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Upper Cohen-Macaulay Dimension

Tokuji Araya, Ryo Takahashi, and Yuji Yoshino

Abstract

In this paper, we define a homological invariant for finitely generated modules over a com-
mutative noetherian local ring, which we call upper Cohen-Macaulay dimension. This invariant is
quite similar to Cohen-Macaulay dimension that has been introduced by Gerko. Also we define a
homological invariant with respect to a local homomorphism of local rings. This invariant links
upper Cohen-Macaulay dimension with Gorenstein dimension.

KEYWORDS: Gorenstein dimension (G-dimension), Cohen-Macaulay dimension (CM-dimension).
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UPPER COHEN-MACAULAY DIMENSION

Tokuji ARAYA, Ryo TAKAHASHI and Yuji YOSHINO

Abstract. In this paper, we define a homological invariant for finitely
generated modules over a commutative noetherian local ring, which we
call upper Cohen-Macaulay dimension. This invariant is quite similar to
Cohen-Macaulay dimension that has been introduced by Gerko. Also we
define a homological invariant with respect to a local homomorphism of
local rings. This invariant links upper Cohen-Macaulay dimension with
Gorenstein dimension.

1. Introduction

Throughout the present paper, all rings are assumed to be commutative
noetherian rings, and all modules are assumed to be finitely generated mod-
ules.

Let R be a local ring with residue class field k. Projective dimension
pdR is one of the most classical homological dimensions. Complete intersec-
tion dimension (abbr. CI-dimension) CI-dimR was introduced by Avramov,
Gasharov, and Peeva [4]. Gorenstein dimension (abbr. G-dimension)
G-dimR was defined by Auslander [1], and was developed by Auslander and
Bridger [2]. Cohen-Macaulay dimension (abbr. CM-dimension) CM-dimR

was introduced by Gerko [11].
Every one of these dimensions is a homological invariant for R-modules

which characterizes a certain property of local rings and satisfies a certain
equality. Let iR be a numerical invariant for R-modules, i.e. iR(M) ∈
N ∪ {∞} for an R-module M , and let P be a property of local rings. The
following conditions hold for the pairs (P, iR) = (regular, pdR), (com-
plete intersection, CI-dimR), (Gorenstein, G-dimR), and (Cohen-Macaulay,
CM-dimR).

(a) The following conditions are equivalent.
i) R satisfies the property P.
ii) iR(M) < ∞ for any R-module M .
iii) iR(k) < ∞.

(b) Let M be a non-zero R-module with iR(M) < ∞. Then

iR(M) = depthR − depthRM.

Mathematics Subject Classification. 13D05.
Key words and phrases. Gorenstein dimension (G-dimension), Cohen-Macaulay dimen-

sion (CM-dimension).
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18 T. ARAYA, R. TAKAHASHI AND Y. YOSHINO

In this paper, modifying the definition of CM-dimension, we will define a
new homological invariant for R-modules which we will call upper Cohen-
Macaulay dimension (abbr. CM∗-dimension) and will denote by CM∗-dimR.
This invariant interpolates between CM-dimension and G-dimension: let M
be an R-module. Then

CM-dimRM ≤ CM∗-dimRM ≤ G-dimRM.

The equalities hold to the left of any finite dimension.
CM∗-dimension is quite similar to CM-dimension: it has many properties

analogous to those of CM-dimension. For example, the above two conditions
(a), (b) also hold for the pair (P, iR)=(Cohen-Macaulay, CM∗-dimR).

Let φ : S → R be a local homomorphism of local rings. The main pur-
pose of this paper is to provide a new homological invariant for R-modules
with respect to the homomorphism φ, which we call upper Cohen-Macaulay
dimension relative to φ and denote by CM∗-dimφ. We define it by using the
idea of G-factorizations.

In Section 2, we will make a list of properties of CM∗-dimension. In our
sense, it will be absolute CM∗-dimension.

In Section 3, which is the main section of this paper, we will make the
precise definition of relative CM∗-dimension CM∗-dimφ, and will study the
properties of this dimension. We shall prove the following:

(A) The following conditions are equivalent.
i) R is Cohen-Macaulay and S is Gorenstein.
ii) CM∗-dimφM < ∞ for any R-module M .
iii) CM∗-dimφk < ∞.

(B) Let M be a non-zero R-module with CM∗-dimφM < ∞. Then

CM∗-dimφM = depthR − depthRM.

(C) i) Suppose that φ is faithfully flat. Let M be an R-module. Then

CM∗-dimRM ≤ CM∗-dimφM ≤ G-dimRM.

The equalities hold to the left of any finite dimension.
ii) If S is the prime field of R and φ is the natural embedding,

then
CM∗-dimφM = CM∗-dimRM

for any R-module M .
iii) If S is equal to R and φ is the identity map, then

CM∗-dimφM = G-dimRM

for any R-module M .
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UPPER COHEN-MACAULAY DIMENSION 19

The results (A), (B) are analogues of the conditions (a), (b). The re-
sult (C) says that relative CM∗-dimension connects absolute CM∗-dimension
with G-dimension; relative CM∗-dimension coincides with absolute CM∗-
dimension (resp. G-dimension) as a numerical invariant for R-modules if S
is the “smallest” (resp. “largest”) subring of R.

2. Preliminaries

Throughout this section, (R, m, k) is always a local ring. We begin with
recalling the definition of Gorenstein dimension (abbr. G-dimension). De-
note by Ωn

RM the nth syzygy module of an R-module M .

Definition 2.1. Let M be an R-module.
(1) If the following conditions hold, then we say that M has G-

dimension zero, and write G-dimRM = 0.
i) The natural homomorphism M → HomR(HomR(M,R), R) is

an isomorphism.
ii) Exti

R(M, R) = 0 for every i > 0.
iii) ExtiR(HomR(M,R), R) = 0 for every i > 0.

(2) If Ωn
RM has G-dimension zero for a non-negative integer n, then we

say that M has G-dimension at most n, and write G-dimRM ≤ n.
If such an integer n does not exist, then we say that M has infinite
G-dimension, and write G-dimRM = ∞.

(3) If M has G-dimension at most n but does not have G-dimension
at most n − 1, then we say that M has G-dimension n, and write
G-dimRM = n.

For the properties of G-dimension, we refer to [2], [6], [13], and [15].
Now we recall the definition of Cohen-Macaulay dimension (abbr. CM-

dimension), which has been introduced by Gerko.

Definition 2.2. [11, Definition 3.1, 3.2]
(1) An R-module M is called G-perfect if G-dimRM = gradeRM .
(2) A local homomorphism φ : S → R of local rings is called a G-

deformation if φ is surjective and R is G-perfect as an S-module.
(3) A diagram S

φ→ R′ α← R of local homomorphisms of local rings is
called a G-quasideformation of R if α is faithfully flat and φ is a
G-deformation.

(4) For an R-module M , the Cohen-Macaulay dimension of M is defined
as follows:

CM-dimRM = inf
{

G-dimS(M ⊗R R′) S → R′ ← R is a
−G-dimSR′ G-quasideformation of R

}
.

Modifying the above definition, we make the following definition.
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20 T. ARAYA, R. TAKAHASHI AND Y. YOSHINO

Definition 2.3. (1) We call a diagram S
φ→ R′ α← R of local homo-

morphisms of local rings an upper G-quasideformation of R if it is a
G-quasideformation and the closed fiber of α is regular.

(2) For an R-module M , we define the upper Cohen-Macaulay dimen-
sion (abbr. CM∗-dimension) of M as follows:

CM∗-dimRM = inf
{

G-dimS(M ⊗R R′) S → R′ ← R is an upper
−G-dimSR′ G-quasideformation of R

}
.

Comparing the definition of CM∗-dimension with that of CM-dimension,
one easily sees that

CM-dimRM ≤ CM∗-dimRM

for any R-module M ; the equality holds if CM∗-dimRM < ∞. CM∗-
dimension shares a lot of properties with CM-dimension. We shall exhibit
a list of them in the rest of this section. We will omit the proofs of them
because they can be proved quite similarly to the corresponding results of
CM-dimension.

Theorem 2.4. [11, Theorem 3.9] The following conditions are equivalent.
i) R is Cohen-Macaulay.
ii) CM∗-dimRM < ∞ for any R-module M .
iii) CM∗-dimRk < ∞.

The CM∗-dimension satisfies the equality analogous to the Auslander-
Buchsbaum formula:

Theorem 2.5. [11, Theorem 3.8] Let M be a non-zero R-module. If
CM∗-dimRM < ∞, then

CM∗-dimRM = depthR − depthRM.

Christensen defines a semi-dualizing module in his paper [7], which Gerko
and Golod call a suitable module in [11] and [12]. Developing this concept a
little, we make the following definition as a matter of convenience.

Definition 2.6. Let M and C be R-modules. We call C a semi-dualizing
module for M if it satisfies the following conditions.

i) The natural homomorphism R → HomR(C,C) is an isomorphism.
ii) Exti

R(C, C) = 0 for any i > 0.
iii) The natural homomorphism M → HomR(HomR(M, C), C) is an

isomorphism.
iv) Exti

R(M, C) = Exti
R(HomR(M, C), C) = 0 for any i > 0.

It is worth noting that an R-module M has G-dimension zero if and only
if R is a semi-dualizing module for M .

4
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UPPER COHEN-MACAULAY DIMENSION 21

Refering to [8, Proposition 1.1], one can easily show that semi-dualizing
modules enjoy the following properties.

Proposition 2.7. Let C be a semi-dualizing R-module for some R-module.
Then,

(1) C is faithful. In particular, dimRC = dimR.
(2) A sequence x = x1, x2, · · · , xn in R is R-regular if and only if it is

C-regular. In particular, depthRC = depthR.

It is possible to describe CM∗-dimension in terms of a semi-dualizing
module:

Theorem 2.8. [11, Theorem 3.7] The following conditions are equivalent
for an R-module M and a non-negative integer n.

i) CM∗-dimRM ≤ n.
ii) There exist a faithfully flat homomorphism R → R′ of local rings

whose closed fiber is regular, and an R′-module C such that C is a
semi-dualizing module for Ωn

RM ⊗R R′ as an R′-module.
In particular, CM∗-dimRM ≥ 0 for any R-module M .

Corollary 2.9. For an R-module M , we have

CM∗-dimRM ≤ G-dimRM.

The equality holds if G-dimRM < ∞.

We end off this section by making a remark on G-dimension for later use:

Theorem 2.10. [15, Theorem 2.7] For an R-module M , G-dimRM < ∞
if and only if the natural morphism M → RHomR(RHomR(M, R), R) is an
isomorphism in the derived category of the category of R-modules.

3. Relative CM∗-dimension

In this section, we observe CM∗-dimension from a relative point of view.
Throughout the section, φ always denotes a local homomorphism from a
local ring (S, n, `) to a local ring (R, m, k).

We consider a commutative diagram

S′ φ′
−−−−→ R′

β

x
xα

S −−−−→
φ

R

of local homomorphisms of local rings, which we call a G-factorization of

φ if β is a faithfully flat homomorphism and S′ φ′
→ R′ α← R is an upper

5
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22 T. ARAYA, R. TAKAHASHI AND Y. YOSHINO

G-quasideformation of R. Using the idea of G-factorization, we make the
following definition.

Definition 3.1. Let M be an R-module. We define the upper Cohen-
Macaulay dimension of M relative to φ, denoted by CM∗-dimφM , as follows:

CM∗-dimφM = inf
{

G-dimS′(M ⊗R R′) S → S′ → R′ ← R
−G-dimS′R′ is a G-factorization of φ

}
.

In the rest of this paper, the dimensions CM∗-dimR and CM∗-dimφ will
be often called absolute CM∗-dimension and relative CM∗-dimension, respec-
tively.

We use the convention that the infimum of the empty set is ∞. It is nat-
ural to ask whether φ always has a G-factorization. The following example
says that this is not true in general.

Example 3.2. Suppose that R = ` is the residue class field of S, and
φ is the natural surjection from S to `. Furthermore, suppose that S is
not Gorenstein. Then φ does not have a G-factorization. (Hence we have
CM∗-dimφM = ∞ for any R-module M .)

Indeed, assume that φ has a G-factorization S
β→ S′ φ′

→ R′ α← R.
Then, since the closed fiber of α is regular, R′ is a regular local ring.
Let x = x1, x2, · · · , xn be a regular system of parameters of R′. Since
G-dimS′R′ = gradeS′R′ < ∞ and x is an R′-regular sequence, we see that
G-dimS′R′/(x) < ∞. Note that R′/(x) is isomorphic to the residue class
field of S′. Therefore S′ is a Gorenstein local ring, and hence so is S because
β is faithfully flat. This contradicts our assumption.

From the above example, we see that φ does not necessarily have a
G-factorization in a general setting. However it seems that φ has a G-
factorization whenever S is Gorenstein. We can prove it if we furthermore
assume that S contains a field. To do this, we prepare a couple of lemmas.

Lemma 3.3. Let φ : S → R be a local homomorphism of complete local
rings which have the same coefficient field k. Put S′ = S⊗̂kR, and define
λ : S → S′ by λ(b) = b⊗̂1, ε : S′ → R by ε(b⊗̂a) = φ(b)a. Suppose that S is
Gorenstein. Then S

λ→ S′ ε→ R
id← R is a G-factorization of φ.

Proof. Take a minimal system of generators y1, y2, · · · , ys of the maximal
ideal of S. Put J = Ker ε and dyi = yi⊗̂1−1⊗̂φ(yi) ∈ S′ for each 1 ≤ i ≤ s.

Claim 1. J = (dy1, dy2, · · · , dys)S′.

Indeed, put J0 = (dy1, dy2, · · · , dys). Take an element z = b⊗̂a in J , and
let b =

∑
bi1i2···isy

i1
1 yi2

2 · · · yis
s be a power series expansion in y1, y2, · · · , ys

6
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UPPER COHEN-MACAULAY DIMENSION 23

with coefficients bi1i2···is ∈ k. Then we have

b⊗̂1 =
∑

bi1i2···is(y1⊗̂1)i1(y2⊗̂1)i2 · · · (ys⊗̂1)is

≡
∑

bi1i2···is(1⊗̂φ(y1))i1(1⊗̂φ(y2))i2 · · · (1⊗̂φ(ys))is

= 1⊗̂φ(b) modulo J0.

It follows that z ≡ 1⊗̂φ(b)a modulo J0. Since φ(b)a = ε(b⊗̂a) = 0, we have
z ≡ 0 modulo J0. Hence z ∈ J0, and we see that J = J0.

Claim 2. If S is regular, then the sequence dy1, dy2, · · · , dys is an S′-regular
sequence.

In fact, since S is regular, we may assume that S = k[[Y1, Y2, · · · , Ys]] and
S′ = R[[Y1, Y2, · · · , Ys]] are formal power series rings, and dyi = Yi−φ(Yi) for
1 ≤ i ≤ s. Note that there is an automorphism on S′ which sends Yi to dyi.
Since the sequence Y1, Y2, · · · , Ys is S′-regular, we see that dy1, dy2, · · · , dys

also form a regular sequence on S′.
Now, let T = k[[Y1, Y2, · · · , Ys]] be a formal power series ring and consider

S to be a T -algebra in the natural way. Put T ′ = T ⊗̂kR. Since the rings
S, T are Gorenstein, we have RHomT (S, T ) ∼= S[−e], where e = dim T −
dimS. Note that T ′ is faithfully flat over T . Hence RHomT ′(S′, T ′) ∼=
S′[−e]. On the other hand, since T is regular, it follows from the claims
that the sequence Y1 −φ(y1), Y2 −φ(y2), · · · , Ys −φ(ys) in T ′ is a T ′-regular
sequence. Hence we see that RHomT ′(R, T ′) ∼= R[−s]. Therefore we have
RHomS′(R, S′) ∼= RHomS′(R,RHomT ′(S′, T ′)[e]) ∼= RHomT ′(R, T ′)[e] ∼=
R[e − s]. Thus it follows that G-dimS′R = gradeS′R = s − e < ∞. ¤

To show the existence of G-factorizations, we need the following type of
factorizations, which are called Cohen factorizations.

Lemma 3.4. [3, Theorem 1.1] Let φ : (S, n) → (R, m) be a local homo-
morphism of local rings, and α : R → R̂ be the natural embedding into the
m-adic completion. Then there exists a commutative diagram

S′ φ′
−−−−→ R̂

β

x
xα

S −−−−→
φ

R

such that S′ is a local ring, β is a faithfully flat homomorphism with regular
closed fiber, and φ′ is a surjective homomorphism.

Now we can prove the following theorem.

7
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24 T. ARAYA, R. TAKAHASHI AND Y. YOSHINO

Theorem 3.5. Let S be a Gorenstein local ring containing a field. Then
any local homomorphism φ : S → R of local rings has a G-factorization.

Proof. Replacing R and S with their completions respectively, we may as-
sume that R and S are complete. By Lemma 3.4, φ has a Cohen factorization

S -
φ

R,


Á J
JĴ

S′

β φ′

where β is a faithfully flat homomorphism with regular closed fiber, and φ′ is
surjective. Hence S′ is also Gorenstein. Thus, replacing S with S′, we may
assume that φ is surjective. In particular, R and S have the same coefficient
field. Then it follows from Lemma 3.3 that φ has a G-factorization. ¤
Conjecture 3.6. If S is an arbitrary Gorenstein local ring which may
not contain a field, then every local homomorphism φ : S → R has a G-
factorization.

In the following theorem, we compare relative CM∗-dimension with abso-
lute CM∗-dimension.

Theorem 3.7. Let φ : (S, n) → (R, m) be a local homomorphism as before.
(1) For any R-module M , we have

CM∗-dimφM ≥ CM∗-dimRM.

In particular, CM∗-dimφM ≥ 0.
(2) If S is regular and φ is faithfully flat, then

CM∗-dimφM = CM∗-dimRM

for any R-module M .

Proof. (1) If S
β→ S′ φ′

→ R′ α← R is a G-factorization of φ, then S′ φ′
→ R′ α← R

is an upper G-quasideformation of R. Hence, comparing Definition 3.1 with
Definition 2.3, we have the required inequality.

(2) It is enough to show that if CM∗-dimRM = n < ∞ then
CM∗-dimφM ≤ n. Theorem 2.8 says that there exist a faithfully flat ho-
momorphism α : R → R′ of local rings with regular closed fiber, and a
semi-dualizing R′-module C for N := Ωn

R′(M ⊗R R′). Let S′ = R′ n C be
the trivial extension of R′ by C. Let β : S → S′ be the composite map of
φ, α, and the natural inclusion R′ → S′, and let φ′ : S′ → R′ be the natural
surjection.

Claim 1. β is faithfully flat.

8
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UPPER COHEN-MACAULAY DIMENSION 25

In fact, let y = y1, y2, · · · , yn be a regular system of parameters of S.
Since φ and α are faithfully flat, y is an R′-regular sequence, and hence
is a C-regular sequence by Proposition 2.7.2. Note that the Koszul com-
plex K•(y, S) is an S-free resolution of S/(y) = S/n. Since K•(y, C) ∼=
K•(y, S) ⊗S C and y is a C-regular sequence, we have TorS

1 (S/n, C) ∼=
H1(y, C) = 0. It follows from the local criteria of flatness that C is flat
over S. Since R′ is also flat over S, so is S′. Therefore β is a flat local
homomorphism, and hence is faithfully flat.

Claim 2. G-dimS′R′ = 0 and G-dimS′(M ⊗R R′) = n.

Indeed, note that RHomR′(S′, C) ∼= S′. Hence we have RHomS′(R′, S′) ∼=
C. Therefore we see that

RHomS′(RHomS′(R′, S′), S′) ∼= RHomS′(C,RHomR′(S′, C))
∼= RHomR′(C, C)
∼= R′

because C is a semi-dualizing R′-module. It follows from Theorem 2.10 that
G-dimS′R′ < ∞. Thus, we have G-dimS′R′ = depthS′ − depthR′ = 0. On
the other hand, since C is a semi-dualizing module for N as an R′-module,
it is easy to see that RHomR′(N, C) ∼= HomR′(N, C) and

RHomS′(RHomS′(N,S′), S′) ∼= RHomR′(RHomR′(N, C), C)
∼= RHomR′(HomR′(N, C), C)
∼= HomR′(HomR′(N, C), C)
∼= N.

Applying Theorem 2.10 again, we see that G-dimS′N < ∞. In the above
we have shown that G-dimS′R′ < ∞. Hence G-dimS′F < ∞ for any free
R′-module F . Therefore we have G-dimS′(M⊗RR′) < ∞. Thus, we see that
G-dimS′(M ⊗R R′) = depthS′ − depth(M ⊗R R′) = depthR − depthM =
CM∗-dimRM = n.

The above claims imply that S
β→ S′ φ′

→ R′ α← R is a G-factorization of
φ, and we have CM∗-dimφM ≤ G-dimS′(M ⊗R R′) − G-dimS′R′ = n as
desired. ¤

Let us consider the case that R contains a field K (e.g. K is the
prime field of R). The second assertion of the above proposition espe-
cially says that if S = K and φ : K → R is the natural inclusion then
CM∗-dimφM = CM∗-dimRM for any R-module M . In other words, CM∗-
dimension relative to the map giving R the structure of a K-algebra, is
absolute CM∗-dimension. This leads us to the following conjecture.

9
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26 T. ARAYA, R. TAKAHASHI AND Y. YOSHINO

Conjecture 3.8. If S is the prime local ring of R and φ is the natural
inclusion, then relative CM∗-dimension CM∗-dimφ coincides with absolute
CM∗-dimension CM∗-dimR.

Our next goal is to give some properties of relative CM∗-dimension, which
are similar to those of absolute CM∗-dimension. First of all, relative CM∗-
dimension also satisfies the Auslander-Buchsbaum-type equality.

Theorem 3.9. Let M be a non-zero R-module. If CM∗-dimφM < ∞, then

CM∗-dimφM = depthR − depthRM.

Hence we especially have CM∗-dimφM = CM∗-dimRM .

Proof. Since CM∗-dimφM < ∞, there exists a G-factorization S
β→ S′ φ′

→
R′ α← R of φ such that CM∗-dimφM = G-dimS′(M⊗RR′)−G-dimS′R′ < ∞.
Hence we have

CM∗-dimφM = G-dimS′(M ⊗R R′) − G-dimS′R′

= (depthS′ − depthS′(M ⊗R R′))
− (depthS′ − depthS′R′)

= depthS′R′ − depthS′(M ⊗R R′).

Since φ′ is surjective and α, β are faithfully flat, we obtain two equalities
{

depthS′R′ = depthR + depthR′/mR′,

depthS′(M ⊗R R′) = depthRM + depthR′/mR′.

Therefore we see that CM∗-dimφM = depthR − depthRM as desired. ¤
Corollary 3.10. Suppose that S is a Gorenstein local ring containing a
field. Then

CM∗-dimφF = 0
for any free R-module F .

Proof. Theorem 3.5 says that φ has a G-factorization S
β→ S′ φ′

→ R′ α←
R. Note that G-dimS′(F ⊗R R′) = G-dimS′R′ < ∞. Hence we have
CM∗-dimφF < ∞. The assertion follows from the above theorem. ¤

Theorem 2.4 says that absolute CM∗-dimension CM∗-dimR characterizes
the Cohen-Macaulayness of R. As an analogous result for relative CM∗-
dimension, we have the following.

Theorem 3.11. The following conditions are equivalent for a local homo-
morphism φ : (S, n, l) → (R, m, k).

i) R is Cohen-Macaulay and S is Gorenstein.
ii) CM∗-dimφM < ∞ for any R-module M .

10
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UPPER COHEN-MACAULAY DIMENSION 27

iii) CM∗-dimφk < ∞.

Proof. i) ⇒ ii): By Lemma 3.4, there is a Cohen factorization S
β→ S′ φ′

→
R̂

α← R of φ. Since the closed fiber of β is regular, S′ is also Gorenstein.
Hence we have RHomS′(R̂, S′) ∼= K

bR
[−e], where K

bR
is the canonical module

of R̂ and e = dim S′ − dim R̂. Note that G-dimS′R̂ < ∞ because S′ is
Gorenstein. Therefore we easily see that G-dimS′R̂ = gradeS′R̂ = e. Thus

the Cohen factorization S
β→ S′ φ′

→ R̂
α← R of φ is also a G-factorization of

φ. The Gorensteinness of S′ implies that G-dimS′(M ⊗R R̂) < ∞ for any
R-module M . The assertion follows from this.

ii) ⇒ iii): This is trivial.
iii) ⇒ i): Theorem 3.7.1 implies that CM∗-dimRk < ∞. Hence R is

Cohen-Macaulay by virtue of Theorem 2.4. On the other hand, since

CM∗-dimφk < ∞, φ has a G-factorization S
β→ S′ φ′

→ R′ α← R such that
G-dimS′(k ⊗R R′) < ∞. Note that the closed fiber A := k ⊗R R′ ∼= R′/mR′

of α is regular. Let x = x1, x2, · · ·xn be a regular system of parameters
of A. Since G-dimS′A < ∞ and x is an A-regular sequence, we have
G-dimS′A/(x) < ∞. Hence S′ is Gorenstein because A/(x) is isomorphic
to the residue class field of S′. It follows from the flatness of β that S is also
Gorenstein. ¤

In the rest of this section, we consider the relationship between relative
CM∗-dimension and G-dimension. Let us consider the case that φ is faith-
fully flat. Then S

φ→ R
id→ R

id← R is a G-factorization of φ. Hence, if
the G-dimension of an R-module M is finite, then the CM∗-dimension of
M relative to φ is also finite. Since both relative CM∗-dimension and G-
dimension satisfy the Auslander-Buchsbaum-type equalities, we have the
following result that slightly generalizes Corollary 2.9.

Proposition 3.12. Suppose that φ is faithfully flat. Then we have

CM∗-dimφM ≤ G-dimRM

for any R-module M . The equality holds if G-dimRM < ∞.

Remark 3.13. Generally speaking, there is no inequality relation between
relative CM∗-dimension CM∗-dimφ and G-dimension G-dimR:

(1) If R is Gorenstein and S is not Gorenstein, then we have
CM∗-dimφk = ∞ and G-dimRk < ∞. Hence CM∗-dimφk >
G-dimRk.

(2) If R is not Gorenstein but Cohen-Macaulay and S is Goren-
stein, then we have CM∗-dimφk < ∞ and G-dimRk = ∞. Hence
CM∗-dimφk < G-dimRk.
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(Both follow immediately from Theorem 3.11.)

As we have remarked after Theorem 3.7, relative CM∗-dimension
CM∗-dimφ coincides with absolute CM∗-dimension CM∗-dimR if S is the
prime field of R (or maybe the prime local ring of R), in other words, S is
the “smallest” local subring of R. In contrast with this, if S is the “largest”
local subring of R, i.e. S = R, then relative CM∗-dimension CM∗-dimφ

coincides with G-dimension G-dimR.

Theorem 3.14. If S = R and φ is the identity map of R, then

CM∗-dimφM = G-dimRM

for any R-module M .

Proof. By Proposition 3.12, we have only to prove that if CM∗-dimφM =

m < ∞ then G-dimRM = m. There exists a G-factorization R
β→ S′ φ′

→
R′ α← R of φ = idR such that G-dimS′(M ⊗R R′) − G-dimS′R′ = m.

Claim 1. RHomS′⊗Rk(R′ ⊗R k, S′ ⊗R k) ∼= RHomS′(R′, S′) ⊗L
R k

In fact, let F• be an S′-free resolution of R′. Since R′ and S′ are faithfully
flat over R, it is easy to see that F• ⊗R k is an (S′ ⊗R k)-free resolution of
R′⊗Rk. Note that HomS′(F•, S

′) is a complex of free S′-modules, and hence
is a complex of flat R-modules. Therefore we have

RHomS′(R′, S′) ⊗L
R k ∼= HomS′(F•, S

′) ⊗R k
∼= HomS′⊗Rk(F• ⊗R k, S′ ⊗R k)
∼= RHomS′⊗Rk(R′ ⊗R k, S′ ⊗R k).

Claim 2. S′ ⊗R k is Gorenstein.

Indeed, putting g = G-dimS′R′ = gradeS′R′ and N = Extg
S′(R′, S′), we

have N ∼= RHomS′(R′, S′)[g]. Then it follows from Claim 1 that

(∗) RHomS′⊗Rk(R′ ⊗R k, S′ ⊗R k) ∼= (N ⊗L
R k)[−g].

In particular, we have ExtnS′⊗Rk(R
′ ⊗R k, S′ ⊗R k) ∼= TorR

g−n(N, k) = 0 for
all n > g. Now taking a regular system of parameters x = x1, x2, · · · , xr of
A := R′⊗R k, we have Extn

S′⊗Rk(A/(x), S′⊗R k) = 0 for all n > g + r. Since
A/(x) is isomorphic to the residue class field of S′ ⊗R k, the self injective
dimension of S′⊗Rk is not bigger than g+r. Therefore S′⊗Rk is Gorenstein.

Claim 3. R′ ∼= RHomS′(R′, S′)[g]

Note that, since R′ ⊗R k is regular, the canonical module of R′ ⊗R k is
isomorphic to R′⊗R k. Thus, it follows from (∗) and Claim 2 that N ⊗L

R k ∼=
RHomS′⊗Rk(R′ ⊗R k, S′ ⊗R k)[g] ∼= R′ ⊗R k, hence N ⊗R k ∼= R′ ⊗R k.
Therefore we have N ⊗R′ k′ ∼= k′, where k′ is the residue class field of R′.
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In other words, N ∼= R′/I for some ideal I of R′. On the other hand, since
G-dimS′R′ < ∞, we have

RHomR′(N,N) ∼= RHomR′(RHomS′(R′, S′)[g],RHomS′(R′, S′)[g])
∼= RHomS′(RHomS′(R′, S′), S′)
∼= R′

In particular, N is a semi-dualizing R′-module for R′. Hence by Proposition
2.7.1, we see that I = 0, i.e. R′ ∼= N ∼= RHomS′(R′, S′)[g].

Now we can prove that G-dimRM = m. Since R′ is R-flat and
G-dimS′(M ⊗R R′) < ∞, we see that

RHomR(RHomR(M, R), R) ⊗R R′ ∼= RHomR′(RHomR′(M ⊗R R′, R′), R′)
∼= RHomS′(RHomS′(M ⊗R R′, S′), S′)
∼= M ⊗R R′

by Claim 3. It follows from the faithful flatness of α : R → R′ that
RHomR(RHomR(M, R), R) ∼= M , and hence G-dimRM < ∞. Note that
Claim 3 implies RHomR′(M ⊗R R′, R′) ∼= RHomS′(M ⊗R R′, S′)[g]. There-
fore we have

G-dimRM = G-dimR′(M ⊗R R′)
= G-dimS′(M ⊗R R′) − g
= m

as desired. ¤
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