Mathematical Journal of Okayama University

A Lower Bound for the LS Category of a Formal Elliptic Space

Yasusuke Kotani*
Toshihiro Yamaguchi ${ }^{\dagger}$

[^0]Copyright © 2005 by the authors. Mathematical Journal of Okayama University is produced by The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou

A Lower Bound for the LS Category of a Formal Elliptic Space

Yasusuke Kotani and Toshihiro Yamaguchi

Abstract

We give a lower bound for the LS category of a formal elliptic space in terms of its rational cohomology.

KEYWORDS: LS category, rationally elliptic space, F_{0}-space, formal.

Math. J. Okayama Univ. 47 (2005), 141-145

A LOWER BOUND FOR THE LS CATEGORY OF A FORMAL ELLIPTIC SPACE

Dedicated to the memory of Professor Akie TAMAMURA

Yasusuke KOTANI and Toshiniro YAMAGUCHI

Abstract

We give a lower bound for the LS category of a formal elliptic space in terms of its rational cohomology.

1. Introduction

The Lusternik-Schnirelmann (LS) category, cat X, for a space X is the least integer m such that X can be covered by $m+1$ open sets, each contractible in X. The rational LS category, $\operatorname{cat}_{0}(X)$, is the least integer n such that $X \simeq_{0} Y$ and cat $Y=n$. A simply connected CW complex X is called (rationally) elliptic if $\operatorname{dim} H^{*}(X ; \mathbb{Q})<\infty$ and $\operatorname{dim} \pi_{*}(X) \otimes \mathbb{Q}<\infty$. An elliptic space X has a positive Euler characteristic, i.e., $\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X ; \mathbb{Q})>$ 0 , if and only if it satisfies $\chi_{\pi}(X)=\sum_{i}(-1)^{i} \operatorname{dim} \pi_{i}(X) \otimes \mathbb{Q}=0$ [6]. Then it is called often an " F_{0}-space". For example, a homogeneous space G / H, where G is a compact, connected Lie group and H is a closed subgroup of maximal rank, is an F_{0}-space. The rational cup length of a space $Z, \operatorname{cup}_{0}(Z)$, is the greatest integer n such that the n-product $H^{+}(Z ; \mathbb{Q}) \cdots H^{+}(Z ; \mathbb{Q}) \neq 0$. Also the rational Toomer invariant of $Z, e_{0}(Z)$, is given by using the Sullivan minimal model [4] $\mathcal{M}(Z)=(\wedge V, d)$ as $\sup \left\{n \mid\right.$ there is an element $\alpha \in \wedge^{\geq n} V$ such that $[\alpha] \neq 0$ in $\left.H^{*}(Z ; \mathbb{Q})\right\}$. We remark that

$$
\begin{equation*}
\operatorname{cup}_{0}(Y) \leq e_{0}(Y)=\operatorname{cat}_{0}(Y) \leq \operatorname{cat} Y \tag{*}
\end{equation*}
$$

for an elliptic space Y (see [3]).
There is a problem [9]: If Y is elliptic, then $\operatorname{dim} H^{*}(Y ; \mathbb{Q}) \leq 2^{\text {cat } Y}$?. It is true if $\operatorname{dim} \pi_{\text {even }}(Y) \otimes \mathbb{Q} \leq 1$ [9].
Lemma. For an F_{0}-space $X, \operatorname{dim} H^{*}(X ; \mathbb{Q}) \leq 2^{\text {cup }_{0}(X)}$.
Especially, if X has the homotopy type of the r-product of even dimensional spheres, then $\operatorname{dim} H^{*}(X ; \mathbb{Q})=2^{r}=2^{\operatorname{cup}_{0} X}=2^{\text {cat } X}$.

If an elliptic space Y is formal [4, p.156], roughly speaking, if the Sullivan minimal model [4] is a formal consequence of its rational cohomology, it has the rational homotopy type of the total space of a fibration $X \rightarrow E \rightarrow S$ in which X is an F_{0}-space and S is the product of odd dimensional spheres or the one point space (see [2]). Then we have

Mathematics Subject Classification. 55P62, 55M30.
Key words and phrases. LS category, rationally elliptic space, F_{0}-space, formal.

Theorem. If an elliptic space Y is formal, then $\operatorname{dim} H^{*}(Y ; \mathbb{Q}) \leq 2^{\text {cup }_{0}(Y)}$.
From the above remark $(*)$, we deduce a partial answer for our problem.
Corollary. If an elliptic space Y is formal, then $\operatorname{dim} H^{*}(Y ; \mathbb{Q}) \leq 2^{\text {cat } Y}$.
In the next section, we give the proofs. In the third section, we compare our results with the toral rank conjecture [4, p.516] of Halperin for certain spaces.

The authors thank our referee for his suitable advices.

2. Proofs

Let X be an F_{0}-space. Then there is an isomorphism as algebras

$$
H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] /\left(f_{1}, \ldots, f_{p}\right)
$$

and there is an equation

$$
\operatorname{dim} H^{*}(X ; \mathbb{Q})=\left|f_{1}\right| \cdots\left|f_{p}\right| /\left|x_{1}\right| \cdots\left|x_{p}\right|
$$

where $\left\{\left|x_{i}\right|\right\}_{i}$ are all even and f_{1}, \ldots, f_{p} is a regular sequence [6]. Here $|*|$ is the degree of $*$ as an element in a graded algebra and f_{i} are homogeneous polynomials with no linear terms.

Proof of Lemma. Suppose that $\left|x_{1}\right| \leq \cdots \leq\left|x_{p}\right|$. Let Φ_{i} denote the set of all monomials occurring in f_{i}, i.e., $f_{i}=\sum_{j} c_{i j} \sigma_{i j}$ for some $c_{i j} \neq 0 \in \mathbb{Q}$ and $\sigma_{i j} \in \Phi_{i}$. Since $\operatorname{dim} \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] /\left(f_{1}, \ldots, f_{p}\right)<\infty$, sets $\Phi_{1}, \ldots, \Phi_{p}$ must satisfy the "polynomial condition" P.C. [5, p.119] due to Friedlander and Halperin: for each s and for each set of s variables $x_{i_{1}}, \ldots, x_{i_{s}}$, there are at least s sets $\Phi_{j_{1}}, \ldots, \Phi_{j_{s}}$ containing a monomial in $\mathbb{Q}\left[x_{i_{1}}, \ldots, x_{i_{s}}\right][5$, Theorem 3]. By changing the indexes of Φ_{i} 's, we can regard Φ_{i} as an element of $\mathbb{Q}\left[x_{1}, \ldots, x_{i}\right]$ for any i. Thus we may assume that each f_{i} contains a term of the form $x_{1}^{k_{i 1}} \cdots x_{i}^{k_{i i}}$ where $k_{i 1}, \ldots, k_{i i}$ are non-negative integers with $k_{i 1}+\cdots+k_{i i} \geq 2$. Then, for each $1 \leq i \leq p$, we have

$$
\begin{aligned}
\left|f_{i}\right| /\left|x_{i}\right| & =\left(k_{i 1}\left|x_{1}\right|+\cdots+k_{i i}\left|x_{i}\right|\right) /\left|x_{i}\right| \\
& \leq k_{i 1}+\cdots+k_{i i} \\
& \leq 2^{k_{i 1}+\cdots+k_{i i}-1} \\
& \leq 2^{\operatorname{deg} f_{i}-1}
\end{aligned}
$$

where $\operatorname{deg} f_{i}$ is the degree of f_{i} as a polynomial. Thus

$$
\operatorname{dim} H^{*}(X ; \mathbb{Q})=\left|f_{1}\right| \cdots\left|f_{p}\right| /\left|x_{1}\right| \cdots\left|x_{p}\right| \leq 2^{\operatorname{deg} f_{1}+\cdots+\operatorname{deg} f_{p}-p}
$$

Since the Jacobian $\operatorname{det}\left(\partial f_{i} / \partial x_{j}\right)$ is the fundamental class of the Poincaré duality algebra [8, Proposition 3], we have $\operatorname{deg} f_{1}+\cdots+\operatorname{deg} f_{p}-p \leq \operatorname{cup}_{0}(X)$.

Recall the following Lemma in [9] for the proof of Theorem.
Lemma 2.1 ([9, Lemma 2.1]). Let E be the total space of the rational fibration $F \rightarrow E \rightarrow S^{2 n+1}$ with an elliptic space F satisfying $\operatorname{dim} H^{*}(F ; Q) \leq$ $2^{e_{0}(F)}$. Then $\operatorname{dim} H^{*}(E ; Q) \leq 2^{e_{0}(E)}$.
Proof of Theorem. Since a formal elliptic space Y is hyperformal, there is an isomorphism as algebras

$$
H^{*}(Y ; \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] \otimes \wedge\left(y_{1}, \ldots, y_{q}\right) /\left(h_{1}, \ldots, h_{p}\right) \quad(p, q \geq 0)
$$

where the elements $h_{i}(i=1, \ldots, p)$ are written as $h_{i}=f_{i}+g_{i}$ with a regular sequence f_{1}, \ldots, f_{p} in $\mathbb{Q}\left[x_{1}, \ldots, x_{p}\right]$ and elements g_{i} in the ideal generated by $y_{1}, \ldots, y_{q}[2, \mathrm{p} .576-577]$. We regard the algebra $H^{*}(Y ; \mathbb{Q})$ as the exterior algebra $\wedge\left(y_{1}, \ldots, y_{q}\right)$ if $p=0$. Thus Y has the rational homotopy type of the total space of a fibration

$$
X \rightarrow E_{q} \rightarrow S^{\left|y_{1}\right|} \times \cdots \times S^{\left|y_{q}\right|}
$$

where X is the F_{0}-space with $H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] /\left(f_{1}, \ldots, f_{p}\right)$ and $S^{\left|y_{i}\right|}$ is the $\left|y_{i}\right|$-dimensional sphere. If $q>0$, by using Lemma 2.1 with [4, p.388, Example 4] inductively for fibrations

$$
\begin{aligned}
& X \rightarrow E_{1} \rightarrow S^{\left|y_{1}\right|} \\
& \vdots \\
& E_{i} \rightarrow E_{i+1} \rightarrow S^{\left|y_{i+1}\right|} \\
& \vdots \\
& E_{q-1} \rightarrow E_{q} \rightarrow S^{\left|y_{q}\right|}
\end{aligned}
$$

we have $\operatorname{dim} H^{*}\left(E_{i} ; \mathbb{Q}\right) \leq 2^{\text {cup }_{0}\left(E_{i}\right)}$ for $i=1, \ldots, q$. Here each E_{i} is an elliptic space with

$$
H^{*}\left(E_{i} ; \mathbb{Q}\right) \cong \mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] \otimes \wedge\left(y_{1}, \ldots y_{i}\right) /\left(\bar{h}_{1}, \ldots, \bar{h}_{p}\right)
$$

where \bar{h}_{j} is the obvious projection of h_{j}.

3. Toral Rank vs LS category

Let X be a simply connected finite cell complex. Recall that the toral rank of a space $X, \operatorname{rk}(X)$, is the largest integer n such that an n-torus can act continuously on X with all its isotropy subgroups finite. In [7], S. Halperin conjectured that $2^{\operatorname{rk}(X)} \leq \operatorname{dim} H^{*}(X ; \mathbb{Q})$, which gives an upper bound for toral rank. We compare the two bounds around formal elliptic spaces in the following table. Refer [4, Part II and Section 32] for the Sullivan minimal model theory.

$X:$ elliptic	$2^{\text {rk }(X)} \leq \operatorname{dim} H^{*}(X ; \mathbb{Q})$	$\operatorname{dim} H^{*}(X ; \mathbb{Q}) \leq 2^{\text {cat } X}$	
$\pi_{\text {even }}(X) \otimes \mathbb{Q}=0$	$?(\mathrm{a})$	yes $([9])$	
$X:$ formal	$\chi_{\pi}(X)=0$	yes (since $\operatorname{rk}(X)=0)$	yes (Lemma)
	$\chi_{\pi}(X)<0$	yes (b)	yes (Corollary)
$X:$ pure	yes ([7, Proposition 1.5])	$?(\mathrm{c})$	

Here X is called pure [4, p.435] if the differential d satisfies $d V^{\text {even }}=0$ and $d V^{\text {odd }} \subset \wedge V^{\text {even }}$ for the Sullivan minimal model $\mathcal{M}(X)=(\wedge V, d)$ of X, where $V=\oplus_{i>1} V^{i}$ with $\operatorname{dim} V^{i}=\operatorname{dim} \pi_{i}(X) \otimes \mathbb{Q}$. For example, a homogeneous space is pure. Note a pure space with $\operatorname{dim} V^{\text {even }}=\operatorname{dim} V^{\text {odd }}$ is an F_{0}-space.
(a) is "yes" if X is a space of two-stage Sullivan minimal model and coformal, i.e., V decomposes as $V \cong U \oplus W$ with $d U=0, d W \subset \wedge U$ and d is quadratic, respectively [1, Proposition 3.1].
(b) is obtained from $\operatorname{rk}(X) \leq-\chi_{\pi}(X)=-\left(\operatorname{dim} V^{\text {even }}-\operatorname{dim} V^{\text {odd }}\right)=$ q [7, Theorem 1.1] and $\operatorname{dim} H^{*}(X ; \mathbb{Q}) \geq 2^{q}$ when $H^{*}(X ; \mathbb{Q})$ is given by $\mathbb{Q}\left[x_{1}, \ldots, x_{p}\right] \otimes \wedge\left(y_{1}, \ldots, y_{q}\right) /\left(h_{1}, \ldots, h_{p}\right)$, where $\mathcal{M}(X)=\left(\wedge\left(x_{1}, \ldots, x_{p}, y_{1}\right.\right.$, $\left.\left.\ldots, y_{q}, v_{1}, \ldots, v_{p}\right), d\right)$ with $d x_{i}=d y_{i}=0, d v_{i}=h_{i}$.
(c) is "yes" if $\operatorname{dim} V^{\text {even }}=1$, because then there is an isomorphism $H^{*}(X ; \mathbb{Q}) \cong \mathbb{Q}[x] /\left(x^{n}\right) \otimes \wedge\left(y_{1}, \ldots, y_{q}\right)$.

References

[1] C. Allday and V. Puppe, Bounds on the torus rank, Lecture Notes in Math. 1217, 1-10, Springer-Verlag, 1986.
[2] Y. Félix and S. Halperin, Formal spaces with finite-dimensional rational homotopy, Trans. Amer. Math. Soc. 270 (1982), 575-588.
[3] Y. Félix, S. Halperin and J.-M. Lemaire, The rational LS category of products and of Poincaré duality complexes, Topology 37 (1998), 749-756.
[4] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer-Verlag, 2001.
[5] J. B. Friedlander and S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math. 53 (1979), 117-133.
[6] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199.
[7] S. Halperin, Rational homotopy and torus actions, London Math. Soc. Lecture Note Series 93, 293-306, Cambridge Univ. Press, 1985.
[8] L. Smith, A note on the realization of graded complete intersection algebras by the cohomology of a space, Quart. J. Math. Oxford Ser. (2) 33 (1982), 379-384.
[9] T. Yamaguchi, On a lower bound for the $L-S$ category of a rationally elliptic space, to appear in Bull. Belg. Math. Soc. Simon Stevin 12 (2005).

A LOWER BOUND FOR THE LS CATEGORY OF A FORMAL ELLIPTIC SPACE 145

Yasusuke Kotani
Faculty of Science
Kochi University
Kochi 780-8520, Japan
e-mail address: kotani@math.kochi-u.ac.jp
Toshiniro Yamaguchi
Faculty of Education
Kochi University
Kochi 780-8520, Japan
e-mail address: tyamag@cc.kochi-u.ac.jp
(Received September 28, 2004)
(Revised November 28, 2004)

[^0]: *Kochi University
 ${ }^{\dagger}$ Kochi University

