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SEMIPRIME TORSION FREE RINGS

JouN DAUNS

1. Introduction. Let R be a semiprime torsion free ring, where a
right R-module is torsion free if its singular submodule is zero. Then there
is an essential direct sum of three completely unique and algebraically very
different types of ideals A@ B® D < R (3.5). The ideal D is discrete. that
is it contains an essential direct sum of uniform right ideals, while Ag¢ B is
continuous, contains no uniform submodules. The unique largest molecular
(right) ideal of R is A @ D; the latter contains an essential direct sum of
atomic right ideals (1.2). Let Q = {7,p,...} denote equivalence classes of
similar atomic right ideals of R. Then Q = QCual. ¢ nal =0, and
0P consists of equivalence classes of related uniform right R-modules U
and V, where U ~ V if and only if they have isomorphic injective hulls
E(U)= E(V). A continuous compressible right ideal is an atomic module
and defines, in an appropriate way, a class in Q€. It is surprising that in
certain contexts continuous atomic modules behave the same way as the
uniform ones. The same proofs (phrased in terms of the class of molecular
modules) simultaeneously cover both kinds of modules.

The sum R, = < R, W € 7} of all the elements of 7
turns out to be an intrinsic ideal R. « R. Each atomic right ideal W is a
prime right R-module. The latter has many consequences: R, is a prime
right R-module; R, is a prime ring; the annihilator ideal R} of R, is a
maximal annihilator ideal of R. Indeed, there is a plethora of prime and
semiprime modules, submodules, ideals, and rings. As a ring, the injective
hull E(A@® D), is a full direct product E(A® D) = II{E(R;)| T € Q}<E(R)
of ideals E(R.) < E(R); in particular E(R;)E(R,) = 0 for 7 # p € Q.
(Corollary 2 to Theorem I). That E(D) = II{E(R,)| € 2P} had already
been proved earlier in [11].

Here as much as possible is proved more generally for modules A
results for rings R are afterwards obtained as mere corollaries of the spe-
cial case M = Rp. This applies also to the result E(A @ D) = HE(M;)
(Corollary 1 to Theorem I). The ordinary theory of prime and semiprime
one sided ideals of an associative ring R is a special case of the more
inclusive theory of prime and semiprime modules ([1], [18], [7], and [8]).
Propositions A-E of section 2 extend the known theory of semiprime mod-
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ules. and are also useful in other contexts.

As one of related similar results, we also prove that a necessary and
sufficient condition for a ring K to be torsion free, semiprime, molecular
is that it be a right essential subdirect product R C II{R;|i € I} of
torsion free, atomic, prime rings R; (Theorem III). This theorem gives
a two fold simplification; semiprime is replaced by prime and molecular
by atomic. Use of a result of Levy [24, p.66, Theorem 3.2] then shows
that this subdirect product representation is unique; 7 = Q and, up to
isomorphism, the R; are the previous rings R/R:. It is easy to construct
discrete rings satisfying Theorem III; example 6.1 shows that there actually
exist continuous rings which also satisfy it. Counterexamples (6.2) show
that the molecular-atomic hypothesis in Theorem III may not be removed.

There is some unavoidable overlap with [13]. There some of the main
results of this article were merely stated, but not proved (e.g. 4.2. Theo-
rem II, and 5.4. Theorem III). Here, we give full proofs, as well as some
results not announced in [13], in particular, 5.6. Corollary to Theorems II
and IIL.

1. Basic concepts. Torsion free, discrete, continuous, prime and
semiprime modules are defined. It is shown how to work with complement
closures of modules (Lemma 1.4).

1.1. Notation. Modules M are right unital over an associative
ring R (1 € R); < or < denote submodules, while < denotes large or
essential submodules. The symbol A <¢ B means that A < B, but that A
is not large in B. If K < M and 2 € M, then 21 = {r € R|zr = 0} < R;
and for z + K € M/K, (z + K)* =2 'K = {r € R|zr € K} < R. For
any subset Y C M,set Y+ ={re Rlyr=0forallye Y} ={r|Yr=0}.
Thus Mt = {r|Mr = 0} « R, where “<” denotes ideals in R or any
other ring.

Right R-injective hulls of right R-modules are denoted by both “~” and
“E” as M = E(M) = EM. The singular submodule Z(M) =2ZM < M
is ZM = {z € M|zt < R}. A module M is torsion free if ZM = 0
(abbreviation: t.f.). A submodule C < M is a complement submodule if
C' has no proper essential extension inside M, in which case C is said to
be closed in M. A module M is discrete if it contains an essential direct
sum of uniform submodules, and continuous if M contains no uniform
submodaules.
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An ideal I 9 R is an annihilator ideal if I = Y+ for some nonempty
subset Y C R. In this case Y C () = {r € R|r] = 0} < R, and
I = ¢D)*t. If {0}* = R is the only annihilator ideal which properly
contains an annihilator ideal I # R, then I is a mazimal annihilator ideal,
in which case £(/) # 0. Note that in a semiprime ring, the left and right
annihilators of any two sided ideal coincide.

1.2. Types. The class of all torsion free modules A, B,C,...is quasi-
ordered by defining A x B to mean that A can be embedded in the injective
hull of some direct sum of the B’s, i.e. A C E(®{B|J}) = E(P; B),
where J in general is an infinite index set. Then define an equivalence
relation “~” on the class of torsion free modules under which A ~ C
provided that A « C and also C x A. Each equivalence class [A] =
{C|C ~ A} is called a type. The set of all types =(R) = {[A],[B],[C],...}
becomes a partially ordered set under the order relation “<” where [A] £
[B] provided that A < B. Note that [A] = [EA] for all A.

A t.f. module W is atomic if [W] is an atom in the poset Z(R) (i.e.
if 0 #£ € < [W], then £ = [W]). An atomic module is either continuous or
discrete. More generally a module N is molecular if (i) N is torsion free
and (ii) every nonzero submodule of ¥ contains an atomic one. There are
two important disjoint subclasses of molecular modules, the discrete molec-
ular and the continuous molecular ones. In general a molecular module N
contains an essential direct sum A& D € N where A is continuous and D
discrete. (See Theorem I). The terms “discrete” and “discrete molecular”
by definition mean the same thing. At the other extreme of the module
spectrum, a t.f. continuous module B is bottomless if B contains no atomic
submodaules.

The set of atoms Q@ = {7,p,...} C Z(R) is a disjoint union Q =
Q€ U QP where QP = {[U]| Ug is t.f. uniform}, while Q€ are the types
represented by t.f. continuous atomic modules. The equivalence classes of
t.f. continuous compressible modules belong to Q€. For two t.f. uniform
modules U and V, [U/] = [V] if and only if U = V. Thus there is a
bijective correspondence between QP = {[U],[V],...} and the usual set
of equivalence classes of related t.f. uniform modules. Furthermore every
equivalence class 7 € =(R) whatever can be represented by a torsion free
right ideal L £ R as n = [L].

For any t.f. module M and any 7 € Q. define a unique intrinsic
submodule of M by M, = {W|W < M, W € 7}. Then [M,] = 7
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([12, 3.19(ii)]). Moreover, M, = M, < M is a right complement, and
M. < M is fully invariant by [12, 3.20(2)]. In particular for M = Rpg,
each R; = R, < R is a right complement, and an ideal R, a R.

1.3. Definition. A submodule K" < AM is prime if for any V < M
and any A < R

VACK = either VC K, or MAC K.
The submodule K" < M is semiprime if for any m € M and s € R
msRsC K = msek.

The module M itself is prime (or semiprime) if (0) < M is a prime (or
semiprime) submodule. Note that “A < M is a prime submodule” and
“K is a prime module” are two very different concepts. When 1 € R, any
L < R is a prime or semiprime right ideal in the usual sense if and only
if L < I is a prime or semiprime right R-submodule. (See [7, p.160, 1.8;
and p.163, 1.16].)

1.4. Lemma. For any module M, if ZM C K < M, and if K is
defined by K/ K = Z(M/K), then the following hold:

(0) K={zeM|z7'K < R}={zre M|K < K +zR)}.

(1) K < K; K is the unique smallest complement submodule of M
containing K.

(2) Z(M/K)=0.

(3) If K < M is fully invariant, then so is K < M also.

(4) In particular, if K a« R is an ideal with ZR C K, then K a R is
an ideal.

Proof. For (0), (1), (2), and (4), see [12, Proposition 1.3] or [7, p.165,
3.2-3.4].

(3) Let ¢ € Homp(M,M) and £ € K \ K be arbitrary. Then
(p6)EIK C K C K. Since £71K < R by (0) above, ¢¢ € K.

1.5. Definition. For any modules K < M, define the complement
closure K of K only if ZM C K by K/K = Z(M/K).

2. Semiprimeness and complements. Because complement sub-
modules are much easier to work with, this section gives methods of pro-
ducing complement submodules (2.1). Propositions A and B give hypothe-
ses under which some properties of a submodule are also inherited by
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its complement closure. The same proof as in [7, p.165, 3.6] gives the
next lemma.

2.1. Lemma. For a module M with ZM NY = 0 and any subset
Y ¢ M, YL < R is a right complement.

The following situation occurs frequently in many contexts here and
elsewhere.

2.2, Proposition A. If K < M is a right R-submodule with ZM C
K and K < K is its complement closure (1.4), then the following hold:

(i) K < M is prime = K < M is prime.

(i) K < M is semiprime = K < M is semiprime.

Proof. (i) Given m € M \ K, and t € R with mRt C K, it has to
be shown that Mt C K. Since m ¢ K, by 1.3(0), K <¢ K + mR, and
hence (mag 4+ ko)R N K = 0, where 0 # mao + ko, ao € R, ko € K. Since
K« I?, (mao + k‘o)R & K < M. But now

('mao + kO)Rt - K

} = (map + ko) Rt = 0.

(mag + ko)Rt - (m(l.() + ko)R

In particular, (mag + ko)Rt C K and K < M prime imply that Mt C K.
(i) Given m € M and s € R with msRs C K, it has to be shown

that ms € K. So assume ms ¢ K. Then exactly as before in (i) above,

K S K @& (msap + ko)R. Let r € R be arbitrary. From msagRsay C K,

it follows that msag(rsac) + ko(rsag) € K n (msag + ko)R = 0. Thus

msagrsap = —korsag € K. Since r € R was arbitrary, msagRsag C K.

From the semiprimeness of K’ < M, we conclude that msag € K, which is

a contradiction.

2.3. Corollary. If {W,|y € '} is a family of t.f. prime modules
all having the same annihilator ideal, W} = Wé" for all a,3 € T, then

H{W.Yl'y € I'} is prime.

2.4. Proposition B. Let R be a semiprime ring with ZR = 0.
Then for any K < R, K+ = K*.

Proof. 1f K+ # K<L, then since by 2.1 both are right complements,
K+t @ L <K' forsome0# L <R. Forany K < R in a semiprime ring
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R, K+*K = 0. Consequently LK = 0. If it were the case that LK = 0,
then (KL)KL = 0, hence KL = 0, and L C K, a contradiction. So
LK #0. Take 0 # £ € K with LE # 0. By 1.4(0), £ 'K <« R, and thus
LE(ET'K) C LK = 0 gives the contradiction that LE C ZR = 0. Thus
Kt =K*.

Not only is the following equivalent characterization of a semiprime
ring new, it will also be used later.

2.5. Proposition C. For a ring R with ZR = 0, the following are
equivalent.

(i) R is semiprime.

(ii) For any right ideals 0 # A, 0 # B < R, A~ B=sBA #0.

Proof. (ii)==(i). Let 0 # « € R. Take A = B = zR. Since
(zR)zR # 0 by (ii), R is semiprime.

(i)=> (ii). If ¢: A — B is an isomorphism, take any 0 # a € A, and
hence 0 # ¢a € B. It follows from ZB = 0 and (¢a)"'B < R that 0 #
(¢a)[(¢a) 1 B] = @la(¢a) ' B]. Hence there exists an z € a(¢a) !B C A
with 0 # ¢z = y € B. Then 2t = y* and 2+ ¢ R. Takeany 0 # C < R
with 2+ ® C < R.

Now suppose that BA = 0. Then (yR)(zR) C BA = 0, and also
yCzC = 0. Thus C2C C y* N C = 0, and CzC = 0. Since by (i) R is
semiprime and (zC)(zC) = 0, also 2C = 0. But the restriction of ¢ to 2R
is ¢: 2R — yR, pzr = yr,r € Ry and 0 # C = zC = y(C, a contradiction.
Hence BA # 0.

In general, if R is a semiprime ring and 0 # K <R is any ideal whatever,
then automatically K is a semiprime right (and left) R-module and K is
a semiprime ring.

2.6. Construction D. Suppose that R is a prime (a semiprime)
ring and K a R is any ideal with ZR C K. Then K a R is a prime (or
semiprime) ideal of R.

Proof. By 1.4(4), K «R. Take any P < Rwith K P < R. f KR
is not prime, then Ry C K for some 2,y € R\ K. By 1.4(0), 27 'K < R.
Consequently, in 271K C 271(K 9 P) < R, the first inclusion is proper.
Therefore for any ¢ € [271(K & P)]\ 2 1K #0, 0 # zc = 71 + 2, where
zy € K and 0 # z, € P. Similarly, 0 # yd = 3y + y2 with y3 € K

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 37/iss1/8
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and 0 # y2 € P. Let 7 € R be arbitrary. Then the first three terms in
Try = 7Y + T17Y2 + T97Y1 + T27y2 belong to K because K <4 R. Since
xry € K, also zory, € K, and 23Ry, C K. But then 2Ry CKNP =0
contradicts the primeness of R. In the semiprime case, in the above proof
take z = y, in which case ¢ = d and 22 = y; automatically.

2.7. Proposition E. Suppose that R is a torsion free semiprime
ring and K <« R is any ideal. Then
(i) K& K+ < R; and
(i) K+t = K.
(iii) YP=PaR, Q=Q<R

PeQ <R = PL=¢Q.

Proof (U K@®@K+®d D<K Rfor D<R,then DK CDNK =0.
In a semiprime ring, D C {(K) = {r|rK = 0} = K. Hence D = 0 and
KKt <R

(iii) Assume that @ G P*. Since both are right complements, Q <¢
PL and W@ Q <« P for some 0 # W < R. Use of the modular and the
fact that P @ @ < R shows that J below is not zero,

0£(WaQNPBQI=J0Q<KWQ, where
0£J=(WaQ)nP

By semiprimeness, P(W+Q) C PP* = 0 implies that also (W +Q)P = 0.
But then J? = 0 is a contradiction. Thus Q@ = P*.

(ii) By 2.4, Kt = K*, and hence K+ & K <« R. Then (iii) implies
that K44 = K44+ = K.

3. Fully invariant intrinsic submodules.

3.1. Observation. If {A,|y € T'} is any family of modules, then
every nonzero submodule of E(&{A,|vy € T'}) contains an isomorphic copy
of a nonzero submodule of some A, for some y €T.

Proof. For 0 # € € E(&A,) chose ¢ € R such that 0 # £ry =
ay+---+a, € A,,(l) @D Ay where all 0 # q; € A.y(,-), and with the
length » minimal. If 2 € a} \a}L, then £rpz # 0 has shorter length. Hence
(bro)t =at =af =---=at. Thus ErgR= 4R C A1y
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The next observation either follows from [12, Proposition 3.14], or
alternatively can be proved directly by use of 3.1 and [11, p.4, Lemma 2.4].

3.2. Observations. (1) Consider any one of the following six classes
of torsion free modules: (a) continuous molecular, (b) bottomless, (¢) con-
tinuous, (d) discrete, (e) 7 U {(0)}, 7 € Q, and (f) for any arbitrary
[W] € Z(R), the class U{[V]|[V] € Z(R). [V] < [W]} = {V|Ta set T
and an embedding V. C E(@&{W|T'})}. Then this class is closed under
the following five operations: (i) submodules, (ii) injective envelopes of
arbitrary direct sums, (iii) isomorphic copies, and (iv) torsion free homo-
morphic images (i.e. quotient modules modulo complement submodules).
(V) If0 — K - N — Q — 0 is a short exact sequence of three torsion
free modules with K and ) belonging to the class, then also N belongs to
the class.

Actually in (v) if any two of the terms of the sequence belong to the
class in question, so does also the third. In case (e) above, let N € 7 and
0 # K S N be a complement submodule. Then [K] = [N/K] = [N]=rT.
Note that (a)-(e) are special cases of (f).

(2) For any T € Q and any t.f. module M, (EM), = E(M.)= EM,.

3.3. Theorem I. Suppose that M is any torsion free unital right
R-module over any ring R. Let A, B,C.D < M be any submodules (which
exist by Zorn’s lemma) such that

(a) A is continuous molecular, B bottomless, C continuous, and
D discrete.

(b) A=A, B =B, C =C, and D = D are right complement
submodules of M.

(c)CeD<K M, A Bk C.

Then the following hold:

(i) A, B, C, and D are fully invariant in M; liornR(E,B) =0, and
Honm(@,ﬁ) =0.

(ii) UNIQUE: If A, ® B, < C; and C, ® Dy < M satisfy (a), (b)
and (c), then A= Ay, B= By, C =Cy, and D = D;.

(iil) M, < M is a fully invariant complement for any T € ). (See 1.2.)

(iv) S{M |t € Q} = PD{M, |7 € Q} < A D.

(v) Homp(EM,,EM,) =0 for anyt # p € Q.

Proof.A (1) a.ng (ii)‘: B)”\[ll, p-7. 2.8(ii)] and [12, Proposition 3.14],

8
M=CoDwithC =48 B, where A, ﬁ, C,and D are unique and fully
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invariant right R-submodules of M. Their uniqueness and full invariance
in M implies the uniqueness and full invariance of A NA=A,MnB =B,
MnC=C,and MND=Din M.

(iii) If W is any atomic module, then every torsion free homomorphic
image of W is likewise atomic. Hence M; < M is fullv invariant.

(iv) If Wh € 7 and Wy € p for 7 # p € Q. then by the definition of
7 # p together with the fact that Wy and W, are atomic, it follows that W
does not contain a nonzero submodule isomorphic to a submodule of W;.
Now [11, p.4, Lemma 2.4(1)] shows that the sum in (iv) is direct.

(v) Conclusion (v) follows from 3.2.

Note that both A and D in the last theorem contain essential direct
sums of atomic modules. The proof used in [11, p.7, Corollary 2.9] can be
used to establish the next substantially more general result.

3.4. Corollary 1 to Theorem I. For an arbitrary torsion free
injective module M, let M = A@ B& D be the decomposition given by the
last theorem. Then

@ EM.)< Ag& D =[] E(M,).
T€EN TEN

Consequently A = TI{E(A;)|T € Q€} and D = {E(D,)| T € QP}.

3.5. Corollary 2 to Theorem 1. Suppose that R is any ring with
identityand ZR = 0. Let A@B$D <« C& D < R be the right ideals given
by the last theorem and let p # 7 € Q be arbitrary. Then the following
hold:

(i) A,B,C,D<R; CD=DC =0, AB=BA=0: A,B,C,D<R
are complement right ideals,

(i) UNIQUE: A is unique as the largest right ideal which contains
every continuous atomic (or molecular) right ideal; and analogously for B,
C, and D.

(i) R-< R, R, = R: < R.

(iv) Yoreq Br = @req Rr € A D; in particular R R, = 0.

(v) RE 2 [@{R|m #p€ Q)& B R + RE < R.

(vi) Conclusions (i)~(v) hold for the ring R = C'EB D = —lEB B D (f
every occurence of R, A, B, C, and D is replaced by R 4 B.C. and D)

(b) A D = E(@{R.|7 € Q}) = NE(R,) as a ring. In particular,

E(R.), E(R,) « R with E(R,)E(R,) = 0, and
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(c) A= E(@®{A.|r € Q°}) = 1E(A,) as a ring.

4. Applications to rings. The disjoint module theoretic develop-
ments of sections 2 and 3 are now specialized to rings and made to converge.

4.1. Lemma. For a it.f. semiprime ring R, suppose that 0 # P,
0+#Q < R with P, Q@ C R, for some t € Q. Then PQ # 0.

Proof. Forany R, O P < R, [(0)] # [P]<[R:] =7 € Z(R). Since 7
is an atom, [P] = 7 = [Q]. Thus Q@ C E(@{P|I'}) for some index set T.
Now 3.1 shows that for any 0 # £ € @, there exist ry € R and a; € P such
that 0 # £rgR = a3 R. By 2.5, a1 R(éroR) # 0.

In the theorem below if the atomic right ideal W < R is discrete then
BUs < W < E(@U,) where {U,} is a family of uniform right ideals all
of the same type as W. In particular, W itself could simply be a uniform
right ideal of R.

4.2. Theorem 1I. For a semiprime ring R with ZR = 0, let A &
B3 D<K CPDKR, 7€Q and0# R aR be as in 3.5, and let W < R
be any atomic right ideal (1.2). Then the following hold.

(1)(a) W is a prime right R-module,

(b) WL a R is a prime ideal.
(c) For any two atomic right ideals V, W < R, if VW # 0, then
=> Wt =V
(d) For any W € 7, Rt = WL, Hence R: «a R is a prime ideal.
(2)(a) R, B R+ < R.
(b) Rt is a mazimal annihilator ideal of R.
(3)(a) R, is a prime right R-module.
(b) R, is a prime ring.
(¢) A,B,C,D <R and R; a R are semiprime ideals.
(d) A =(B®D)",B*=(A8% D)", D* =(Ag B)",C*+ =D,
DL = C a R all are semiprime ideals.
() C = (A®B)"; and C+ = A*nB* = D, B n Dt = A,
Dtn At =B.

Proof. (1)(a) If W is not prime, then woRt = 0 for some 0 # wg € W

and some t € R\ WL. Thus w;t # 0 for some 0 # w; € W. For

some index set Z, there is an embedding woR C E(@{witR|ZI}) because
W is atomic. Now use 3.1 to show that (worg)t = (wtr,)* for some

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 37/iss1/8
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ro,™1 € R with wytry # 0. Then worgRuntry C woRtry = 0, and hence
Rwyiry C (wore)*t = (wytry)t. But then (wytry)Rwytry = 0 contradicts
the semiprimeness of R.

(1)(b) The annihilator ideal of any prime R-module is always a prime
ideal of R ([D4, p.160, 1.7(2))).

(1)(c) A module W is prime if and only if for any nonzero submodule,
suchas 0 # VAW < W, (VnW)t =W, ([7, p.159, 1.31(ii)]). By
symmetry, (V N W)t = VL

(1)(d) Let V,W < R with V,;/W € 7. In view of 3.1, there exist
0£P<V,0#Q < W with P~ Q. Then V1 = P+ = Q1 = W+
by (1)(c) above. From R, = Y {W|W < R, W € 7} it follows that
R =N{W|W < R, W€ r}=WHis prime by (1)(b).

(2)(a) By either 2.7(i) or 3.5(v), R} & R, < R.

(2)(b) If not, then R* S I <R, where I = {(J)* # R as in 1.1.
Therefore £(I) C £(R:) = (RF)* = R, = R, by 2.7 and 3.5(iii). If £(1) =
R, then R} = (Nt =1;500# €(I)S R;. From R} ® R, < R it follows
that R @ (I N R,) < I. But both R < I are right complements by 2.1.
Hence RY <¢ I. Consequently, I N R # 0. But now 4.1 applied to the
nonzero atomic right ideals 0 # I N R., £(I) C R, yields the contradiction
that £(I)(/ N R;) # 0. Therefore R} is a maximal annihilator ideal of R.

(3)(b) It suffices to show that for any 0 # a, 8 € R,, always R, # 0.
Since ZR =0 and R* & R. < R, 0 # a(R+ & R,) = aR, and similarly,
BR, #0. By 4.1, aR,; 3R, # 0.

(3)(c) In 2.6, take K = K = A, B, C, D, and R,.

(3)(d) Since any submodule of a semiprime module is likewise
semiprime, it follows that 4, B, ', and D are semiprime modules. Conse-
quently AL, B+, C't, D' aR are semiprime ideals. Since A®(B® D) K
R, use of 2.7 gives that A* = (B % D)~. The other cases are verbatim
the same.

(3)(e) Since AG B« C=C,C+=(A® B)* = A n B+. Cydlic
permutation in C+ = D = A+ N B gives the rest.

The next corollary is the first step towards the solution of the still
open problem of finding the real algebraic differences between the discrete
and continuous rings of the type R,. It fails for some continuous rings R..

4.3. Corollary 1 to Theorem II. If R is a torsion free semiprime
ring and T € QP then for any 0 # I a R, there exists a 0 # J a R with
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J C I such that J C R, is large as a right R.-module (and hence also as
a right R-module).

Proof. Use of 4.1 shows that for any V < R;, V <« R, if and only if
V C R; is large as a right R.-module. Let 0 # £ € I «R,. Since R, is a
prime ring, 0 # afb € (€R;)? for some a,b € R.. There exists an indexed
family of uniform right R-ideals {U,} such that U, < R,. By 4.1,
UaalbR # 0 for all a. Hence P UyaébR < R,. Set J = RafbR. Then
JCI,0#JaR,and @§U,albR < J. Thus J < R,.

5. Subdirect products. First, some known or easily provable facts
are arranged in a form in which they later will be used ([15], [16], [24],
and [25]). Under the hypothesis that {R;|i € I} are nonsingular rings, the
inequivalent and very different concepts of an “essential subdirect product
R C IIR;” defined by Goodearl ([16, p.115]) and Loonstra ({25, p.91]) for-
tunately coincide. This happens if and only if all of the conditions (1)(a)-
(d) hold below.

5.1. Lemma. Let R C II{R;|i € Z} = T be a subdirect product of
any family of right nonsingular rings R; with identily, and let “<.” denote
essential right ideals in the rings R; and T.

(1) Then the following four conditions are equivalent

(a) R< Tr.

(b) Vi, RiN R L. R;.
(c) (RN R) < Tr.
(d)y I LT, J CR.

Now assume that the above (1)(a)-(d) hold. Then

(2) ZR=0.

(3) R is an irredundant subdirect product of the R;.

In view of 5.1 (1)(b) and (c), the next two corollaries follow. For the
sake of completeness, we include condition 5.2(ii) below, which is one of
the hypotheses used in [15, p.251, Theorem 2] to guarantee irredundancy.

5.2, Corollary 1. In addition to (1)(a)—(d), assume that each R; is
semiprime. Then also

(i) R is semiprime: and

(ii) {ri|r: € R;. ri(R;N R) = 0} ={ri|ri € Ri, (RiNR)r; = 0} =0.
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5.3. Corollary 2. Assume (1)(a)-(d) and that each R; is molecular
as a right R;-module. Then R and T are right molecular R-modules.

5.4. Theorem III. (1) A ring R is (H1l) right nonsingular, i.e.
with ZR = 0, (H2) semiprime, and (H3) right molecular & R is a sub-
direct product R C TI{R;|i € I} = T of rings R; which are (hl) right
nonsingular, (h2) prime, (h3) right atomic, with (h4) R < Tr.

(2) Now suppose that R satisfies (H1), (H2), and (H3) above, and let
RI® R, < R, 7€Q, be as in 4.2. Then

(@) N{R:|7€Q} =0; R R as a ring and as a right R-module,
where R is the following irredundant subdirect product of the prime right
nonsingular molecular rings R/ R,

R~—w RC Il R/R*=T.
TEN

Moreover, R is an essential right R-submodule of T, such that

(b) B,cq R- = ®(R+ + R.)/RE < R < Tr.

(3) UNIQUENESS: Suppose that R C II{R;|1 € I} is any subdirect
representation of R satisfying (hl)-(h4). Then there exists a bijection
f: I — Q and a ring isomorphism g: IR; — TIR/R: with gR; = R/Ry;
for alli € Z.

Proof. (1)<=: this was shown in 5.1, 5.2, and 5.3.

(1)=>: For this, it suffices to prove (2).

(2)(a) Now B = 0 and @{R,|7 € Q} < R. If z € N R}, then
Z(®R,) = 0 implies that z € ZR = 0. Hence R = R as a ring. Identify R
as a right R-module with R as a right R-module. Then under the canonical
ring isomorphism R — R, the essential right R-submodule @ R, € R is
mapped into @(R: + R.)/R. < R.

(2)(b) By 5.1(a) and (c), now R < Tr.

(3) By [24, p.66, Theorem 3.2] and 4.2(2)(b), it suffices to show that
every proper annihilator ideal I a R is contained in some R}. If not, then
b1 # 0 for some 0 # b, € R, for every 7 € Q. Asin 1.1, I = £(I)*.
Since @ R, € R, 3.1 shows that there exists 0 # n = a; ++--+ a, €
)N [Ry ) ® -+ ® Rynyl, 0 # a; € Ry(jy such that "t =at = =at.
Then 7R 2 a; R, and (nR)* = (ayR)*. Thus since nR C £(I), byl C
I = £I)* C (nR)* = (e1R)* and hence (ayR)b,1y/ = 0. But 0 # a;R,
0 # b-(1)] € R;(1) contradicts 4.1.

Produced by The Berkeley Electronic Press, 1995

13



Mathematical Journal of Okayama University, Vol. 37 [1995], Iss. 1, Art. 8

88 J. DAUNS

Note that if (h1) and (h4) above hold, then @{(R N R;)|i € I} <
R« Ty

5.6. Corollary to Theorems II and III. (1) A ring R is (H1)
right nonsingular i.e. with ZR = 0 and (H2) semiprime < R is a subdirect
product R C Ry X Ryx R3 = T of rings R; which are (h1) right nonsingular,
(h2) semiprime, where (h3) Ry is continuous molecular, R, is bottomless,
and Rg3 is discrete, with (h4) R < Tg.

(2) Assume R satisfies (H1) and (H2) and let A® B3 D < R be as
in 4.2. Define Ry = R/A*, Ry = R/BY, Ry = R/DY, A=[Ag AL]/At«
Ry, and similarly BaR,, DaRs. Then

(a) AL nBL N DL =0; R~ R under the canonical map R»» R C
RixRyxRs=T; R is an irredundant subdirect product of the R;. The R;
satisfy (1)(h1)—(h3) above. Furthermore Risa large R-submodule of T,
as follows

(b) ASB®D=A¢ B D < R< Tr.

(3) View R/Ct = R/[A* n BY] C (R/AY) x (R/B%) as a subring
and right R-submodule via r + C+ — (r + A+, + BL) forr € R. Then
R in (2) is a subdirect product of the continuous t.f. ring R/C* and the
t.f. discrete ring R/ D+ with

CaD=CeDc e 2 x 2 «Tn
ct = DL
The analogous result of (1) also holds for R= R C (R/C*) x (R/D*).

Proof. As before for (1), it is enough to prove (2). (2)(a) and (b),
recall from Theorem IT that A+ = (B&D)™. Since A AL € Rand At <
R is a complement, A = Ak R/AY = Ry, and R, is t.f. and continuous
molecular. Similarly B = B < Ry, D = D <€ R3; and hence R, is
bottomless and Rj is discrete, both being t.f. By a total of four applications
of the modular law, we conclude first that A@ B& D@[A*NB+NnDL] < R.
Thus AYtNBLNDL = 0,and RS Runderr — 7 = (r+ALt,r+BL . r+D1)
for r € R. As before, identify R as a right R-module with R as a right
R-module. Under the isomorphism R R large right R-submodules are
preserved, and hence A @ B D D < R. Since again 5.1(c) holds, R« Tr.
The proof of (3) is similar, and is omitted.

6. Examples. Some examples illustrating Theorems II and III are
given. At the same time they show what typical continuous molecular and
bottomless rings look like.
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6.1. Example. Let F' = K{y,z} be the free algebra over any field K’
in two noncommuting indeterminates y, z. Let (y) = FyF < F denote the
ideal generated by any single element y € F. Define R to be the subring

R={(v+ea.7+8,7)| a €(y).B3€ (2),7 € I}
CFxFxF=T.

Then R is a t.f. continuous molecular ring that is semiprime, but not
prime. The poset =(R) is the eight element Boolean lattice of all subsets
of @ = Q€ = {r(1),7(2),7(3)}. Then R,y = (y) x {0} x {0}, R =
{0} x (z) x {0}, Ry(z) = {0} x {0} x {(¥) N (2)} <« R, and hence R < Tg.
Some long computations show that R/ R‘ﬂ'(_i) > F for all 7. Yet, R is not a
direct product of the Fs.

The next examples show that Theorem III becomes false if the molec-
ular atomic hypothesis (i.e. 5.4(1); (H3) and (h3)) is omitted. The coun-
terexamples below are commutative, t.f., semiprime, bottomless rings R,
which have the further property that every nonzero ideal of R contains a
proper zero divisor. Suppose that any one of these rings R was a subdi-
rect product of prime rings R; with @ (RN R) K R <K [[;R: = T (as
in 5.4(1)). Then the R; are nonzero prime domains. This is a contradic-
tion, because 0 # R; N R< R.

6.2. Counterexamples. (a) Let K be any commutative domain
with 1€ K,and R=T[{PK/PTK.

(b) For any infinite set X, be P(X) be the Boolean ring of all subsets
of X withV.-W=VnWand V+W =(VUW)\(VNW)for V,IW C X.
Let F(X) «P(X) be the ideal consisting of all finite subsets of X. Then
set R = P(X)/F(X).
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