Mathematical Journal of Okayama University

Volume 22, Issue 2

1980

Article 10

JUNE 1981

On the homotopy types of the orbit spaces of free T²-actions on S³ × S5 (II)

Kenji Hokama*

Copyright © 1980 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

^{*}Okayama University

Math. J. Okayama Univ. 22(1980), 185-194

ON THE HOMOTOPY TYPES OF THE ORBIT SPACES OF FREE T^2 -ACTIONS ON $S^3 \times S^5$ (II)

KENJI HOKAMA

The purpose of this paper which is a continuation of [3] is to determine the homotopy type of the orbit spaces of free actions of the torus T^2 of rank 2 on the product $S^3 \times S^5$ of spheres of dimension 3 and 5 respectively. The main result of this paper is the following: The integral cohomology rings of the orbit spaces are rings $R = Z[x, y]/(\phi(x, y), \phi(x, y))$ of type 1 or 2 (see § 2) and there is only one (up to homotopy equivalence) simply connected finite CW complex having the given integral cohomology ring R.

1. Let L be the product space $CP(3) \times CP(3)$ of the complex projective spaces of dimension 6, and ι a generator of $H^2(CP(3); Z)$. We identify a map f and the homotopy class [f] represented by f and use the braket notation [,] for Whitehead products. In the product cell decomposition of L, the 4 skelton $L^{(1)}$ is

$$(S_1^2 \lor S_2^2) \cup_{i_1 \circ h} e_1^4 \cup_{i_2 \circ h} e_2^4 \cup_{[i_1, i_2]} e_3^4$$

where i_1 and i_2 are inclusions of S^2 into S_1^2 and S_2^2 respectively, and h is the Hopf map. The dual cohomology classes of S_1^2 and S_2^2 are $x=\iota\times 1$ and $y=1\times\iota$ respectively. We represent the 6 skelton $L^{(6)}$ of L as follows $L^{(4)} \cup_{k_1} e_1^6 \cup_{k_2} e_2^6 \cup_{k_3} e_3^6 \cup_{k_4} e_4^6$, where the dual cohomology class of e_i^6 is $x^{4-\iota}$ $y^{i-1}(i=1,\cdots,4)$. The first few homotopy groups of $L^{(4)}$ are as follows: $\pi_2(L^{(4)}) \cong 2Z$ with generators i_1 and i_2 , $\pi_3(L^{(4)}) = \pi_4(L^{(4)}) = 0$ and $\pi_5(L^{(4)}) \cong 4Z$ with generators $k_i (i=1,\cdots,4)$

Lemma 1.1. $\pi_6(L^{(1)})$ is isomorphic to $3Z + 4Z_2$ and generated by $[i_1, k_i]$, $[i_2, k_i]$ and $k_i \circ S^3(h)$ $(i = 1, \dots, 4)$ where $S^3(h)$ denotes the three fold suspension of h. There holds the following:

- (1) $[i_1, k_2] + [i_2, k_1] = [i_1, k_4] + [i_2, k_3] = 0.$
- (2) $[i_1, k_3] + [i_2, k_2] = k_2 \circ S^3(h) + k_3 \circ S^3(h)$.
- (3) $[i_1, k_1] = k_1 \circ S^3(h)$ and $[i_2, k_4] = k_4 \circ S^3(h)$.

Proof. First we show the above relations modulo the torsion subgroup of $\pi_6(L^{(4)})$ by the method of J. P. Meyer [5]. Let (X_n, p_n, q_n) be a Postnikov system of $L^{(4)}$ where $p_n: X_n \longrightarrow X_{n-1}$ is a fiber map with fiber

 F_n and $q_n: L^{(4)} \longrightarrow X_n$ is an n-equivalence. Then, $\pi_2(L^{(4)})$, $\pi_5(L^{(4)})$ and $\pi_6(L^{(4)})$ are identified with $\pi_2(X_5)$, $\pi_5(X_5)$ and $\pi_6(F_6)$, respectively. Let $m: F_5 \times X_5 \longrightarrow X_5$ be a map such that $m \mid F_5 \lor X_5 = i_5 \lor id$. and $(p_3p_4p_5)\circ m = (p_3p_4p_5)\circ \pi$ where $i_5: F_5 \longrightarrow X_5$ is the inclusion and π is the projection of $F_5 \times X_5$ onto X_5 . Then, by [5] we have the following formula:

(1. 2) $\Xi([\alpha, \beta]) = \tau(m_*(\Xi(\beta) \times \Xi(\alpha)))$, $(\alpha \in \pi_2(L^{(4)}), \beta \in \pi_5(L_{(4)}))$ where Ξ and τ are the Hurewicz homomorphism and the transgression respectively. As $X_2 = X_3 = X_4$, a simple calculation shows that $H^7(X_5; Z) \cong 3Z$ and $H^8(X_5; Z) \cong 4Z_2$, and hence $\pi_6(L^{(4)}) \cong 3Z + 4Z_2$. Let $\{\iota_i^{(5)}, i = 1, \dots, 4\}$ be a base of $H^5(F_5; Z)$ with $\{\langle \iota_i^{(5)}, \Xi(k_j) \rangle = \delta_{ij}\}$, where F_5 is Eilenberg-MacLane space K(4Z, 5). It is not difficult to show the following:

$$m^*(a_i) = 1 \times a_i + \iota_{i+1}^{(5)} \times \iota_1 - \iota_i^{(5)} \times \iota_2$$

where $a_i(i=1,2,3)$ is a base of $H^7(X_5; Z)$, $q_i^*(\iota_1)=x$ and $q_i^*(\iota_2)=y$. Then we have

$$< a_i, m_*(\Xi(k_2) \times \Xi(i_1)) >$$

= $< 1 \times a_i + \iota_{i+1}^{(5)} \times \iota_1 - \iota_i^{(5)} \times \iota_2, \ \Xi(k_2) \times \Xi(i_1) > = \delta_{i+1,2}$
= $- < a_i, m_*(\Xi(k_1) \times \Xi(i_2)) >$.

Thus, $m_*(\Xi(k_2) \times \Xi(i_1)) + m_*(\Xi(k_1) \times \Xi(i_2))$ is a torsion element of $H_7(X_5; Z)$. Since Ξ and τ are isomorphisms, $[i_1, k_2] + [i_2, k_1] \equiv 0$ mod torsion by (1. 2). Similarly we can show that the other relations hold modulo the torsion subgroup.

The relation (3) follows from the fact that $[\pi_2(CP(2)), \pi_5(CP(2))] \neq 0$ [see, 1 p. 240]. Next, we shall show (1) and (2). Let \tilde{L} be a subcomplex $L^{(4)} \cup_{k_2} e_3^6 \cup_{k_3} e_3^6 \cup_{l} e^8$ (= $CP(2) \times CP(2)$) of L and let $\tilde{L}^{(6)}$ be the 6 skelton of \tilde{L} . Then, $\pi_6(\tilde{L}^{(6)})$ is isomorphic to $2Z_2$ and generated by $k_1 \circ S^3(h)$ and $k_4 \circ S^3(h)$, and l generates a free part of $\pi_7(\tilde{L}^{(6)}) \cong Z + 2Z_2$. We consider the following part of the homotopy exact sequence of the pair $(\tilde{L}^{(6)}, L^{(4)})$:

$$\pi_7(\tilde{L}^{(6)}) \xrightarrow{j_*} \pi_7(\tilde{L}^{(6)}, L^{(4)}) \xrightarrow{\hat{o}} \pi_6(L^{(4)}) \xrightarrow{i_*} \pi_6(\tilde{L}^{(6)}) \longrightarrow 0.$$

Let $\{\tilde{k}_2, \tilde{k}_3\}$ be the base of $\pi_6(\tilde{L}^{(6)}, L^{(4)})$ such that $\hat{o}(\tilde{k}_i) = k_i (i=2,3)$. By Theorem (1.4) in [4], we see that $\pi_7(\tilde{L}^{(6)}, L^{(4)})$ is isomorphic to $4Z + 2Z_2$ and generated by $[i_1, \tilde{k}_j]$, $[i_2, \tilde{k}_j]$ and $\tilde{k}_j \circ \tilde{h}$ (j=2,3) where \tilde{h} is a generator of $\pi_7(D^6, S^5)$. Then, from the above exact sequence we see that $[i_1, k_j]$, $[i_2, k_j]$ and $k_i \circ S^3(h)$ $(i=1, \cdots, 4)$ generate $\pi_6(L^{(4)})$. Let p be the projection of $\tilde{L}^{(6)}$ onto $\tilde{L}^{(6)}/L^{(4)} = S_2^6 \vee S_3^5$. Now, from the first

187

part of the proof we can put

$$j_*(l) = [i_1, \tilde{k}_3] + [i_2, \tilde{k}_2] + n\tilde{k}_2 \circ \tilde{h} + m\tilde{k}_3 \circ \tilde{h}$$

for some integers n and m. Then $p_*(l) = ni_2^{(6)} \circ S^4(h) + mi_3^{(6)} \circ S^4(h)$ where $i_j^{(6)} \colon S^6 \longrightarrow S_j^6 \ (j=2,3)$ is the inclusion. Let u_j be the dual cohomology class of $S_j^6 \ (j=2,3)$, and $\bar{p} \colon \tilde{L} \longrightarrow (S_2^6 \lor S_3^6) \cup_{p_*(l)} e^8$ an extension of p. Then we have

$$\langle Sq^2(u_2), e^8 \rangle = \langle Sq^2(\bar{p}^*(u_2), e^8 \rangle = \langle Sq^2(x^2y), e^8 \rangle = 1.$$

This implies n = 1, and similarly m = 1. Now, from $\partial j_*(l) = 0$ we obtain the relation (2). Similarly, we can prove (1).

2. Let $R = Z[x, y]/(\phi(x, y), \phi(x, y))$ be a graded ring where deg $x = \deg y = 2$, $\phi(x, y) = \lambda_1 x^2 + \lambda_2 xy + \lambda_3 y^2$ and $\phi(x, y) = \mu_1 x^3 + \mu_2 x^2 y + \mu_3 xy^2 + \mu_4 y^3$ with integers λ_i and μ_j satisfying the following equation

If R is the integral cohomology ring of a topological space, then $R \otimes Z_2$ must be compatible with the cohomology operation Sq^2 . Now, we see that any ring R satisfying the above condition has one of the following three types:

- 1. λ_2 is even. In this case, $R \otimes Z_2$ is isomorphic to $Z_2[x, y]/(x^2, y^3)$.
- 2. λ_2 is odd and $\lambda_1\lambda_3$ is even. In this case, $R \otimes Z_2$ is isomorphic to $Z_2[x, y]/(x^2 + xy, y^3)$.
- 3. λ_1 , λ_2 and λ_3 are odd and $R \otimes Z_2$ is isomorphic to $Z_2[x, y]/(x^2 + xy + y^2, y^3)$.

In the following, we show that for any ring R having one of the above three types, there is a simply connected finite CW complex with R as its integral cohomology ring. Let $A=(a_{ij})$ be a 3×3 unimodular matrix and put $A^{-1}=(\lambda_{ij})$ where $\lambda_{i3}=\lambda_i$. We consider an another cell decomposition $(S_1^2 \bigvee S_2^2) \bigcup_{a_1} e_1^4 \bigcup_{a_2} e_2^4 \bigcup_{a_3} e_3^4$ of the complex $L^{(4)}$ (see § 1) where $\alpha_i=a_{i1}$ $(i_1\circ h)+a_{i2}[i_1,i_2]+a_{i3}(i_2\circ h)$. Then the dual cohomology class of e_i^4 is $\lambda_{ii}x^2+\lambda_{2i}xy+\lambda_{3i}y^2$. Let $K^{(4)}$ be a subcomplex $(S_1^2\bigvee S_2^2)\bigcup_{a_1}e_1^4\bigcup_{a_2}e_2^4$ of $L^{(4)}$. Then, in $H^4(K^{(4)};Z)$ we have $\phi(x,y)=0$.

188

Lemma 2.2. $\pi_3(K^{(4)}) \cong Z$. If λ_1 , λ_2 and λ_3 are odd then $\pi_4(K^{(4)}) = 0$, $\pi_5(K^{(4)}) \cong 2Z$, otherwise $\pi_4(K^{(4)}) \cong Z_2$, $\pi_5(K^{(4)}) \cong 2Z + Z_2$.

Proof. Let (X_n, p_n, q_n) be a Postnikov system of $K^{(4)}$. Then $H^5(X_3; Z) = 0$, and $H^6(X_3; Z)$ is isomorphic to 2Z or $2Z + Z_2$ according as λ_1 , λ_2 and λ_3 are odd or not. If λ_1 , λ_2 and λ_3 are odd then we see π_4 $(K^{(4)}) = 0$, and hence $X_3 = X_4$ and π_5 $(K^{(4)}) = 2Z$. Similarly we can prove the remaining case.

By (2.1), there is an 4×4 unimodular matrix $M = (m_{ij})$ such that

$$M^{-1} = \left(egin{array}{cccc} \lambda_1 & \lambda_2 & \lambda_3 & 0 \\ 0 & \lambda_1 & \lambda_2 & \lambda_3 \\ \mu_1 & \mu_2 & \mu_3 & \mu_4 \\
u_1 &
u_2 &
u_3 &
u_4 \end{array}
ight)$$

We put $\kappa_i = \sum_{j=1}^4 m_{fi} k_j$, then $\{\kappa_i, i=1,\cdots,4\}$ is a base of $\pi_5(L^{(4)})$. Let \bar{L} be the complex $L^{(4)} \cup_{k_1} e_1^6 \cup_{k_2} e_2^6$. Then the dual cohomology classes of e_1^6 and e_2^6 are $\lambda_1 x^3 + \lambda_2 x^2 y + \lambda_3 x y^2$ and $\lambda_1 x^2 y + \lambda_2 x y^2 + \lambda_3 y^3$, respectively. Let $q: K^{(4)} \longrightarrow L^{(4)}$ and $\bar{q}: K^{(4)} \longrightarrow L$ be inclusions. We may assume that \bar{q} is a fiber map with fiber F. Let $i^{(3)}: S^3 \longrightarrow F$ be a map which represents a generator of $\pi_3(F)$. Then, $i_*^{(3)}: \pi_j(S^3) \longrightarrow \pi_j(F)$ is 1-1 if $j \leq 4$ and onto if $j \leq 5$, since $H_4(F) = H_5(F) = 0$ from the cohomology spectral sequence of \bar{q} .

Now, assume R is of type 1 or 2. Then, since $\pi_4(K^{(4)}) \cong \mathbb{Z}_2$ by Lemma 2. 2 and $\pi_4(F) \cong \mathbb{Z}_2$, from the homotopy exact sequence of \overline{q} we see that $\overline{q}_* : \pi_5(K^{(4)}) \longrightarrow \pi_5(\overline{L})$ is onto. Let α and β be such that $\overline{q}_*(\alpha) = \kappa_3$ and $\overline{q}_*(\beta) = \kappa_4$. Then we have

$$(2.3) q_*(\alpha) = \kappa_3 \text{ and } q_*(\beta) = \kappa_4.$$

We put $K = K^{(4)} \cup_{\mathbb{Z}}^6$. Then it is clear from the construction of K that $H^*(K; \mathbb{Z})$ is isomorphic to R.

Next, we assume R is of type 3 and show that there is a $\beta \in \pi_5(K^{(4)})$ such that $q_*(\beta) = \kappa_4$. Putting $K = K^{(4)} \cup_{\beta} e^6$, we have $H^*(K; \mathbb{Z}) \cong R$. Now, let $L_1 = \overline{L} \cup_{\epsilon_3} e^6_3$ and $L_2 = \overline{L} \cup_{\epsilon_4} e^6_4$ and let q_1 and q_2 be the inclusions of $K^{(4)}$ into L_1 and L_2 , respectively. Then we have the following

Lemma 2.4. Coker $q_{1*} = 0$ and Coker $q_{2*} \cong Z_2$, where $q_{i*} : \pi_5(K^{(4)}) \longrightarrow \pi_5(L_i)$ (i = 1, 2).

Proof. Let F_1 be a fiber of q_1 . We consider the cohomology spectral

4

http://escholarship.lib.okayama-u.ac.jp/mjou/vol22/iss2/10

sequence of the fiber space $K^{(4)} \longrightarrow L_1$. It is clear that $\{x\phi(x,y), y\phi(x,y), \phi(x,y), \phi(x,y)\}$ is a base of $H^6(L_1; Z)$. Since $q_1^*(\phi(x,y)) = 0$, there is an $a \in H^3(F_1; Z) \cong Z$ such that $d_4(a) = \phi(x,y)$. Now, we see that $d_4: E_4^{2,3} \longrightarrow E_4^{6,0}$ is injective, and hence $E_6^{6,0}$ is isomorphic to Z and generated by $\phi(x,y)$, $E_\infty^{2,3} = 0$ and $H^4(F_1; Z) = 0$. Thus $d_6: H^5(F_1; Z) \cong E_6^{3,5} \longrightarrow E_6^{6,0}$ is an isomorphism. We also have $H^6(F_1; Z) \cong 5Z$ and $a^2 = 0$. In order to show $Sq^2(a) \neq 0$, we consider the spectral sequence of the coefficients mod 2. Since R is of type 3, by (2.1) we see $\phi(x,y) \equiv y^3$ mod $\{x\phi(x,y), y\phi(x,y)\}$ where $\phi(x,y) = x^2 + xy + y^2$. Now, we have $d_6(Sq^2(a)) = Sq^2(\phi(x,y)) = x^2y + xy^2 \equiv y^3 \equiv \phi(x,y) \neq 0$. Thus $Sq^2(a) \neq 0$.

Let $f: F_1 \longrightarrow K(Z, 3)$ be a map such that $f^*(\iota) = a$ where ι is a generator of $H^3(K(Z, 3); Z)$. Now, from the cohomology spectral sequence of the principal fibration $G \longrightarrow F_1$ induced by f, we see that $H^4(G; Z) = 0$ and $H^5(G; Z) \cong Z$. Then $\pi_4(G) \cong H_4(G; Z) = 0$ by the Hurewicz isomorphism, and hence $\pi_4(F_1) = 0$. Now from the homotopy exact sequence of the fiber space $F_1 \longrightarrow K^{(4)} \longrightarrow L_1$, it follows that Coker $q_{1*} = 0$. We can see that Coker $q_{2*} \cong Z_2$ by making use of the similar argument.

Since $\pi_4(K^{(4)}) = 0$ by Lemma 2. 2 and $\pi_4(F) \cong Z_2$, we obtain Coker $\bar{q}_* \cong Z_2$. Then we see by Lemma 2. 4 that there is $\beta \in \pi_5(K^{(4)})$ such that $\bar{q}_*(\beta) = \kappa_4$.

Theorem 2.5. Let $R = Z[x,y]/(\phi(x,y), \phi(x,y))$ be a ring of type 1, 2 or 3. Then there exists only one (up to homotopy equivalence) simply connected finite CW complex K such that $H^*(K; Z) \cong R$.

Proof. It remains to show the uniqueness of K. It is clear that the 4 skelton $K^{(4)}$ is well determined by the cohomology ring structure of K, and hence the homotopy type of K depends only on the homotopy class of the attaching map of the 6 cell. First, let R be a ring of type 3. Then, $q^*: \pi_5(K^{(4)}) \longrightarrow \pi_5(L^{(4)})$ is injective, since $\pi_5(K^{(4)}) \cong 2Z$ by Lemma 2. 2. Hence the attaching map β is well determined by the cohomology ring structure of K. Thus, in this case, K is unique up to homotopy equivalence.

Now suppose that R is a ring of type 1 or 2. In this case, $\pi_5(K^{(4)}) \cong 2Z + Z_2$ is generated by α , β and $r = i^{(3)} \circ S(h) \circ S^2(h)$ where $i^{(3)}$ is a generator of $\pi_3(K^{(4)})$ (see (2.3)). Thus there are two attaching maps β and $\beta + r$ for the 6 cell. We show by a slight generalization of the proof of Theorem 2.5 in [3] that there exists a homotopy equivalence f of $K^{(4)}$ such that $f_*(\beta) = \beta + r$. Then this will show the uniqueness of K.

By (2.1), we may take such a base $\{u, v\}$ of $H^4(K; Z) \cong R^4(R^4)$

the homogeneous part of R of degree 4) that u and v are the respective duals of x and y in $R \otimes Z_2$, $u \equiv xy$, $v \equiv y^2$ and $x^2 \equiv 0 \pmod{2}$ if R is of type 1, and $u \equiv xy \equiv x^2$ and $v \equiv y^2 \pmod{2}$ if R is of type 2. Let $g: K^{(1)} \longrightarrow S^4$ be a map such that $g^*(\iota^{(1)}) = u$ where $\iota^{(1)}$ is a generator of $H^4(S^4; Z)$, and $r: K^{(1)} \longrightarrow K^{(1)} \vee S^4$ a deformation of $id. \times g$. We put $f = (id. \vee (i^{(3)} \circ S(h))) \circ r$. Then f is a homotopy equivalence of $K^{(1)}$. Let $i^{(1)}$ be a generator of $\pi_4(S^4)$. Since, in the decomposition $\pi_5(K^{(1)} \vee S^4) = \pi_5(K^{(1)} \vee \pi_5(S^4) + \partial \pi_6(K^{(1)} \times S^4, K^{(1)} \vee S^4)$, the last summand is generated by $[i_j, i^{(1)}]$ (i = 1, 2) we have $r^*(\beta) = \beta + g_*(\beta) + n[i_1, i^{(1)}] + m[i_2, i^{(1)}]$ for some integers n and m. In the complex $S^4 \cup_{g_*(\beta)} e^6$, $Sq^2(\iota^{(1)}) \neq 0$ or 0 according as R is of type 1 or 2, and hence we see that $g_*(\beta) \neq 0$ or 0 according as R is of type 1 or 2. Similarly we have $n \equiv 0$, $m \equiv 1$ or $n \equiv m \equiv 1 \pmod{2}$ according as R is of type 1 or 2. Now, suppose that R is of type 1. Then, we have

$$(2,6) f_*(\beta) = \beta + i + [i_2, i^{(3)} \circ S(h)].$$

If we put $u = \lambda_{12}x^2 + \lambda_{22}xy + \lambda_{32}y^2$ and $v = \lambda_{11}x^2 + \lambda_{21}xy + \lambda_{31}y^2$, then the defining matrix A of $K^{(4)}$ becomes the following: $a_{13} \equiv a_{22} \equiv a_{31} \equiv 1 \pmod{2}$ and the other $a_{ij} \equiv 0 \pmod{2}$ by the choice of u and v. Thus we have $i_1 \circ h = i^{(3)}$ and $[i_1, i_2] \equiv 0 \pmod{2\pi_3} (K^{(1)})$ and therefore

$$[i_{2}, i^{(3)} \circ S(h)] = [i_{2}, i_{1} \circ h \circ S(h)]$$

$$= [i_{2}, i_{1}] \circ S(h) \circ S^{2}(h) - [[i_{2}, i_{1}], i_{1}] \circ S^{2}(h)$$

$$= 0.$$

Hence, $f_*(\beta) = \beta + \hat{r}$ by (2.6). Similarly we can prove the case that R is of type 2.

3. Let $i^{(3)}$ and $i^{(5)}$ be the inclusions of S^3 and S^5 into the one point union $S^3 \vee S^5$ respectively, and ζ and ξ the generators of $\pi_7(S^3) \cong Z_2$ and $\pi_7(S^5) \cong Z_2$ respectively. We put $E_i = (S^3 \vee S^5) \cup_{\alpha_i} e^8$ where $\alpha_1 = [i^{(3)}, i^{(5)}] + i^{(3)} \circ \zeta$, $\alpha_2 = [i^{(3)}, i^{(5)}] + i^{(5)} \circ \xi$ and $\alpha_3 = [i^{(3)}, i^{(5)}] + i^{(3)} \circ \zeta + i^{(5)} \circ \xi$. Then we have the following

Lemma 3.1. Let E be a simply connected finite CW complex. If $H^*(E; Z) \cong H^*(S^3 \times S^5; Z)$, then E is homotopy equivalent to one of the following complexes: $S^3 \times S^5$, $E_i(i = 1, 2, 3,)$ and SU(3).

Proof. We can suppose $E = S^3 \cup_{\alpha} e^5 \cup_{\beta} e^8$. First, assume $Sq^2 = 0$, i. e. $\alpha = 0$. It is well known that $\pi_7(S^3 \vee S^5) \cong Z + 2Z_2$ with generators $[i^{(3)}, i^{(5)}], i^{(3)} \circ \zeta$ and $i^{(5)} \circ \xi$. Then, from the cohomology ring structure of

E, we see that β is either $[i^{(3)}, i^{(5)}]$ or α_i (i = 1, 2, 3). It is clear that these 4 complexes have different homotopy type.

Now, suppose $Sq^2 \neq 0$. Then $E = S^3 \cup_{S(h)} e^5 \cup_{\beta} e^8$. Since SU(3) is such a complex, we have $SU(3) \simeq E^{(5)} \cup_{r} e$ where $E^{(5)}$ is the 5 skelton of E. Since $\pi_7(SU(3)) = 0$, we see that $\pi_7(E^{(5)}) \cong Z$ is generated by Υ . Now, from the cohomology ring structure of E, we have $\beta = \Upsilon$, and hence E is homotopy equivalent to SU(3).

It is well known that E_1 is homotopy equivalent to $SU(3) \times_{SU(2)} S^3$, where SU(2) acts on S^3 via the non trivial homomorphism $SU(2) \longrightarrow SO(3) \longrightarrow SO(4)$.

Lemma 3.2. Let E be a simply connected smooth manifold of dimension 8. If $H^*(E; Z) \cong H^*(S^3 \times S^5; Z)$, then E is homeomorphic to $S^3 \times S^5$, $SU(3) \times_{SU(2)} S^3$ or SU(3).

Proof. Let $f: S^3 \longrightarrow E$ be a smooth imbedding such that [f] generates $\pi_3(E)$. Since the normal bundle of S^3 is trivial, we have an extension $\overline{f}: S^3 \times D^5 \longrightarrow E$ of f. Let $M = E - \overline{f} (Int(S^3 \times D^5)) \cup_{\overline{f}} D^4 \times S^4$. Then M is a homotopy sphere. Thus, E # (-M) is diffeomorphic to $S^8 - g(Int(D^4 \times S^4)) \cup_{g} S^3 \times D^5$ for some smooth imbedding $g: D^4 \times S^4 \longrightarrow S^8$. Since the imbedding $g \mid 0 \times S^4$ of S^4 into S^8 is isotopie to the standard imbedding (see, [2]), we see that E # (-M) is the orthogonal S^3 bundle over S^5 . On the other hand, an orthogonal S^3 bundle over S^5 is diffeomorphic to $S^3 \times S^5$, $SU(3) \times_{SU(2)} S^3$ or SU(3) ([6]). These facts completes the proof.

The following theorem together with Theorem 2.5 determines completely the homotopy types of the orbit spaces of free T^2 -actions on $S^3 \times S^5$ and SU(3).

Theorem 3.3. Let K be a simply connected finite CW complex. Then holds the following:

- a) K is homotopy equivalent to the orbit space of a free T^2 -action on $S^3 \times S^5$ if and only if $H^*(K; Z)$ is a ring of type 1 or 2.
- b) K is homotopy equivalent to the orbit space of a free T^2 -action on SU(3) if and only if $H^*(K; Z)$ is a ring of type 3.

Proof. The 'only if part' follows from [3]. Let $E \longrightarrow K$ be the 2-connected principal T^2 bundle. Then it follows from [3] that $H^*(E; Z) = H^*(S^3 \times S^5; Z)$ and $Sq^2 \neq 0$ or 0 on E according as $H^*(K; Z)$ is of type 3 or not. Now, assume $H^*(K; Z)$ is of type 3. By [7], K has

the homotopy type of a closed smooth 6-manifold, and hence we may assume that E is a compact smooth manifold. Then E is homeomorphic to SU(3) by Lemmas 3. 1 and 3. 2. This proves b).

Now, suppose that $H^*(K;Z)$ is of type 1 or 2. In order to show a), it is sufficient to show that $E \cong S^3 \times S^5$. By Lemma 3.1, this follows from the fact $[\pi_3(K), \pi_5(K)] = 0$. We may suppose, by Theorem 2.5, that $K = K^{(4)} \cup_{\beta} e^6$ and $\pi_5(K)$ is generated by α and $\tau = i^{(3)} \circ S(h) \circ S^2(h)$. Recall that $q_*(\alpha) = \kappa_3$ and $q_*(\beta) = \kappa_4$ (see, (2.3)). From the homotopy exact sequence of the pair $(K, K^{(4)})$ and Lemma 3.1, we have the following split exact sequence:

$$0 \longrightarrow \pi_7(K, K^{(4)}) \longrightarrow \pi_6(K^{(4)}) \longrightarrow \pi_6(K) \longrightarrow 0.$$

Thus, by [4] we see that $\pi_6(K^{(4)})$ is isomorphic to $2Z + 2Z_2 + Z_{12}$ and generated by $[i_1, \beta]$, $[i_2, \beta]$, $\alpha \circ S^3(h)$, $\beta \circ S^3(h)$ and $i^{(3)} \circ \rho$ where ρ is a generator of $\pi_6(S^3)$. Then we have

$$[i_{j}, \alpha] = c_{1j}[i_{1}, \beta] + c_{2j}[i_{2}, \beta] + c_{j3}\alpha \circ S^{3}(h) + c_{4j}\beta \circ S^{3}(h) + c_{5j}i^{(3)}\circ \rho \quad (j = 1, 2)$$

for some integers c_{ij} . Now, we determine c_{3j} mod 2. We may assume that $\phi(x,y) \equiv x^2$, $\phi(x,y) \equiv y^3 \pmod 2$ if R is of type 1, and $\phi(x,y) \equiv x^2 + xy$, $\phi(x,y) \equiv y^3 \pmod 2$ if R is of type 2. Then, we may assume that ν_i in the matrix M^{-1} cited in § 2 are as follows: $\nu_1 \equiv \nu_2 \equiv \nu_4 \equiv 0$, $\nu_3 \equiv 1 \pmod 2$. Then if R is of type 1, $q_*(\alpha) \equiv k_4$, $q_*(\beta) \equiv k_3 \pmod 2\pi_5(L^{(4)})$ and if R is of type 2, $q_*(\alpha) \equiv k_4$, $q_*(\beta) \equiv k_1 + k_2 + k_3 \pmod 2\pi_5(L^{(4)})$. Now, if R is of type 1, by Lemma 1.1 we have

$$q_*([i_1, \alpha]) \equiv [i_1, k_4], \ q_*([i_2, \alpha]) \equiv k_4 \circ S^3(h)$$

$$q_*([i_1, \beta]) \equiv [i_1, k_3] \ \text{and} \ q_*([i_2, \beta]) \equiv [i_1, k_4]$$
(mod $2\pi_6(L^{(4)})$).

These imply $c_{31} \equiv 0$ and $c_{32} \equiv 1 \pmod{2}$. By the same argument we can see that the same relations hold also in case R is of type 2. Thus we have shown the following relations in $\pi_6(K)$:

$$[i_1, \alpha] = c_{51}i^{(3)} \circ \rho, \ [i_2, \alpha] = \alpha \circ S^3(h) + c_{52}i^{(3)} \circ \rho.$$

Since $\pi_7(K) \cong 2\mathbb{Z}_2$ by Lemma 3.1 and $i^{(3)} \equiv i_1 \circ h$, $[i_1, i_2] \equiv 0 \pmod{2\pi_3(K)}$ (see, the proof of Theorem 2.5), we have

$$[i^{(3)}, \alpha] = [i_1 \circ h, \alpha] = [i_1, \alpha] \circ S^4(h) - [[i_1, \alpha], i_1]$$

= $c_{51}i^{(3)} \circ \rho \circ S^4(h)$.

On the other hand, by the Jacobi identity, we have

THE ORBIT SPACES OF FREE T^2 -ACTIONS ON $S^3 \times S^5$

193

$$0 = [[i_1, i_2], \alpha] = [[i_2, \alpha], i_1] + [[i_1, \alpha], i_2]$$

= $[i_1, \alpha] \circ S^4(h) = c_{51}i^{(3)} \circ \rho \circ S^4(h).$

Thus $[i^{(3)}, \alpha] = 0$, and hence $[\pi_3(K), \pi^5(K)] = 0$. This completes the proof.

Since $[\pi_3(E_i), \pi_5(E_i)] \neq 0$ (i = 1, 2, 3), we have

Corollary 3.4. There is no free T^2 -action on the complexes E_i (i = 1, 2, 3).

4. We consider some examples of rings R treated in §2. We use $a, b, c, \alpha, \beta, \gamma$ and δ instead of λ_1, \dots, μ_4 . Then (2.1) becomes

(4.1)
$$c^{3}\alpha^{2} + ac^{2}\beta^{2} + a^{2}c\hat{r}^{2} + a^{3}\delta^{2} - bc^{2}\alpha\beta + (b^{2}c - 2ac^{2})\alpha\hat{r} + (3abc - b^{3})\alpha\delta - abc\beta\hat{r} + (ab^{2} - 2a^{2}c)\beta\delta - a^{2}b\hat{r}\delta = \pm 1.$$

Now, we suppose $a \neq 0$ and $b^2 - 4ac \neq 0$, and put

$$(4.2) X = -bc\alpha + ac\beta - a^2\delta, Y = (ac - b^2)\alpha + ab\beta - a^2\gamma.$$

Then, (4.1) becomes the following

$$aX^2 - bXY + cY^2 = \pm a^2.$$

In the following, we consider the isomorphism classes of the rings R of type 1 such that $\phi(x, y) = 3x^2 + 20xy + 7y^2$. In this case (4.2) and (4.3) become

$$3X^2 - 20XY + 7Y^2 = \pm 9$$
 and $Y \equiv 2X \pmod{9}$.

If we put X = u + 4v and Y = 2u + 17v, then we have

$$(4.4) u^2 - 79v^2 = \pm 1.$$

Since the fundamental unit of the real quadratic field $Q(\sqrt{79})$ is $80+9\sqrt{79}$, we have $u+v\sqrt{79}=(80+9\sqrt{79})^n$ where n is an integer. We may assume without changing the isomorphism class of R that $\alpha=1$ or 2 and $\beta=0$, 1 or 2. Then the integral solutions of (4.1) in our case are as follows:

(4.5)
$$\alpha = 1, \beta = 2, 7 = -(2u + 17v + 259)/9 \text{ and } \delta = -(u + 4v + 98)/9$$

where u and v are given by $u + v\sqrt{79} = (80 + 9\sqrt{79})^{2t}$ or $-(80 + 9\sqrt{79})^{2t+1}$ and

(4.6) $\alpha = 2, \beta = 0, \ r = -(2u + 17v + 758)/9 \text{ and } \delta = -(u + 4v + 280)/9$ where $u + v\sqrt{79} = (80 + 9\sqrt{79})^{2l+1}$ or $-(80 + 9\sqrt{79})^{2l}$ with integer l.

Proposition 4.7. The rings R corresponding to the different values of α , β , γ and δ in (4.5) and (4.6) are not isomorphic.

Proof. It is well known that linear transformations which preserve a quadratic form of 2 variables are obtained by the solutions of a Pell equation. Thus, in case $\phi(x, y) = 3x^2 + 20xy + 7y^2$, we have

 $x = p\overline{x} + q\overline{y}$ and $y = r\overline{x} + s\overline{y}$

where p=u-10v, q=-7v, r=-3v and s=u+10v with some integers u and v satisfying (4.4). If we put $\psi(p\bar{x}+q\bar{y},\ r\bar{x}+s\bar{y})=\alpha'\bar{x}^3+\beta'\bar{x}^2\bar{y}+\cdots$, we have

 $\alpha' = (u - 10v)^3 \alpha - 3v(u - 10v)^2 \beta + 9v^2(u - 10v)\gamma - 27v^3 \delta.$

Now, sppose $\alpha'=\alpha=1$. Then we have $u^3\equiv 1\pmod v$, and hence $u\equiv\pm 1\pmod v$ by (4.4). The solutions satisfying this condition are $u=\pm 1$, v=0 and u=-80, $v=\pm 9$. Since $\beta=2$, we can exclude the latter solution, and therefore we see that $x=\pm \overline{x}$, $y=\pm \overline{y}$. If $\alpha'=2$ and $\alpha=1$, we have $u\equiv\pm 2\pmod v$. However, such a solution of (4.4) does not exist. Similarly in case $\alpha'=\alpha=2$ we can see that $x=\pm \overline{x}$, $y=\pm \overline{y}$.

REFERENCES

- [1] H. J. BAUES: Obstruction Theory, Lecture Notes in Math., Springer-Verlag, 628, 1977.
- [2] A. HAEFLIGER: Differentiable embeddings of S^n in S^{n+q} for q > 2, Ann. of Math. 83 (1966), 402—436.
- [3] K. Нокама: On the orbit spaces of linear free T²-actions on S³×S⁵, Math. J. Okayama Univ. 21 (1979), 25—30.
- [4] I.M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. (2) 5 (1954), 260-270.
- [5] J.P. MEYER: Whitehead products and postnikov systems, Amer. J. Math. 82 (1960),
- [6] N. STEENROD: The Topology of Fiber Bundles, Princeton University Press, 1951.
- [7] C. T. C. Wall: Classification probrems in differential topology, V, Invent. Math. 1 (1966), 355-374.

DEPARTMENT OF MATHEMATICS OKAYAMA UNIVERSITY

(Received August 25, 1979)