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On the structure of maximal Hilbert algebras

Takenouchi Osamu

Abstract

In our previous paper [12], we considered the unicity problem of the maximal extension of
a given Hilbert algebra, and established the: most fundamental property of a maximal Hilbert
algebra ([12; Theorem 2J). We argued also the decomposition of maximal Hilbert algebras with
respect to their centres, and, on doing it, we noticed that there exist two different types of them,
i.e., the simple ones and the purely non-simple ones. The decomposition theorem to these types
was given in [12; Theorem 5J with a sketch of the proof, and we announced that. further arguments
concerning the decomposition would be given in some other paper. The chief aim of this paper is
to give it. In §1 a short cut of the known results is given, and §2 is devoted tothe more detailed
exposition of the decomposition of a given Hilbert. algebra into the simple components and the
purely non-simple component. A simple Hilbert algebra is one for which the algebras of left and
right multiplication constitute a couple of factors in the sense of F. J. Murray and J. von Neumann
([4J), and we are led naturally to make use of their theory. The main problem here is how the
dimensionality functional can be expressed by means of the terms of the Hilbert algebra. These
are discussed in §3. The reduction theory of a. purely non-simple Hilbert algebra into simple
ones is given in §4. This idea, though here only applied to the separable case, can be applied in
the non-separable case. But in the most general case we do not yet succeed in proving simplicity
character and that will be a future problem.



ON THE STRUCTURE OF MAXIMAL HILBERT
ALGEBRAS

OSAMU TAKENOUCHI

In our previous paper [12]1), we considered the unicity problem of
the maximal extension of a given Hilbert algebra, and established the:
most fundamental property of a maximal Hilbert algebra ([12; Theorem
2J). We argued also the decomposition of maximal Hilbert algebras
with respect to their centres, and, on doing it, we noticed that there
exist two different types of them, i.e., the simple ones and the purely
non-simple ones. The decomposition theorem to these types was given
in [12; Theorem 5J with a sketch of the proof, and we announced that.
further arguments concerning the decomposition would be given in
some other paper. The chief aim of this paper is to give it.

In § 1 a short cut of the known results is given, and § 2 is devoted to
the more detailed exposition of the decomposition of a given Hilbert.
algebra into the simple components and the purely non-simple compo
nent. A simple Hilbert algebra is one for which the algebras of left
and right multiplication constitute a couple of factors in the sense of
F. J. Murray and J. von Neumann ([4J), and we are led naturally to
make use of their theory. The main problem here is how the dimen
sionality functional can be expressed by means of the terms of the
Hilbert algebra. These are discussed in § 3. The reduction theory of a.
purely non-simple Hilbert algebra into simple ones is given in §4. This
idea, though here only applied to the separable case, can be applied in
the non-separable case. But in the most general case we do not
yet succeed in proving simplicity character and that will be a future
problem.

§1. Sketches of the known results and a lemma.

A Hilbert algebra ~ in a Hilbert space ~ is defined as follows ([6J) :
( i) It is a dense linear manifold in .f;?
( ii ) Between the elements of ~, a multiplication law is defined

such that, with respect to the linear operation defined in ~ and this.

1) Numbers in brackets denote the numbers of literatures at the end of the paper.
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2 OSA~lU TAKENOUCHI

multiplication operation, ~{ constitutes an algebra over the field of
-complex numbers.

(Hi) To each a E '!l{, an element a* in ~ is corresponded so that, for
any b, CE~,

(ab, c) = (b, a*c), (ba, c) = (b, ca*).

The operation a -- a* is called the adjoint operation.
(iv) The operator T~ associated with a E ~{, which is defined on 'iJl

:and makes correspond ax to every x E ~, is bounded:

Thus this operator has a 90ntinuous extension Ta over the whole space
.p. Thus extended operator Trt is called the operator of left multipli
·cation:

( v ) An element!E ~ satisfies T:.! = 0 for any x E~, if and only
if! = O.

From these assumptions follow immediately ([6J), that the adjoint
element a* is uniquely determined for a E ~l and, Ca, b) = (b*, a*), (aa +
f3b)*= aa*+ #b*, (ab)*= b*a*, etc., and that the right multiplication
operation Sa is also bounded and satisfies the analogous property
of (v).

An element u E ~{ is called a unit if u~= u, u*= u, for which the
'associated operators T tt , Stt are both projection operators.

A Hilbert algebra would have generally many extensions other
than itself, but among them the maximal one exists (and, of course, is
uniquely determined). This extension is consisted of such elements! of
~ for which either of the two conditions

'(1.1)

'(1.1')

11 S.,f 11 <: r f [I x 11

11 T.,f 11 < r~ I1 x 11

(for any x E m, r f :> 0 is fixed),

(for any x E ~r, r, >- 0 is fixed)

is satisfied ([12, Theorem 1J). The operator, which assignes to every
x E '2l the element S:r-f, will be denoted as TJ, and similarly SJ is defined.
Thus (1.1) and (1.1') can be restated that TJ or SJ is bounded.

Thus to give the complete definition of a maximal Hilbert algebra,
we -have to add one more axiom: "

(vi) If TJ or SJ is bounded for an! E ~, then! must be in ~,"

to the axioms (i)···(v) listed above ([12; Theorem 2J).
We shall use later the following

2
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 3

Lemma 1.1: ~L' ~2 be Hitbert spaces, and in each of them a Hilbert
algebra ~i (i = 1, 2) be given. Suppose that they are isomorphic in the
following sense:

( i) Between Hilbert spaces ~J and '~2' a linear isometric mapping
exists which maps whole ~I onto whole ~2'

(ii) Under this mapping, ~J corresponds to~!! isomorphically as Hil
ber! algebras.

Then, denoting the respective maximal extensions as '2r~, ~g, ~~ cor
responds to '2l~ under this mapping isomorphically as Hi/bert algebras.

This will be observed at once from the method of construction of
maximal extension.

We used the notation Sand T to denote the whole set of operators
of right and left multiplication and M and M' their respective commuta
tor algebras of operators'). These M and M' are commutator algebras.
to each other, and was called the algebras of left and right multipli
cation resp., and Z = M n M' the centre of ~r. Moreover, for any A E M
or M', A'2l = {Aa; a E '2l}c '2r ([12; Theorem 3, 4, Definition 3J).

§2. Central decomposition of a maximal Hilbert algebra.

First we mention a more detailed proposition than [6; Theorem
4,7].

Lemma 2.1: For an arbitrary projection operator P (+ 0) E M or
M', the subset Pi]1 of ~ contains a unit u.

Proof: We assume that PE M. As P =l= 0, Pill: =l= (0)2), so we can
take an a, a =1= 0, a E P~. The element h = aa* is a self-adjoint element,.
and =1= un and also belongs to P~. If P = Th' h is a unit, and this

• 00

meets our desired condition. In the general case, let T" = j·J.dE>. be the
o

1) Le. the set of all those bounded linear operators with domain .f} which commute
with all A and A* where A ! Tor S. Here and in what follows, nn algebra of operators
means that it is not only an algebra in the algebraic sense but also it is closed with
respect to the adjoint operation (of operators) and closed with respect to the weak topo
logy of operators. Cr. [5; Ill.

2) If PW is consisted of °only, we see for an arbitrary a E ~, Pa = 0, (1- P) a = a,
thus Cl - P) ~l = W. But if P were not 0, this induces a contradiction, Bince mis dense
in~.

3) As T h = T aa* = ~*Ta*, we have, for any f E~, eT,,!, f) = /I Ta* f 11 2•

Thus Iz = °implies Ta* = 0, or a'*= 0, so a = O.

3
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4 OSAMU TAKEKOUCHI

(by [7; Satz 5]).

:spectral form of T h
J
). Then [6; Theorem 4, 7J shows that for a suita

bly chosen e > 0, there exists a. unit Us such that Tug = 1 - Ea =f: O.
'Thus for an x E~ with Px = 0, T"x is also 0, or what is the same
Eox = x, PTlt = T ph

2
)= TT'" and a fortiori 1 - P<" Eo or 1 - Eo <" P.

'Therefore we have for an arbitrary ,( > 0, 1 - E>.. --<: P so that PTue =

P(l - Ea) == 1 - E s = Tua • From this, it follows Pus = us, and this l4
is the desired one.

Lemma 2.2: The subspace ill1 of ~ invariant under all the opera
.tors of left multiplication, has as its projection operator what belongs to
M': Pm E M' (The converse statement that for a projection operator
PE .M', its corresponding subspace is invariant under all Ta Ca E ~r) is
.evident). In the same zvay, for the subspace [11 invariant under all.Sa
(a E ~l), we have Pall EM.

Proof: As Ta[ll c WC Ca E ~) means Pm is commutative with all Ta
(a E ~), our proposition is clear.

Remark: This subspace [11 invariant under T ,vas defined by W.
Ambrose as the left-ideal of an H-system ([2; s4J). Thus the 2-sided
ideal in his sense' is the ·subspace ilJ1 whose corresponding projection
,operator PSJ1l belongs to Z. As to the ideal defined by H. Nakano ([6;
§ 5J) we shall call our attention in Lemma 2.6.

Lemma 2.3: Let U be the set of all units in ~L Then for any
.PE M (or EM')

(2.1) u {T~t; U E tt, Tu --<: pr)= P (or u {Sw; U E 11, Su <: P} = P).

1) We ehoose the resolution of the identity E>..(-oo <,( < (0) always to be con
tinuous to the rj~ht.

2) If an operator A belongs to either M or M', we have for an arbitrary a E 5ll,
ATa; = T.Aa or ASa = S.A.a. resp. This is a Rimple corollary to [12; 'Theorem 5].

3) Take a family of proje~tjon operators {P'\h~A and their corresponding family of
:lmbspace8 [Il,\ = PA-f). Let Wl be the smallest subspace compri8in~ all the snbspaces IDlA.
<.< : A), then its corr~sponding'projection operator P = P@har, the following properties:

( i) P>.." P (J. EO A), and
(ii) If P is a projection operator such that Plo. < P (). EO A), then necessarily

ji " P.
'Thus in accordance with the usual notation in the theory of lattices, we can write this
projection operetor Pas u P>...

>"~A

Let all the PA's be contained in some algebra of operators M. Then, as IDl>..'A are all
imrariant under any transformation belonging to Mr, M is too, and the above-mentioned
property CH) shows P isa projection operator smaller than the maximal projection
,operator (Haupteinheit, see [7; Definition 4]) of M. Thus

PuP EO M.
- AU'>

4
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ON THE STRUCTURE OF JIAXBIAL HILBERT ALGEBRAS 5

More precisely, the set of 11, in (2.1) may be limited to any maximal fa1Jlily
.()f mutually orthogonal units satisfying the 1nentioned condition.

Proof: Take a maximal family of mutually orthogonal units satis
fying the condition U A E 11, TUA < P. Let Q = u Tu),., then Q E M.

A~A

Supposing that P=f= Q, p.- Q E M and =F O. Thus by Lemma 2.1, we
know the existence of a unit Un 'which is contained in (P - Q)~r. But
this clearly induces a contradiction, since 11,'1 E (P - Q) me P~{,and

U),.Un= 0 (A E A) from 0 = Q (P - Q) > Tu,," Tun = TUAUO ' contrary to that
{uAhEA was the maximal set of mutually orthogonal units in P~l. The
rest of the lemma can be shown in the same way.

Lemma 2.4: Take arbitrarily a projection operator P <* 0) belong
ing to Z, then P~ <c m) is again a maximal Hilbert algebra in ill1 = P ~
(defining the 1nultiplication and the adjoint operation are the sa-me as in
~). We write this algebra as ~(p, when- we are considering in ~n. Its
.corresponding algebras of left and right multiplication Mp and M~ are
identified with the algebra of operators M CP) and ~I~p) in m, resp. which
are obtained by contracting all the operators belonging to M or M' to the
subspace 9,.11. Thus, in particular, the centre Zp of ~p is what zve obtain
hy contracting each operator of Z to [Tt .

Proof: It is easily seen by verifying the conditions in the defini
tion that mp is a Hilbert algebra. To prove that this is a maximal one
it only needs to show that for an fE ~ which satisfies

I1 T p2I Pfll < r I1 Px 11 (for every x E ~l),

we must have PfE P"t{. But, as Tl'Ql= PT')J= T:1!P, T1'QlPf = T;5Pf,. and
from the assumed inequalities,

if TQlPfl1 <: r;1 Px 1I < r 11 x 11 (for every x E ~{).

-This shows that the operator S~J is bounded on mbut this is the same
to PfE ~L Thus Pf = PPfE P~{, which was to be proved. ,

Next we consider the algebra of left multiplication 1\'11'. For this
:sake, we note first that if a is in ~p then its associated operator of left
multiplication T: (a notation used only here) is the very one that is
-obtained by contracting Ta (in ~) to illl: T:, = (Ta)cp) • . The same holds
.for its operator of right multiplication. As in the above, 81';5= PS:s=
SISP, we can assert for an arbitrary A EM that (AP)S1J')J= (PA) (S:zsP) =
PS~P = Sh (AP) thus the contracted operator ACJ» of A to ~m belongs
to Mp. Conversely if we take arbitrarilyAp E Mp the operator A..in ~

5
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6 OSA~IU TAKENOUCHI

defined as A = ArP belongs to M. We can show this as follows. From.
AS2 = A pPPS2!= ApPSPfIiP, AS:n= CAS:1l)cP)p = CAp (SP:1l)'P))P. But (Sp~),P)

=S~:JI as noted above and ApE Mp or (SI2l),p)E SI" ApE S~, we have

AS:II= CAp CS.P),P)P = «SDP),p)Ap)P

= (S}:1I)cp)PApP = SP:nA = S:r;PA = S"A.

And a fortiori A E S' (= M) as we wanted to show. Moreover A p = A CF)"

Therefore we have shown that M p = MCP). In the same way M~=M{p),

and as their intersection Z = Z,P)' as was asserted.
In the above proof we distinguished in two ways the operators in

IDt The operator suffixed with P simply denotes the operator in IDc,
that suffixed with (P) denotes the operator which is contracted to IDl,
that is for an operator A in SJ, A cP) means the contracted operator of
PAP to lit

Now we can decompose the maximal Hilbert algebra into a direct
sum of algebras of two types. For its sake, first we put the following

Definition 2.1: A projection operator P-;- 0 belonging to the centre
of~ is called minimal if

Q E Z, 0 <:. Q < P mean Q = 0 or P.

Lemma 2.5: Take all of the 1ninimal projection operators in Z,.
and let them be {PAhtA. Then by denoting Pn= 1 - U PA' we see that

A"A
(i) Po, PA(A E A) are pairwise orthogonal projection operators.
Cii) The centre of PoSJI does not contain any minimal projection.

operators, when considered pom to be the maximal Hilbert algebra in Po~"

as was done in Lemma 2.4.
(iii) Each PJI(..l E A) has the centre composed of only the constant

multiples of the identity operator IpA: ZPA = {a ·lp >.}. Thus the algebra of
left 1Jlultiplication l\1~A of p"m constitute a couple of factors in the sense of
F. J. Murray and J. von Neumann [4; Definition 3.13].

Proof: (i) As the projection operators PAO E A) are mutually
commutative, their binary products P>'P/L().' tt E A) are also projection
operators which are smaller than both of the factors, and E Z. Thus if
). =F tt, P>'P/L ~ P A or P/L which means from the minimality of P A and Pp.
that P>'P/L= O. Thus PA's(). E A) are pairwise orthogonal. As to Po, all
the PA's(). E A) belong to Z and Z is an. algebra of operators, 1 - Po
= U PAis also in Z by footnote 3 in p. 4 and so Po E Z. Of course it is.

At A

6
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ON THE STRACTURE OF l\1AXIMAL HJLBERT ALGEBRA.8 7

doubtless to say that Po and PA(l E A) are orthogonal. And there
exist no minimal projection operator <: ~I.

(H) Owing to Lemma 2.4, the centre of Pu~1 is Zero)" Take arbi
trarily a projection operator Pro =t= 0 in Zcro). Then PpoPu is a projection
operator in~, E Z, <:~" =F O. But from what was done in the above
(i), there exists no minimal projection operator in Z which is smaller
than Po, a fortiori PPo Po is not minimal. Therefore the existence of a
projection operator Q E Z, 0 ~ Q $ PpoPo is sure, and for such a Q, Q =

QCI'll) Po, so 0 ~ QCI'll) ~ Ppo' Qcpo) E ZCPo). Thus Ppo is not a minimal
projection operator, and a fortiori ZCPo) does not contain any minimal
projection operator.

(iii) The centre of PA"lX is ZCPA)' and if ZCPA) 3 PpA' Pp~ P~ is a pro
jection operator which belongs to Z, and -< PP A • Therefore PI'll. P A= 0
or P~. But as (Pp~P~)cp~)=PpA, Pp~ itself is 0 or IpA. Therefore Zc.p>.)
= {a-IpA}, where IpA is the identity operator in ~pA.

Lemma 2.6: Let p be a linear manifold in ~l, which satisfies the
conditions

( i) for arbitrary x, yE "lX, xpy (= T rro S lI P) c i1, and
(H) P is closed in "lX,

then there exists a projection operator P in ~, such that p = P~. Thus,
by taking the multiplication and the adjoint operation as the same as
in ~{, .p itself is a (maxilnal) Hi/bert algebra in the minimal subspace
LpJ that contains p.

Proof: That p is closed in "lX is the same as p = [p] n ~l.

We show first that Tarpc p, S;>lpc p for the x E S21. Take an arbitrary
a E i1, then xay =Syxa E p. Thus for any u E ~l, we have Sttxa E V also.
But if we take a maximal family of pairwise orthogonal units {uAh~.I\.

then as is shown in Lemma 2.3, E SUA = 1, therefore from xa =
A".I\

( U SUA)xa, xa is the limit element of sums of SuAxa E 0.1). Thus xa E [p]
A.. A

and as xa E ~l, xa E [V] n ~l = ~1, which means T:s:a E p. But a was an arbi-
trary element of p, T~ Pc :po That S r.P c p is shown in the same way.

As T(JS and S. are bounded, we see, from what has been shown,
T:l![i1Jc [p], S:Jl[pJc [p]. According to Lemma 2.2, this means that p[P]

(= the projection operator on [V]) E Z. Thus P:PJ S21 c ~{, while P:PJ ~{c

[+"J, so ~~] mc~( n[p] = p. On the other hand pc ~( imples p = Pc!'»)~)

C Pp~: ~l, and a fortiori Pl~J ~( =.p. The rest part of this Lemma is
obvious by referring to Lemma 2.4.

Remark: The set p considered in the above was defined as the

7
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8 OSA:\IU TAKENOUCHI

ideal in [6; § 5], added with a further restriction that this is closed
under the adjoint operation. In our case this last condition of self
adjointness is unnecessary, because of the maximal property of the
Hilbert algebra in consideration. By the way it may be mentioned that
we have shown that from xVYc P (x, Y E~) follows xvc p, px c p,.
though there may be no identity element e: ex = xe = x (for all x E m)

in ~l. Moreover, the subspace ill£ satisfying T2 Wlc ill£, S~IDlc ffi1 for
every x E ~{ was defined as the 2-sided ideal by W. Ambrose as was.
remarked already, while for the linear manifold p of ~ considered in
this Lemma, [p] satisfies T')jSlI[V]c [.p] for every pair x, yE m and from
this we obtain T:lJ[p]c [V], S;D[P]C [~)J for any x Emas is seen from the·
above proof, therefore this [pJ is the 2-sided ideal in the W. Ambrose's;
sense. Conversely, given a 2-sided ideal ill1 in the W. Ambrose's sense,
then, p = un n~{ satisfies the conditions of the Lemma, and [pJ = ,ill£ as·
is readily seen. These mean that the both definitions completely cor
respOnd to each other in this sense.

Upon this base we introduce the notion of the ideal as the follow~

ing by imitating the definition of H. Nakano [6J:

Definition 2.2: A linear manifold V in & is called the ideal, if
the followings are the case:

(i) for arbitrary x, YE~, xpy(= T2<SlIP) cp,
(ii ) p is closed in. ~r.

Then the resume of the above obtained results reads:

Theorem 2.1: Let mbe a maximal Hilbert algebra in~. Then
there exists a family of pairwise orthogonal projection operators {PA1A. A

in the centre Z of m, and m(and ~) is decomposed as follows:
( i ) each P A ~1 is an ideal of ~,

(ii) PA mis the 1naximal Hitbert algebra in PA~'

(iii) P A %( belongs to each of the following two types:
Type (S): ~ is simple, that is to say 'ill: contains 1W ideal other

than {O} and ~r. This coindides with that the algebras of left and right
1Jlultiplication 1\'.1, 1\{' resp. form a couple of factors.

Type (0) ~{is purely non-si1nple, i.e. ~ does not involve any simple
ideal; namely, far an arbitrary choice of the ideal p of ~{, when con
sidered p itself as a 1naximal Hi/ber! algebra in [p], it is never simple.

Remark: This has the same content as [6; Theorem 6.4J.
We know ultimately that the investigation of the structure of

Hilbert algebra is reduced to that of tyPe (S) and that of type (0). 'We

8
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 9

shall discuss the Hilbert algebra of type (S) in the following § and that
of type (0) in § 4.

Before going to the next §, we state here several more lemmas
which will be useful later.

Lemma 2.7: For an Hi/bert algebra ~I, its maximality is neces
sary for that T = {Ta; a E ~} .. and 8 = {Sa; a E ~t} are the commutator
algebras of one another, and then m: involves the identity element e:

ea = ae = a (a E ~) or equivalently T,)= Se= 1.1
)

Conversely if ~{ contains an identity element e, this condition is also
sUfficient. And if this is true, then T and 8 are the algebras of left
and right multiplication resp., i. e. M = T (= 8'), M' = 8 (= T').

Proof: We first note that if T and 8 are the commutator algebras
of one another, then ~ contains an identity element e. Such an e is the
element such that T e = 1 ( E T' = 8)1). We show under this condition
that ~{ is maximal. For this purpose we only need to show that if TJ'
or S; is bounded for some f E ~, then f E ~l. The proof is similar any
how, we shall assume that SJ is bounded, that is for any x E '![(, there
exists r > 0 such that

Let then extend continuously this S; so as to have the whole ~ as its
domain, and write it as.5;. Then for an arbitrary x, y E ~l,

T:sSJy = T:sTvf = TT;r;vf = Sf T!$Y'

thus S; commutes with any T:s(x E ~), and also, as T:= Tx.*, with their
adjoint operators: S;T: = T:SJ, therefore it is contained in T' = s.
Thus it has the form Sa, a E~. But then f = a E ~{, which is what we
wanted to prove.

Next, assume '2{ to be maximal, and contain an identity element..
Then for an arbitrary A E M, Ax E~ (x E ~), thus if we put x = e, a

1) For n unit e ~ \}~. conditions ex = xe = x for any x ~ \}{ and Te = Se = 1 are equi·
valent: If ex = x (x ~ ~l), tben Te = 1. If Se were not efl,unl to I, then, as Se ~ S c M',
(1- Se) m would contain such a unit u (Lemllla 2.1) as SeSlt = SIlSp, = O. But this
implies et~ = 0 or u = 0, which is a contradiction. ]f Se= I, then Sr:x = x, and xe = x
for any x ~ ~(, If xe = x for any x ~ m, then also x*e = .x* or ex = x for l1Ily x ~ ~(. Thus
all these conditions are equivalent.

9
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10 OSAMU YAMANOUCHI

= Ae E~, and for an arbitrary x Em, Ax == A(ex) = (Ae)x = ax = Ta.x.
As A and Ta are both bounded, .it follows from this A = Ta. Thus
every A EM has the form Ta. Thus}1 c {Ta; a EA} = T. But as M
was R (T, 1), 1\'1 :::JT, therefore M is identical with T. The same is true
for 1\1' and S, and because M and M' are the commutator algebras of one
another, T and S are so.

Thus the proof is completed.

Lemma 2.8: Let $2.1 be a 1naximal Hilbert algebra which contains
an identity eleJnent e. Then for an operator A belonging to the centre
Z, there exists an element a E ~{, and

A=Ta,=Sa.

And the elmnent having this property is an arbitrary one in the centre
()f ~ (in the algebraical sense).

Proof: Put a = Ae. Then Ta = T Ae = ATe=A, and Sa = SAe=ASe
= A. Thus A = Ta = Sa' But Ta = Sa means TaX = SaX for any x E ~,

and writing this algebraically ax = xa, we know that a may be any
element of the (algebraical) centre of ~L q. e. d.

Take an arbitrary unit e, then Te , Se are projection operators in M,
M' resp., and putting Te~ =~' Se~ = WI', ID1 nun'= TeSe~ and
[Q n ID1' n~ = TeSe~C: Wl nun'. If A is an operator EM (E M') such that
ATe = T/;A = A (ASe = SeA = A), we denote the contracted operator of
this A to ID1 n£1)1' as A(IDlnWl'), and the total set of them as Mom n9Jl').
M'omn Wl') (cf. [4; Definition 11.3.1. Lemma 11.4.1J). Then

Lemma 2.9:

M (IDl nwzr) = {Ta omn ID1') ; a E Wl nWl' n~},

M'([11 n rol') = {Sa (IDl n rol') ; a E ID1 n Wl' n ~}.

Proof: We prove the former one.
Take arbitrarily an A (IDl nWl') EM (rol nrol'), then this is the contraction

of an AEM with ATp'=TeA=A. Put now a=Ae, then aE~ and

TeSea = TeSeAe = TeASee = Ae = a,

.and a fortiori a E[Q n IDl' n~. Therefore also

(x EA),

thus A = Ta and A (ID1 nIDl') = Ta (IDln!In').

10
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 11

Conversely take arbitrarily an a E me n IDl' n~, then TeTa = Tea. =
Ta = Tae= Ta. Te • Therefore we can consider the contracted operator
Ta(IDln~m'). Thus we have shown that M([Qn9J~t) is precisely composed
of all the operators of the form T tt (IDHHDl').

Lemma 2.10: For an arbitrary unit .e, TeSem = IDl nilll' nm: is
again a maximal Hilbert algebra in TcSI!~ = illl nilll', when we introduce
in it the multiplication and the adjoint operation as it is in m. Ac
cording to the notation in Lemma 2.4, we can write this %{IDlnIDl' (or
~2'ese). The algebras of left and right multiplication of this mIDln rol' is
M(IDl:HlJl'h M'(IDlnWC') and the ceJitre of it is Zomrnm').

Proof: We must first examine that m:~m:Hm' constitutes a Hil
bert algebra in ill1 nilll'. From the form TeSe~l, it is seen that this
is a dense linear manifold in TeSe~ = IDl nIDl'. And other conditions
as for (ii), (Hi), (iv) in the definition, it suffices for us to show that
the result of multiplication .of two elements of TeSt; ~l also belongs to
Te S" mand the same holds for the adjoint operation. These follows
from

(TeSea) (TeSeb) = Te((Sea) (Se Teb» = TeSe«Sea) (Tcb»,

(TeSea)* = Te(Se a)* = TeSea*.

The last condition of the definition is rather troublesome. Let
for an arbitrary a E %{ (especially for e), TTesea (TcSpj) = 0 be valid.
We take the maximal family of units {e",h;,~\ which are orthogonal
to each other, and contains e, then one sees easily by Lemma 2.3,
U "'._-\ Te>. = 1. For each e", (l EA), TeTeA = TeA Tr = TeTell. T,.. = Tee", = T~

or = O. Thus if the former holds

and if the latter holds, clearly

Therefore 11 TeSef 11 2 = ~ 11 TeA TeSef 11 :! = 0, and this shows T'l Se!
AfrA

= o.
Next consider TIDln9J1' and SW1.iIDl', the total sets of operators of

left and right multiplication. The operation of left multiplication of
~ IDl nrol' is the operator Ta (IDl nIDl') (a E IDl nilll' n%{), and the whole of
them is precisely M(IDl.: IDl') as is in Lemma 2.9. Therefore

11
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Similarly

08A~IU TAKE~OUCHI

T Wl r. RlC' = M (W1 nID'l').

S ml n 9.11' = ~I'cmr. Rn').

ex = xe = x

But the theory of F. J. Murray and J. von Neumann shows (cf. their
[4; Lemma 11.3.2J) that M (ID! nIDt') and M'(ID? nml') are the commutator
algebras of one another, TWU1IDl' and SrolnIDl' are so. Thus by Lemma
2.7, ?llml n Rn' is maximal.

Now our proof is completed.

§3.0. Simple Hilbert algebras (with the identity element).

Let ~( be a simple Hilbert algebra which contains the identity
element e:

for all x E~, or equivalently T e= Se = 1-
(see p. 9 footnote 1)

Then, as we have shown already (Lemma 2.7), every A E M has the
form A = Ta (a = AI! E ~), and in the same way A = Sa (a = Ae E ~)

if A E M'. Moreover, for any A: A E M or A EM',

(3.0.1) (Ae)* = A*e.

because, A E M implies A * E M, and

«Ae)x, y) = (A(ex), y) = (ex, A*(ey» = (x, (A*e)y),

for arbitrary x, y E ~l, while we have by definition

«Ae)x, y) = (x, (Ae)*y),

and so (Ae)* = A *e. .
In this § and also in the folIowings the theory and notations in

[4J shall be used with only suggesting references. There the space is
restricted to be separable, but as we know easily, the most parts of
their results are valid independently with the dimensionality of the
space. (The existence and the uniqueness of the relative dimension
function, the contraction to subspaces, etc.)

Lemma 3.0.1: Let ~ be a Hitbert algebra in ~ (, we do 1Wt as
sume it to be sitnple, nor have an identity element). If

12
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O~ THE STRUCTURE OF MAXIMAL HILBERT ALGEBRA8 13

T = {Ta ; a E ~l}, S = {Sa ; a E ~{}

constitute a couple of factors: T' = S, S' = T, TnT'= {a'1}, then ~l is
,a maximal, simple Hi/bert algebra which contains an identity element.

Proof: We have already shown that m- is· a maximal Hilbert
algebra and contains the identity element e (Lemma 2.7). So we must
show that it is simple. But this is clear from

Z = M ('l M' = S' n T' = TnT' = {a·1} q. e. d.

In what follows we assume that '!2( is simple and has an identity
element e.

In this case, M is a factor, and there is introduced the notion of
-equivalence of two projection operators (cf. [4; Definition 6.1.1]).
Concerning this,

Lemma 3.0.2: Let u. '. u~ be units in ~(, and if T UI and Tt'2 are
equivalent projection operators with respect to 1\-1, then 11 U J I; = 11 t4. 11 '

and the same for the case of SUI and SU2.
Proof: Tut - T U2 ( ••• M) means that there exists a partially iso

metric operator W in M such that W* W = T uJ , WW* = T z'-2' There
fore

II U 1 I1 = IJ Tu, e I1

= 11 TU2 e 11

11 WTu1e 1I = 11 TU1 W*e 11 = ,Jl W* T U2 e 1I

11 u~ 1I '

as was to be proved.

Lemma 3.0.3: For any projection operator P belonging to' M(M')
there exists a unit u in ~ such that Tu(Su) = P, and for such we put

D(P) = 11 u W

Then these have the following properties. l-Ve write them only in the
.case of M.

( i) 0 <: D (P) <: neW, D (1) = neW =F 0,
(ii) PIP~= 0 implies D(P1 + P2) = D(PI) + D(P2),

(iii) Pt - P'.! (... 1\1) implies D (PI) = D (P'.!).
According to .this lemma, the functionals of a projection operator

D(P), D' (P) are the relative dimension functions with respect to M,
1\-1' and as D (1) = D' (1) < 00, M, )1' is in the finite case, and

iIl1?1 = [Ae; A EM] = [~J =.p, ime
M ' = [A'e; A' EM'] = [~J = ~,

13
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14: OSA~IU TAKENOUCHI

thus by D (1) = D' (1) < 00 we know that the constant C for the couple
of factors M, M' (cf. [4; Theorem X, p.182J) is equal to 1 in their
standard normalizations. Therefore this is just the case considered in.
[5; Chap.IVJ (where only the case that 4? is separable is treated, but.
as is easily seen the assumption concerning the dimensionality of the
space is quite unnecessary. Thus if the space is finite dimensional
we are considering the case where the factor M is in the case (I).
And that their theory is valid in such a case is also remarked in
[8; § 1.6 (A)J).

Accordingly the algebra ~l in the last line of [5; p.. 240J is the
maximal Hilbert algebra in~. And the above argument shows that.
the simple Hilbert algebra which contains an identity element is ex
hausted with such thing~.

Now that M. is in the case (I) means that M contains minimal
projection operators and replacing the statement to the Hilbert algebra.
~, that ~ contaIns minimal units. This case having been .already
treated algebraically in detail (see [6; Theorem 5.2J), we don't think
it necessary to repeat it in this paper, but we can include it in the
general considerations which we are going to make hereafter. The
fact which is fundamental in the argument of this case is the follow
ing lemma ([6; Theorem4.8J):

Lemma 3.0.4: If ~ does not contain any unit other than e, then
'& = ~ = {a e}. That is, ~ is the one-dimensional linear space generatetl
bye.

Proof: As M is an algebra of operators, M is generated by all
the projection operators in it: M = R(M(P)) (cf. [7; Satz 2, p.399J)..
By Lemma 2.7, M = T = {Ta; aE~} as ~ contains e as its identity'
element, and the above assumption means MCP) = TCP) = {O, Te } =

{O, I}. Thus M = R(MCP)) = R(O, 1) = {a·1}. Therefore if aE ~t there
exists a constant a sucb that Ta = a ·1, but a·1 = a Te= Tee 8' and a.
fortiori a = a e. As ~ was a linear manifold, '& = {a e} and so, ~l is.
finite dimensional, and it is closed too: %I = [~J. Thus we have shown
~ = [2I] = ~ = {a e}.

§ 3. ~imple Hilbert algebras.

In this section we shall give the investigations of general simple
Hilbert algebras and deduce the most vizual forms of them.

Let ~ be a simple Hilbert algebra in ©, then its algebra of left

14
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 15

·multiplication M and that of right multiplication ~I' constitute a
couple of factors. The dimensionality functionals for them are intro
duced by F. J. Murray and J. von Neumann ([4J) and we denote ones
of them as DM ( .), DM , ( .) resp.

Take arbitrarily a unit e in ~, then Te , Se are the projection
,operators contained in M, M' resp. Put TeSj = ill1, Se Sj = ill1', then
WC n WC' = T e Se Sj, ffi1 n un' n ~1 = T e Se m. We have shown already
that m~m n})R1 = un nWC' n~ is again a maximal Hilbert algebra in
Wl nill(' when we introduce in it the multiplication and the adjoint
-operation as it is in m. The algebras of left and right multiplication
-is M(Wln rol'), M'(roltl IDl') and the centre of it is Z([I1 nrol') (Lemma 2.1).
But as Z = {a' I} by assumption,

Lemma 3.1: %(Wln IDl' is a simple Hilbert algebra in ill( n[l1', which
contains e as its identity element.

Lemma 3.2: Corresponding to an arbitrary unit e in ~, there
.exist finite, positive constants a e , f1e such that for any unit u <;: e,

Proof: We shall show the existence of a e •

If u < e, then u E ill1 n ill1' n~ and as an element of ~ IDl n Wl', it is
also a unit.. Conversely if u is a unit in ~9.nnIDl', then It is when
considered as an element of ~, a unit in A such that u < e.

Put D~Jlnm'\7:~(IDlnrol'» = DM (Tu) (for u < e), then D~9JlnWl') (.) is
·a relative dimensionality functional for M(Wl nml') (cf. [4; Lemma
11.4.2J and also Lemma 2.7 above). But as was considered in § 3.0,
D OULi [ll') (7':t (IDl n[It')) = 11 U 11 2 is also a relative dimensionality functional
for M(IDln IDl') (Lemma 3.0.4).

Thus owing to the uniqueness of relative dimensionality functional
for factors ([4; Lemma 8.2.3J), there exists a finite constant a e > 0
cSuch that

D~nIDl') ( .) = a
e

D (IDl n9Jl') ( • ).

Thus if u<;:e, Dl\1(Tu ) = D~nmr)(Tu(IDlnID1'» = a.;D(IDl1IDC')(Tu (9J1'Hm'»

== a e 11 U 11
2

, as was to be proved.
Concerning these a e , lie we have

Lemma 3.3: For any two units e1 and e2 , if either

15
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16 OSA:lIU TAKE~OUCHI

( i) el > e;l, or
(ii) el e2 = 0

is valid then a el = a e3 , {1e, = (1e2.

Proof: Ad (i). Dl'-dT(2 ) = a lll 11 e2 11
2 = all:! 11 e3 11 2

• ' Therefore a el =
a e:! • In the same way ~eJ = Pe2.

Ad (ii): Put e ;= el + e2 • Then e is also a unit and e>el' e2 •

Thus we have all! = at! = a/l2 ' {j/ll = ee = f3e2 •

We want to show that the a/s and the f1/s are the same con
stants in their respective sets. First we prove the following two
Lemmas simultaneously.

Lemma 3.4: For any projection operator P belonging to 1\'1 (ar
M') we take the maximal family of units {eAh.fA such that

(3.1)

Then

(3.2)

eA ell- = 0 (J~ p.),

(',/s or ~/s are equal to a constant £1'0 or f10 not depending on ..t
and the formula

(3.3) DM (P) = ao~. " eA 11
2 I){or DM , (P) = f30 ~ 11 eA 11

2
)

At-A AtA

holds. (The meaning of this is that if the infinite sum standing in
the right side is finite, then P is a finite projection operator with
respect to M and its dimensionality which is finite is equal to it,.
while if that is infinite, then P is an infinite projection operator with
respect to M, and, its dimensionality being infinite, both sides are
equal in this sense.)

I:.emma 3.5: A projection operator PE M (or E ~I') is finite with
respect to M or M' , if and only if P has the form Te (or Se) with a
suitable unit e E ~.

Proof: We only consider the case that P~ M, and P-:-'- o.
As was stated in Lemma 2.3, we have (3.2) for any maximal

family {eA h~A satisfying (3.1).

1) Infinite 8U1il of positive numbers a",U E A), which is denoted as 2,'MAQ:'A,

is, by definition', equal to the JeafJt. upper bound of all finite sums of a",: 2,''''fA {fA.

=AUp A.l , '\2, •.. , '\,,~A .r~_1 £1',\'11. If this is finite, the members ll',\ which are not (}
are at most countable.
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 17

The second condition of (3.1) applies to give that «eA = aep. (A, p. E A)

according to Lemma 3.3. Thus a eA is a fixed constant not depending
on A(E A) and writing it as a o we have DM (Te~) = a oneA. H2 (A EA).
Take arbitrarily a finite subset {Ao ,(2' "', AIC } of A, then

TI!>''IITCAIJ. = 0 (v =1= f.l),

Consequently
IC IC IC IC

DM(P) >DM(~ TeA"j) = ~DM(TeA,,) = ~ao 11 eA'II 11
2 = a o~ It eAlI 11

2

'11=1 '11-1 '11-1 'II=J

and from the definition of the infinite sum ~ 11 eA II!! we have
A'tA

(3.4)

Assume now that ~ U eA 11 2< + 00. Then as eA was to be =1= 0,
AtA

the set A is at most countable (see p.16 footnote 1), thus we can write
them as {el, e::,'· •• } instead. ,By the assumption that eJ , e'! , ••• are
mutually orthogonal,

00 • ,.,.

and moreover ~ 11 ev ,,:: was finite, {~e'll; f.l = 1, 2 ... } constitutes a
V-I v-I

fundamental sequence whose elements are exclusively units of m, and
therefore converges to a certain e E .\? But T£ ell (f.l = 1, 2, ...) ,are all

'\1:;;;:1

projection operators, their bounds are equal to 1. That is: The
p.

sequence of elements of ~ {~ell} IJ. _ I. ~t • •• converges to e and the
v... I

bounds of T£ Cv are bounded. Consequently e belongs to m(cf. [6;
lI-1

§ 2] and [12; Corollary to Theorem 2]), and

Te = lim Tr ell
p.-tca ~-J

is a projection operator, moreover

DM(P) = DM(Te) = ao'lI e 11
2= a o~ !I eA /12 < +00,

At:A

therefore P is a projection operator finite with respect to M ([4; De
finition 8.2.1J).

17
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18 OSA.MU TAKENOUCHI

Thus we know that
( i) if the infinite sum ~ 11 e" W is finite, P is a projection operator

A~A

finite with respect to M and then (3.3) is valid. Moreover there exists
an element in ~ symbolically to be denoted as ~ eA which is a unit

AtA

and T~eA = P.
AtA

(ii) if the infinite sum b 11 eAII~ diverges to the infinity, then
,\tA

DM (P) = 00 by (3.4), and P is a projection operator infinite with
respect ·to M. In that case also the formula (3.4) is true.

Conversely Lemma 3.2 states that for any unit e, the projection
operator Te belonging to M is finite.

Thus the Lemmas 3.4 and 3.5 are thoroughly proven.

Lemma 3.6: For any two units e l and e:! E~ there exists a unit
.e E~ such that eJ -< e, e2 -< e.

Proof: We have said that Tet and T e2 are· both projection opera
tors finite with respect to M, and T/!l U T et! is also finite ([4; Lemma
7.3.3J, see also [3; Lemma 1.6J). Therefore there exists a unit e so
that T e = Tei U T e2 by Lemma 3.5, and such is by definition e>- e\ ,
e> e'1. as Te ;> 7:1' Te;> Te~'

Lemma 3.7: The constants ae Pe are the same for any units
e E~.

Proof: Take arbitrarily two units el, e:! Em, and then a unit eo
:such that eo:> eJ ,ell which "exists due to Lemma 3.6. Then Lemma
3.3 assures a el = a e2 (=a eo )' Sel ~ i1e2 • Therefore a/s and i1/s are the
constants in their sets.

We write these constants as a and e, then putting

D' ( .) = ~ D~ ( . ),

D (.) and D' (.) are another relative dimensionality functionals with
respect to M and M' resp. and they satisfy

Consider now the constant C defined in [4; Theorem X, p. 182].
As this constant equals to 1 owing to [4; Lemma l1.4.2J and Lemma
3.0.4 above when we contract M, M' to such a subspace me nill1' =

TeS/g as D(Te) = D'(Se), we must have C = 1 by Lemma 11.4.3 in
[4J.

18
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 19

Thus we have shown the following

Theorem 3.1: Let ~ be a simple Hitbert algebra in a Hilbert
space t'g. Then its algebras of left and right multiplication M, M' resp.
form a couple of factors. Concerning these,

1) A projection operator P in M (or M') is finite with respect to
M (or M') if and only if there exists a unit e in ~ such that P = Te

(or = Se).

2) Put

for any arbitrary unit e in ~, and for any projection operators P, P'
infinite with respect to M, M' resp.

D(P) ~_. 00, D'(P) = 00.

Then D (.) and D' (.) is 011£ of the relative dimensionality functionals
with respect to M and M' respectively.

3) The constant C is equal to 1 when we take the relative dimen
sionality functionals with respect to M, M' as above. And clearly

Now factors are classified into three types (I), (IT), (ITI) ac~ording

to the nature of their respective relative dimensionality functionals.
But in our case M contains n~ssarily a finite projection operator,
i.e. Te for an arbitrary unit e E ~l and so the purely infinite case (IT1)
cannot occur. Therefore only types (I), (IT) are the case.

The algebra to which the factor of type (I) corresponds has a
rather simple structure, but the case where the factor of type (IT)
appears is not so simple. We shall give here a method of reducing
the problem to the simpler case where there exists the identity ele
ment. Namely we show that they are constructed as a matrix
algebra with elements in some simple Hilbert algebra containing an
identity element, after the prototype of the case where arises the'
factors of type (1). The detailed proof is rather longsome, and so we
shall be contented to follow the thread of the argument.

Let ©o be a Hilbert space, in which a maximal Hilbert algebra.
2Co be given. A be a set of indices, and·~ be the set whose elements.
are consisted of all the elements of © doubly indexed by the elements.

19
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20 OS.!.MU TAKENOUCHI

'of A namely the matrices <fA,tJ. > A,tJ. fA with ~ 11 fA,tJ.1I2 < +00.
A,tJ.I A

. Introduce now in this t~, the

linear operation as

:and the

a <fA,p. > A,tJ.fA + {j < gA,tJ. > A,tJ.EA

= < afA,JJ. + {jgA,tJ. > A,JJ.EA'

inner product as «fA.JJ. > A'JJ.IA' < gA,tJ. > A,JJ.IA)

= ~ (fA. tJ.' gA, JJ. ).
A,tJ.EA

Now mbe the set of all elements a = <aA, JJ. > A, JJ.E A of ~ where
aJ,., JJ. E ~(-<, p. E A) and which satisfies for any choice of finite -<'s:
-<., -<ll' "', -<IC EA, the inequality

IC IC IC
·(3.5) ~ n ~aAV);UxU W <: r 2

~ 11 Xv ns
11-) CTaJ ~-1

for any Xl' X:!, "', X/C E ~(o and a fixed r > 0 (: a constant depending
only on a). Introduce now in this ~ the

multiplication as

:and the

adjoint operation as

< aA,JJ. >A,JJ.EA < bA,JJ. >A,tJ.IA

= < ~aA'p bp.JJ. >A, IJ.IA'
ptA

< aA, tJ. >A~ JJ. EA = < llJJ., A* >A, IJ. ( A •

These definitions are always possible and we are able to show
the

Theorem 3.2: By the above definitions © is a Hilbert sjJace, in
which [( constitutes a maximal Hitbert algebra. If the original ~ is
.simple then ~ is too.·

The converse of this statement holds. Namely,

Theorem 3.3: Any. simple Hilberl algebra can be brought in the
form defined above, where m(\ can be made into a simple Hi/bert algebra
with an identity element. Thus we can say that any simple Hilbert
algebra is the total matrix algebra of some dimensions over a suitably
chosen simple Hilblert algebra with an identity element.

Theorem 3.4: If ~ is a simple Hilbert algebra whose aZgebras
·of operators of left and right multiplication are factors of type (1), it is
the total matrix algebra over the field of complex numbers of some
.dimension.
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This follows at once from Theorem 3.3 and Lemma 3.0.4,. and is
the case treated by W. Ambrose [lJ and H. Nakano [6J.

§ 4. Purely non-simple Hilbert aIgebras.

In this section, we consider the purely non-simple Hilbert algebra
min the Hilbert space ~ and its decomposition into· direct sum (in
some sense-integral sum) of simple ones. The method used here,
rather near to that of F. Riesz [10J than to that of J. von Neumann
[9J, essentially depends on the theory of integration and differentiation,
and the countability conditions are necessary. Thus, we shall assume
in this section that the space.)) is seParable, and, the finite dimen
sional case being exc!udedl), is of infinite dimension.

Lemma 4.1: There exists a countable set consisting of units in
~ which satisfies

(4.1) et < e~ <: ... ,
(4.2) u Tell = U Sf!lI = 1.

Proof: T$e a maximal family of mutually orthogonal units
{u;>.} h E A then by Lemma 2.3 we have

u Tu).. = U SUA = l.
AtA )..t A

But as such an orthogonal set must be countable, we can enumerate
them as U J , U~, •••• Put now

Then this meets the desired condition.

Lemma 4.2: There exists a dense countable set %(0) in ~ which
.satisfies the following conditions:

(i) ~(O) contains the set {ell}., = I ,ll .... mentioned in Lemma 4.1.
(ii) x, yE %(0) imply r J x + r2 y, xy, x* E 2ft;), where rI, r2 de1wte

.arbitrary complex numbers whose real and imaginary parts are rational.

1) Let e be an arbitrary unit E W. Then, for any natural number n = I, 2, "',
we can take in m a maximal ortho~onal set of units e).. such that e).. ~ 6, 11 eh 11 ~

-.!..Il e 11. As, forsnch a set, 11 6 11 2 = ~ 11 eh IP~ holds, the cardinal numbers of A
n AEA

-cannot be smaller than nll• Since n was arbitrary, we must have that the dimen-
sionality of the space mUElt be infinite.
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22 OSAYU TAKENOUCHI

Form now, for this m(O) its enveloping linear manifold. Let it be
~(O). Then

and ~{(O) is again dense in ~.

Lemma 4.3: The centre Z of mcomprises a family of projection
operators {E(t); 0 -< t -< I} which has the following properties

( i) {E(t); 0 < t -< I} spans Z, i.e. the least algebra of operators
containing this family is precisely Z,

( ii) 0 -< tJ < t% <: 1 implies E(t1) ~ E(t2),

(Hi) Hm E(t) = E(to), .
t~tO.O";t~l

(iv) E(O) = 0, E(1) = 1,
(v) for an arbitrary f E ~ the continuous function 11 E(t)j 11 2 oj t

is absolutely continuous with respect to the ordinary Lebesgue measure
on [0, 1J.

Proo!: There is a particular element fo in ~ which has the
property that

(4.3) For a projection operator E E Z, Ef = 0 can occour if and
only if E = O.

This is easily seen by taking notice to that, for any f E~, there
exists an E E Z, such that F < E, FEZ, and Ff = 0 imply F = 0,
while EF = 0, FEZ imply F! = 0, and by noting that the maximal
orthogonal family of such paires (E, f) can contain at most countable
many elements.

An abelian algebra of operators in a separable Hilbert space is
always generated by a resolution of unity E(t) 0 <: t < 1 for which
we may assume that

(4.4) t = 11 E (t)!o fj2 (0 -< t< 1).

Then, thus parametrized E(t) has the desired property.
Now, under these preparations, we shall consider the decomposi

tion of ~, ~l with respect to the centre Z of ~l.

I. The family of projection operators E(t) (0 -< t <1) being
taken as in Lemma 4.3, the function 11 E(t)! 11

2 (f E~) of t: 0 -< t < 1
has the derivatives at almost everywhere in [O,lJ. We shall denote
the set of t which must be excluded for f (: namely, the set of t

I)
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ON THE STRUCTURE OF :MAXIMAL HILBERT ALGEBRAS 23

such that ;t 11 E (t) f 112 does not exist for t = to' or exists and

= ± 00) as NI if). Then meas. NI (j) = 0 and to E NI (f)' I) implies the

existence and finiteness of (;t 11 E(t)f W~)t= to which we shall denote

as

symbolically.
The set

(4.5) NI = U NI (a)
a ~(o)

(%I(OI denotes the countable set described in Lemma 4.2), is also of

Lebesgue measure 0, and, for any to E N;, a E 2r(O)';t 11 E (to) a 11
2

exists and is finite.

11. -ffr (E(to)a, E(to)b) exists for any a, bE 2r
CO

) and tEN;.

We shall prove this step by step.

(i ) ;t (E(to)a, E(to)b) exists for any a, b E ~CO) because of the

formula

(E(t)a, E(t)b)

= +{11 E(t) (a+b) n2
- 11 E(t)a 11

2
- 1I E(t)b 11

2 + 11 E(t) (a+ib) W

- UE(t)a n:~ - 1I E(t)b 1i 2
},

where the elements appearing on the right hand side, i.e. a + b,
a + ib belong to A(o) and so have derivatives at t = to E N: •

( ii ) For an arbitrary f E~, the elements g of ~ for which
~ (E(to)f, E(to)g) exists for every to E N; consist a linear manifold

in ~.

(iii) Thus, fixing an element a of %I tO), the elements f of ~ for

which ~ (E(to)a, E(to)f) exists for any to E NI' form a linear mani

fold containing ~llo) by (i), and so ~(O) too.
(iv) For any a E ~(O), the elements f of ~ for which

1) In ,what follows, for any set cOlltained in the interval [0, 1], its accented
notation means the complementation in [0, 1].
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24 OSA)IU TAKE1'\OUCHI

~ (E(to)a, E(to)f) exists for every to EN; form a linear manifold

which contains 2(10) by (Hi) and so ~IO) too.
Thus the desired proposition is proved.

Corollary: For any a E2(((1',

(tu EN;)

exists.
We shall now proc~ed to define the elements of decomposition.
Ill. Fixing a to E N J' we consider an ideal element a' (fll) corre

sponding to each a E 2(0), and set

(a' (to) , b'(to»' = -~- (E(to)a, (E(to)b),

11 a'(to) W2 = ~ 11 E(to) a W~.
Clearly we have

(4.6) «(aa + 8b)'(to), e'(to»' = a (d(to), e'(tu»' + 8 (b'(to), e'(to»'
(4.7) (a'(to), b'(to»' = (b'(to), d(to»',

(4.8) (a' (to), a' (tu»~ = 11 a' (to) 11'2> 0,

(4.9) 11 (a a)' (t,,) Il' = I a Ilia'(to) 11',
and, moreover, the Schwarz' inequality and the triangular relation
hold:

(4.10)

(4.11)

I (a'(tl ,), b'(to»' I < I1 a'(to) 11' 11 b'(to) 11',

11 (a + b)' (tu) 11' -< 11 a(to) 11' + nb'(tu) 11'·
These latter formulas can be deduced easily from formulas (4.6)

... (4.9) by the method usually adopted.
IV. We shall classify these a' (to) (a E .2(101), by considering two

elements a~ (to), a~ (~l) (aI' a2E 2(101) to be equivalent if and only if

11 (a l - aJ' (to) 11' = 0

holds. The class whic~ contains a' (tu) under the classification by this
equivalence relation defined above shall be denoted as a (to) , and the
totality of these elements as Sl{IU,(tO).

The above-defined equivalence relation has the following properties:
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If tit (to) - tk (tu), b; (tu)- b~ (tu), then

(aJ + bJ), (to) = (~+ b2)' (to)

(a a l )' (to) (a a!)' (tu) (a: any complex number)

(a~ (to), b: (to»' = (~(to), b~ (to»'.

And so we can make the following difinitions.
For any a(to), b(to) E m<o'(to) and complex number a, define

(+) a (tu) + b (to) = the class which contains (a + bY (tu)

for a' (to) E a (tll) , b' (tu) E b (tll) ~

( • ) a a (tn) the class which contains (a a)' (tn)

for a' (to) E a (to),.

(,) (a(to), b(tll» = (o'(to), b'(tu»' for a' (to) E a (tn), b'(to) E b(to)•.

Then we can establish.

Lemma 4.4-: ~{tUI (to) is a linear space with inner product under
the operations tkfined in (+), (.), (,).

The completion of ~.ol(tn) is a (separable) Hilbert space, which.
shall be denoted as ~ (to).

Now we shall define %(ClI)(tu) as a Hilbert algebra in ©(tn).

V. mlO
) being a subalgebra of ~, a, b E ~{<Oi implies ab E mlUl and

so (ab)' (to) is defined. The fact which we show below that

(4.12) a~, (tn) - ~ (tn), b: (to) - b~ (tu) implies (a1 bl)' (tu) - (a2 b2)' (tll~

allows us to make the following definition.

(x) the class which contains (ab)' (tn)

for a' (tu) E a (tn), b' (tu) E b (to) •.

Proof of (4.12).

11 (aJ bl - as bs)' (tn) 11' = 11 ({a, - ad bl + a2 {bJ - bz})' (tn) 11'

-< 11 ({al - ~} b.)' (to) 11' + 11 (lk {b l - b2 })' (tll) 11'

and so, for the proof of the formula, the proof of

a' (to) - 0' (tu) or b' (tn) - 0' (to)

suffices. But this is clear from

implies 11 (ab)' (to) 11' = ().
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I! E(t) (ab) 11 -< III Ta III IIE(t)bll or- IllSafll IfE(t)an.

VI. As is shown below,

;(4.13)

:(4.14)

1S true, we can make the following definition:

(* ) a (ft,)* = the class which contains (a*)' (to)

for a' (to) E a (to).

Then

(a(to)b(tj), c(tn» = (b(to), a(to)*c(tll»,

(b(~I)a(tU)' c(ttl» = (b(tll)' c(tu)a(to)*).

Proof of (4.13) and (4.14). We note first that for any a E~ and
A E Z, (Aa)* = A*a* which follows from

"Therefore, from

11 E(t) (a~ - at) W~ = 11 (E(t) ta, - ~»* W~ = fI E(t) (a, - az) JI2

it is clear that, if a: (to) - a~ (tn) , then a~' (to) - a~' (~l). ,Also (4~14) fol
lows from

(E(t) (ab), c)= (a (E(t) b), c) = (E(t) b, a* (E(t) c» = (E(t) b, E(t) (a* e»,

(E(t) (ba), c) = (E(t) b, E(t) (ea*».

VII. Define now the operator T~7.l,) corresponding to an a (lil)
'E '2l(O)(to) as

"Then

for any element a ( E ~l(O) to which a' (to) E a (tu) is corresponded.
Proof: Let a' (to) E a (to), x' (tll) E x (to), then

11 T~Ti() x (to) ,,~= 11. a (tn) x (tn) 11
2="(ax)' (~l) 11 'll

= -;r 11 E(to) (ax) Wl = ;r 11 a (E(to) x) 11
2

-< W Ta 111
2 -ffr nE(tJ.X 11

2
= 11/ Ta 111

2 I! X (to) 11%
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ON THE STRUCTURE OF MAXIMAL HILBERT ALGEBRAS 27

We can now state the following

Lemma 4.6: ~(O)(to) defined in the Hilbert space .p (t) for tEN;
is a Hi/bert algebra 1..oith respect to the operations defined in (+), (.) ~

( , ), (x), (*), if we disregard a set of measure 0 N 2 further.
Proof: By the definition of .p(t), ~l(Ol(t) is a dense linear mani

fold in .p (t), Moreover, the multiplication and the adjoint operation
defined in (x), (*) satisfies the axioms for the Hilbert algebra except
the last one:

(4.15) (for any x(t) E ~(O)(t» implies f(t) = o.
We shall, in what follows, prove this statement.

~(O~ contains the sequence of units {ell} '.1=1.2.... which satisfies
the conditions (4.1) ~nd (4.2). Therefore, for any f E .~,

lirn 11 Te'Jf 11
2 = 11 f 11

2
•

'\loco

Define now a function of an interval d (t1 , t'!; f) for 0 -< t1 < t!. -< 1
as

This is clearly an additive function of bounded variation of an inter-·
val. By (4.1) d (t1 , t 2 ; Tell!> (!J = 1, 2, ... ) form a monotone increasing'
sequence, thus a theorem concerning the derivates of such a sequence
(e.g. [11; p.116, Theorem 5.7J) teaches us that there exists a set.
N'!.(!) of measure 0, so that

(to E N2 (i)').

Put now N2 = U a f %0) N'.!. (a), then N 2 also is a set of measure 0, and
to EN~ implies

(for each a E ~I(ol).'

But here is included the case that both sides are equal to + 00 and
if we consider' (4.16) only for tu E (NI + N'2)' this. case is excluded..
When we limit ourselves to this case, the same method used in
article II applies, and the validity of
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for any a, b E ~(O) follows. This is rewritten as

~i2: ~ ,(E(to) (el/a), E(t()) (ell b)) .= ;t,(E(to) a, E(to) b)

or

lim (ell (t) a (t), e'J (t) b (t))
'J ... oo

Put here a = b, then

(a (t), b (t»

(4.17) lim ile,,(t)a(t) 11
2 = lIa(t)W

"..""

As the definitions (x), (*) shows, e" (t)'s are again units in {)(t)
(t EN;) and moreover

tE N;.

·(4.18)

Thus, for the sequence of projection operators in ~ (t): Te:~](t) (11 = 1,
2, ... ) the existence of Hm T:~J(t) is assured. Put this projection

\I '+-""

operator as p:t1, then, if t E (NI +N 2)', (4.17) implies npet] a(t) W'l =
11 a(t) 1,2 for any a(t) E~PO'(t), and so, '2{IO)(t) being dense in ~ (t), for

any a(t) E'~ (t). This 'means that prt] must be the identity operator
in ~(t) for t E (NI +M)'.

Now make the assumption in (4.15). Then as e" (t) E ~(O)(t) (11 = 1,
2, ... ), Ti~J(t)f(t) =0. Therefore Hrn T~~j(t)f(t) = f(t) is also equal

" 0+00

to 0, which was to be proved in (4.15).
The maximal extension of ~,1I1 (t) in ~ (t) will be denoted as ~ (t).
Finally we consider the relations between .'Q and ~ (t).

Lemma 4.7: The functions f(t), which are defined on (NI + N,)',
.have values in ~ (t) .and satisfy

\ (f(t), a(t) are measurable functions of t for a(t) E ~(DI(t)

i. corresponding to an)! a E ~l'0l,

.have nonns 11 f(t) Il measurable as functions of t E [0, 1J.
~* be the space consisted of the whole of these functions which

have norms whose squares are integrable on [O,lJ. Of course tu'O

functions which are different only on a set of measure 0 are considered
as identical. Then we can make this a Hilbert space isomorphic to .p,
and under this isomorphism a(t) and a E mID) correspond isomorphically
in the sense of Hilbert algebra.
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Proof: We can define the linear operation in a usual obvious
manner. As

11 f(t) " = sup I «((t), get»~ I
Oltlto~(t), 1I0(tlll~1

= sup i (f(t), aCt»~ I
f) It) to ~('O) (I). 11 f) It) 11 <:; I

= sup I (f (t), a (t» !,
f/(tl"~{(O)(t), 1I(1(01l~'

n f(t) 11 is measurable.
The assumption· that 11 f (t) W is integrable for ,a~y f (.) E ~*

allows us to introduce the inner product in ~* by the formula

J

(f( '), g (.» = f(f (t), g:(t» dt
o I

= +J{11 f(t) + get) n2 + Ilf(t) + ig(t) 11
2

o

- 2( 11 f(t) 11
2 + 11 get) 11

2)Jdt

and by this definition of the inner product and the definition of the
norm attendant on it, the space ~* turns to be a Hilbert space. The
a (. fs for a E ,&(0) are obviously contained in it, and form a linear
manifold '2l101 *. If it were not dense in ~*, there would exist an
element f (.)*0 (.) in ~* which is orthogonal to any 'of ~:('O)*. But
this implies f (.) = 0 (•), which is impossible. Therefore ~«l)* is 'a
dense linear manifold in ~*. The correspondences

a a +pb -- aa (.) + ,3 b( •), (a, b) = (a ( .), b ( •»
establish the isomorphism of ~1(0) and '2{(O)*· as linear spaces with inner
product, and we can extend it to the isomorphism of ~ and ~* as
Hilbert spaces. We can define the multiplication operation and the
adjoint operation in ,&(0)* by this isomorphism, but this coincides with
the method of defining them by element-wise way. Anyhow, ~1(O)*

can be made into a Hilbert algebra which is isomorphic to ~l(O) under
this isomorphism.

Lemma 4.8: The elements of '2( corresponds to such a (•)'sE ~*,

for which aCt) E ~l (t) (for each t), and n! Ta[~h III are uniformly bounded
with respect to t.

Proof: First, we note that, by setting for f (.) E ~*
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1,(-): 1,(t)=/(t) (t<,S), =0 (t>S),

Is (0) corresponds to E(s)/(, f( -) -- lE [Q), because
, J

(E(s)f,a) = j"(/(t), a(t»dt' ) = I(ls-(t), a(t»dt = (Is (0), a(o»
u u

for any a E ~(O)o Especially, as E(t)a E ~l for a E ~{eo), we have at (- )
as the image of E(t)a.

Now we shall proceed to the proof of the letnma. As a( 0 Vs for
a E meO) satis~y the statements of the lemma .(e. g. by VII), all the
at (0 )'s (a E ~{CO) do too, and these elements correspond to those in '2(,

Thus Theorem 1 in our previous paper ([12J) shows that, by denoting
the operator of right multiplication in rp* as S:c.), those and only
those elements 1(·) of t~*, for which there exists a r > 0 such that

(4.19) nS~c·),/(·) 11 < r I! a,l (0) 11 (aE mCO),

correspond to the elements of m. But (4.19) is rewritten as
S 11

j" 11 S~tlt.)f (t) 11
2 dt < r 2 J' [I a (t) 11

2 dt,
11 I)

and so with possible exception of a set of measure 0,

(4020) 11 S;l~t)/(t) n2 -< r 2 11 aCt) 11 2 for all a(t) EAeo)(t).

Therefore I(t) belongs to A(t) as (4.20) is obviously extended to
a(t) E ~{CO)(t), and

11' TCt' 'I' ./I ICt) I I """':: r

except for a set of measure 0, which is of no importance.
Conversely, if,.for f(o ),E l~*, I(t) E ~{(t) and III T;l~) III < r for every

t E (NI +N2)', then, for an' arbitrary a( 0) Em*,
1 I

11 S:c·)/(o) If = III SJtlo/(t) Wdt = I 11 Tj~ha(t) /?dt
11 u

1

-< r 2 J I1 a (t) Wdt = r 2 11 a (.) Wo
o

1) We can- easily show, as mbeing dense in f), that if f (---~ f ('), g (---~ g (.).
then

8

(E(s)j, g) = I (j(t), g(t))dt.

11
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.:and so f (.) corresponds to an element of ~.

Thus all the statements of the lemma is proved.
Before stating these results as a theorem~ it will be convenient

to make a definition.

Definition .4.1: ]. von Neumann [9J has given the definition of
the integral SU"1n (generalised direct sum according to his terminology)
of Hilbert spaces. fVe shall adopt this terJnhwlogy as £t is. Let.~ be
isomorphic to the integral sum of ~(t), and, in .p and h'l each ~(t),

maximal Hilbert algebras ~1 and 2{ (t) resp. are given. Then we shall
.tenn ~ to be isomorphic to the integral sum of '2( (t), under the iso
morphism of ~ and the integral SUln of .~ (t), if the elements of ~I

correspond to those and only those elements a (.) of the integral sum
of .p (t) such that

jor each t.

Then the results obtained in this section can be stated as
follows.

Theorem 4.1: Let be given a separable Hilbert space ~ and a
maximal purely non-simple Hitbert algebra '2l in it. Then we can
,construct for each t E [0, 1J a Hilbert space .~ (t) and a tnaximal Hil
bert algebra ~I (t) in it such that ,~ is isonwrphic to the integral sum
,oj the Hitbert spaces of ~(t) and, under this isomorphism, the Hilbert
,algebra ~ is. is01norphic to the integral sum of the Hi/bert algebras
~I (t).

The von Neumann's reduction theorem now shows that

Theorem 4.2: In the preceding theorem, each ~(t) is a simple
Hi/bert algebra in ~ (t).

Thus in the separable case all the problems are reduced to the
alse of simple algebras. In the non-separable case, the like-wise
integral sum representation on a suitable Ineasure space can be ob
tained, but we do not yet succeed to prove the simplicity character.
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