions of a Pell equa-
tion. Thus, in case ¢(x,y) = 32 + 20xy + Ty?, we have

x=px+qy and y = rx + sy
where p=u — 10v, ¢g= — Tv, r = — 3v and s = u + 10v with some
integers # and v satisfying (4.4). If we put ¢(px + gy, rx + sy) =
a'x* + F'x%y + -+, we have

o = (u — 10v)3a — 3v(u — 100)°8 + 9v%(w — 10v)r — 274%.
Now, sppose o = a= 1. Then we have #«*=1 (mod v), and hence
#=+1 (modv) by (4.4). The solutions satisfying this condition are
#u==+1 9v=0 and #= —80, v = £ 9. Since f=2, we can exclude
the latter solution, and therefore we see that x= +%, y=+y If o =2
and a =1, we have #= + 2 (mod v). However, such a solution of
(4. 4) does not exist. Similarly in case @’ = a =2 we can see that x= + %,

y= x4y
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