View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Okayama University Scientific Achievement Repository

Mathematical Journal of Okayama
University

Volume 46, Issue 1 2004 Article 25
JANUARY 2004

Upper Cohen-Macaulay Dimension

Tokuji Araya* Ryo Takahashi'
Yuji Yoshino?

*Okayama University
TOkayama University
tOkayama University

Copyright (©2004 by the authors. Mathematical Journal of Okayama University is produced by
The Berkeley Electronic Press (bepress). http://escholarship.lib.okayama-u.ac.jp/mjou


https://core.ac.uk/display/12531768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Upper Cohen-Macaulay Dimension

Tokuji Araya, Ryo Takahashi, and Yuji Yoshino

Abstract

In this paper, we define a homological invariant for finitely generated modules over a com-
mutative noetherian local ring, which we call upper Cohen-Macaulay dimension. This invariant is
quite similar to Cohen-Macaulay dimension that has been introduced by Gerko. Also we define a
homological invariant with respect to a local homomorphism of local rings. This invariant links
upper Cohen-Macaulay dimension with Gorenstein dimension.

KEYWORDS: Gorenstein dimension (G-dimension), Cohen-Macaulay dimension (CM-dimension).
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UPPER COHEN-MACAULAY DIMENSION

TokuJi ARAYA, Rvo TAKAHASHI anDp YuJt YOSHINO

ABSTRACT. In this paper, we define a homological invariant for finitely
generated modules over a commutative noetherian local ring, which we
call upper Cohen-Macaulay dimension. This invariant is quite similar to
Cohen-Macaulay dimension that has been introduced by Gerko. Also we
define a homological invariant with respect to a local homomorphism of
local rings. This invariant links upper Cohen-Macaulay dimension with
Gorenstein dimension.

1. INTRODUCTION

Throughout the present paper, all rings are assumed to be commutative
noetherian rings, and all modules are assumed to be finitely generated mod-
ules.

Let R be a local ring with residue class field k. Projective dimension
pdp is one of the most classical homological dimensions. Complete intersec-
tion dimension (abbr. CI-dimension) CI-dimp was introduced by Avramov,
Gasharov, and Peeva [4]. Gorenstein dimension (abbr. G-dimension)
G-dimp was defined by Auslander [1], and was developed by Auslander and
Bridger [2]. Cohen-Macaulay dimension (abbr. CM-dimension) CM-dimp
was introduced by Gerko [11].

Every one of these dimensions is a homological invariant for R-modules
which characterizes a certain property of local rings and satisfies a certain
equality. Let ir be a numerical invariant for R-modules, i.e. ig(M) €
N U {co} for an R-module M, and let P be a property of local rings. The
following conditions hold for the pairs (P, ir) = (regular, pdp), (com-
plete intersection, CI-dimpg), (Gorenstein, G-dimpg), and (Cohen-Macaulay,
CM-dimpg).

(a) The following conditions are equivalent.
i) R satisfies the property P.
ii) ir(M) < oo for any R-module M.
i) ip(k) < oo.
(b) Let M be a non-zero R-module with ig(M) < co. Then

ir(M) = depth R — depthy M.
Mathematics Subject Classification. 13D05.
Key words and phrases. Gorenstein dimension (G-dimension), Cohen-Macaulay dimen-
sion (CM-dimension).
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In this paper, modifying the definition of CM-dimension, we will define a
new homological invariant for R-modules which we will call upper Cohen-
Macaulay dimension (abbr. CM*-dimension) and will denote by CM*-dimpg.
This invariant interpolates between CM-dimension and G-dimension: let M
be an R-module. Then

CM-dimpM < CM*-dimpM < G-dimgM.

The equalities hold to the left of any finite dimension.

CM*-dimension is quite similar to CM-dimension: it has many properties
analogous to those of CM-dimension. For example, the above two conditions
(a), (b) also hold for the pair (P, ir)=(Cohen-Macaulay, CM*-dimpg).

Let ¢ : S — R be a local homomorphism of local rings. The main pur-
pose of this paper is to provide a new homological invariant for R-modules
with respect to the homomorphism ¢, which we call upper Cohen-Macaulay
dimension relative to ¢ and denote by CM*-dimg. We define it by using the
idea of G-factorizations.

In Section 2, we will make a list of properties of CM*-dimension. In our
sense, it will be absolute CM*-dimension.

In Section 3, which is the main section of this paper, we will make the
precise definition of relative CM*-dimension CM*-dim,, and will study the
properties of this dimension. We shall prove the following:

(A) The following conditions are equivalent.
i) R is Cohen-Macaulay and S is Gorenstein.
ii) CM*-dimgM < oo for any R-module M.
iii) CM*-dimgk < oc.
(B) Let M be a non-zero R-module with CM*-dimgM < co. Then
CM*-dimgM = depth R — depthp M.
(C) i) Suppose that ¢ is faithfully flat. Let M be an R-module. Then
CM*-dimpM < CM*-dimyM < G-dimpM.

The equalities hold to the left of any finite dimension.
ii) If S is the prime field of R and ¢ is the natural embedding,
then

CM*-dimyM = CM*-dimp M

for any R-module M.
iii) If S is equal to R and ¢ is the identity map, then

CM*—dim¢M = G—dimRM
for any R-module M.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 46/iss1/25
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The results (A), (B) are analogues of the conditions (a), (b). The re-
sult (C) says that relative CM*-dimension connects absolute CM*-dimension
with G-dimension; relative CM*-dimension coincides with absolute CM*-
dimension (resp. G-dimension) as a numerical invariant for R-modules if S
is the “smallest” (resp. “largest”) subring of R.

2. PRELIMINARIES

Throughout this section, (R, m,k) is always a local ring. We begin with
recalling the definition of Gorenstein dimension (abbr. G-dimension). De-
note by Q%M the nth syzygy module of an R-module M.

Definition 2.1. Let M be an R-module.

(1) If the following conditions hold, then we say that M has G-
dimension zero, and write G-dimgpM = 0.
i) The natural homomorphism M — Homp(Homp(M, R), R) is
an isomorphism.
ii) Extih(M,R) =0 for every i > 0.
iii) Extl(Homp(M, R), R) = 0 for every i > 0.
(2) If Q%M has G-dimension zero for a non-negative integer n, then we
say that M has G-dimension at most n, and write G-dimpM < n.
If such an integer n does not exist, then we say that M has infinite
G-dimension, and write G-dimgpM = oo.
(3) If M has G-dimension at most n but does not have G-dimension
at most n — 1, then we say that M has G-dimension n, and write
G-dimpM = n.

For the properties of G-dimension, we refer to [2], [6], [13], and [15].
Now we recall the definition of Cohen-Macaulay dimension (abbr. CM-
dimension), which has been introduced by Gerko.

Definition 2.2. [11, Definition 3.1, 3.2]
(1) An R-module M is called G-perfect if G-dimpM = gradep M.
(2) A local homomorphism ¢ : S — R of local rings is called a G-

deformation if ¢ is surjective and R is G-perfect as an S-module.

(3) A diagram S 2 R & R of local homomorphisms of local rings is

called a G-quasideformation of R if « is faithfully flat and ¢ is a
G-deformation.
(4) For an R-module M, the Cohen-Macaulay dimension of M is defined
as follows:
) . G-dimg(M ®gr R') | S— R <« Risa
CM-dimp M = inf { —G-dimgR' | G-quasideformation of R [

Modifying the above definition, we make the following definition.

Produced by The Berkeley Electronic Press, 2004
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Definition 2.3. (1) We call a diagram S % R & R of local homo-
morphisms of local rings an upper G-quasideformation of R if it is a
G-quasideformation and the closed fiber of « is regular.
(2) For an R-module M, we define the upper Cohen-Macaulay dimen-
sion (abbr. CM*-dimension) of M as follows:

G-dimg(M ®r R') | S — R’ < R is an upper }

CM-dimp M = inf { —G-dimgR’ | G-quasideformation of R

Comparing the definition of CM*-dimension with that of CM-dimension,
one easily sees that

CM-dimpM < CM*-dimpM

for any R-module M; the equality holds if CM*-dimgM < oo. CM?*-
dimension shares a lot of properties with CM-dimension. We shall exhibit
a list of them in the rest of this section. We will omit the proofs of them
because they can be proved quite similarly to the corresponding results of
CM-dimension.

Theorem 2.4. [11, Theorem 3.9] The following conditions are equivalent.
i) R is Cohen-Macaulay.
ii) CM*-dimrpM < oo for any R-module M.
iii) CM*-dimgk < oco.

The CM*-dimension satisfies the equality analogous to the Auslander-
Buchsbaum formula:

Theorem 2.5. [11, Theorem 3.8] Let M be a non-zero R-module. If
CM*-dimgpM < oo, then

CM*-dimrpM = depth R — depthp M.
Christensen defines a semi-dualizing module in his paper [7], which Gerko

and Golod call a suitable module in [11] and [12]. Developing this concept a
little, we make the following definition as a matter of convenience.

Definition 2.6. Let M and C' be R-modules. We call C a semi-dualizing
module for M if it satisfies the following conditions.
i) The natural homomorphism R — Homp(C, C) is an isomorphism.
ii) Exth(C,C) =0 for any i > 0.
iii) The natural homomorphism M — Hompg(Hompg(M,C),C) is an
isomorphism.
iv) Exth(M,C) = Exth(Hompg(M, C),C) = 0 for any i > 0.

It is worth noting that an R-module M has G-dimension zero if and only
if R is a semi-dualizing module for M.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 46/iss1/25
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Refering to [8, Proposition 1.1], one can easily show that semi-dualizing
modules enjoy the following properties.

Proposition 2.7. Let C' be a semi-dualizing R-module for some R-module.

Then,
(1) C is faithful. In particular, dimrC = dim R.
(2) A sequence x = x1,x9,-- ,x, in R is R-reqular if and only if it is

C-regular. In particular, depthrC = depth R.

It is possible to describe CM*-dimension in terms of a semi-dualizing
module:

Theorem 2.8. [11, Theorem 3.7] The following conditions are equivalent
for an R-module M and a non-negative integer n.
i) CM*-dimpM < n.
i) There exist a faithfully flat homomorphism R — R’ of local rings
whose closed fiber is reqular, and an R'-module C' such that C is a
semi-dualizing module for QLM Qg R’ as an R'-module.

In particular, CM*-dimgpM > 0 for any R-module M.
Corollary 2.9. For an R-module M, we have
CM*-dimpM < G-dimpgM.
The equality holds if G-dimpM < oo.
We end off this section by making a remark on G-dimension for later use:

Theorem 2.10. [15, Theorem 2.7] For an R-module M, G-dimpM < oo
if and only if the natural morphism M — RHompg(RHompg(M, R), R) is an
isomorphism in the derived category of the category of R-modules.

3. RELATIVE CM™*-DIMENSION

In this section, we observe CM*-dimension from a relative point of view.
Throughout the section, ¢ always denotes a local homomorphism from a
local ring (S, n, ¢) to a local ring (R, m, k).

We consider a commutative diagram

s LR

dl [
S —— R
o]

of local homomorphisms of local rings, which we call a G-factorization of

¢ if B is a faithfully flat homomorphism and S’ %R & Ris an upper

Produced by The Berkeley Electronic Press, 2004
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G-quasideformation of R. Using the idea of G-factorization, we make the
following definition.

Definition 3.1. Let M be an R-module. We define the upper Cohen-
Macaulay dimension of M relative to ¢, denoted by CM*-dim M, as follows:

G-dimg/(M ®zr R')| S— S — R <« R }

CM"-dimg M = inf { —G-dimg' R’ | is a G-factorization of ¢

In the rest of this paper, the dimensions CM*-dimp and CM*-dim, will
be often called absolute CM*-dimension and relative CM*-dimension, respec-
tively.

We use the convention that the infimum of the empty set is co. It is nat-
ural to ask whether ¢ always has a G-factorization. The following example
says that this is not true in general.

Example 3.2. Suppose that R = £ is the residue class field of S, and
¢ is the natural surjection from S to £. Furthermore, suppose that S is
not Gorenstein. Then ¢ does not have a G-factorization. (Hence we have
CM*-dimy M = oo for any R-module M.)

@’ «

Indeed, assume that ¢ has a G-factorization S S R &R
Then, since the closed fiber of « is regular, R’ is a regular local ring.
Let € = x1,29, -+ ,x, be a regular system of parameters of R’. Since
G-dimg/ R’ = gradeg/ R’ < oo and x is an R'-regular sequence, we see that
G-dimg/R'/(x) < oo. Note that R'/(x) is isomorphic to the residue class
field of S’. Therefore S’ is a Gorenstein local ring, and hence so is S because
(3 is faithfully flat. This contradicts our assumption.

From the above example, we see that ¢ does not necessarily have a
G-factorization in a general setting. However it seems that ¢ has a G-
factorization whenever S is Gorenstein. We can prove it if we furthermore
assume that S contains a field. To do this, we prepare a couple of lemmas.

Lemma 3.3. Let ¢ : S — R be a local homomorphism of complete local
rings which have the same coefficient field k. Put S' = SQyR, and define
A:S — S by Ab) =b®1, €: 5 — R by e(bRa) = ¢(b)a. Suppose that S is
Gorenstein. Then S 2 S' 5 R& Risa G-factorization of ¢.

Proof. Take a minimal system of generators yi,¥s,--- ,ys of the maximal
ideal of S. Put J = Ker ¢ and dy; = y;®1 — 1®¢(y;) € S’ for each 1 <i < s.

Claim 1. J = (dylvdy27 T 7dy8)S,‘

Indeed, put Jo = (dy1,dys, - ,dys). Take an element z = b@a in J, and
let b = 3" biyiyi ¥ Y52 -+ Y2 be a power series expansion in yi,y2, - ,Ys

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 46/iss1/25
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with coefficients b;,;,...., € k. Then we have
DL = biyiy, (&) (1281) - - (yB1)"
= biyiyis (186(11)) 1 (18¢(2))” - - - (186 (ys))™
= 1®¢(b) modulo Jy.

It follows that z = 1&¢(b)a modulo Jy. Since ¢(b)a = £(b®a) = 0, we have
z = 0 modulo Jy. Hence z € Jy, and we see that J = Jy.

Claim 2. If S is regular, then the sequence dyy, dys, - - - , dys is an S’-regular
sequence.

In fact, since S is regular, we may assume that S = k[[Y7, Y2, -+, Y;]] and
S’ = R[[Y1,Ys, -, Ys]] are formal power series rings, and dy; = Y;—¢(Y;) for
1 <1 < s. Note that there is an automorphism on S’ which sends Y; to dy;.
Since the sequence Y7, Ys, -+, Yy is S'-regular, we see that dyi,dys, - , dys
also form a regular sequence on S’.

Now, let T' = k[[Y1, Ya, - - -, Ys]] be a formal power series ring and consider
S to be a T-algebra in the natural way. Put 7" = T®,R. Since the rings
S,T are Gorenstein, we have RHomr(S,T) = S[—e¢|, where e = dim7T —
dim S. Note that 7" is faithfully flat over 7. Hence RHomgp (S, T') =
S’[—e]. On the other hand, since T is regular, it follows from the claims
that the sequence Y7 — ¢ (y1), Yo — d(y2), -+ ,Ys — ¢(ys) in T' is a T'-regular
sequence. Hence we see that RHomp (R, T”) = R[—s]. Therefore we have
RHOmS/(R, S/) = RHOmS/(R, RHOIHT/(S,,T/)[G]) = RHomT/(R,T’)[e] =
Rle — s]|. Thus it follows that G-dimg/R = gradegR = s — e < 00. O

To show the existence of G-factorizations, we need the following type of
factorizations, which are called Cohen factorizations.

Lemma 3.4. [3, Theorem 1.1] Let ¢ : (S,n) — (R, m) be a local homo-
morphism of local rings, and o : R — R be the natural embedding into the
m-adic completion. Then there exists a commutative diagram

P
dl
s

=)

e

= R

_
¢

such that S" is a local ring, B is a faithfully flat homomorphism with reqular
closed fiber, and ¢’ is a surjective homomorphism.

Now we can prove the following theorem.

Produced by The Berkeley Electronic Press, 2004
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Theorem 3.5. Let S be a Gorenstein local ring containing a field. Then
any local homomorphism ¢ : S — R of local Tings has a G-factorization.

Proof. Replacing R and S with their completions respectively, we may as-
sume that R and S are complete. By Lemma 3.4, ¢ has a Cohen factorization

S/
/"
s B

where ( is a faithfully flat homomorphism with regular closed fiber, and ¢’ is
surjective. Hence S’ is also Gorenstein. Thus, replacing S with S, we may
assume that ¢ is surjective. In particular, R and S have the same coefficient
field. Then it follows from Lemma 3.3 that ¢ has a G-factorization. O

S

Conjecture 3.6. If S is an arbitrary Gorenstein local ring which may
not contain a field, then every local homomorphism ¢ : S — R has a G-
factorization.

In the following theorem, we compare relative CM*-dimension with abso-
lute CM*-dimension.

Theorem 3.7. Let ¢ : (S,n) — (R, m) be a local homomorphism as before.
(1) For any R-module M, we have
CM*-dimy M > CM*-dimp M.
In particular, CM*-dimyM > 0.
(2) If S is reqular and ¢ is faithfully flat, then
CM*-dimg M = CM*-dimp M
for any R-module M.

[0

Proof. (1) If S B, ' % R & Riis a G-factorization of ¢, then S’ Y RER
is an upper G-quasideformation of R. Hence, comparing Definition 3.1 with
Definition 2.3, we have the required inequality.

(2) It is enough to show that if CM*-dimgpM = n < oo then
CM*-dimyM < n. Theorem 2.8 says that there exist a faithfully flat ho-
momorphism « : R — R’ of local rings with regular closed fiber, and a
semi-dualizing R'-module C for N := Q},(M ®@r R'). Let S’ = R' x C be
the trivial extension of R’ by C. Let 3 : S — S’ be the composite map of
¢, a, and the natural inclusion R’ — S’, and let ¢’ : S’ — R’ be the natural
surjection.

Claim 1. ( is faithfully flat.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 46/iss1/25
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In fact, let y = y1,y2, -+ ,yn be a regular system of parameters of S.
Since ¢ and « are faithfully flat, y is an R’-regular sequence, and hence
is a C-regular sequence by Proposition 2.7.2. Note that the Koszul com-
plex Ko(y,S) is an S-free resolution of S/(y) = S/n. Since Ko(y,C)
Ko(y,S) ®5 C and y is a C-regular sequence, we have Tory(S/n,C)
Hi(y,C) = 0. It follows from the local criteria of flatness that C' is flat
over S. Since R’ is also flat over S, so is S’. Therefore 3 is a flat local
homomorphism, and hence is faithfully flat.

1112

Claim 2. G-dimg'R' = 0 and G-dimg(M ®g R') = n.

12

Indeed, note that RHom g/ (S’, C') = S’. Hence we have RHomg/ (R’, S")
C. Therefore we see that

RHomg (RHomg/ (R, S"), ") RHomg (C, RHompg (S', C))
RHompg/ (C,C)

R/

11111

because C' is a semi-dualizing R-module. It follows from Theorem 2.10 that
G-dimg/ R’ < oo. Thus, we have G-dimg' R’ = depth S’ — depth " = 0. On
the other hand, since C' is a semi-dualizing module for N as an R’-module,
it is easy to see that RHomp/ (IV,C') =2 Homp/ (N, C) and

RHOH]S/ (RHOII]S/ (N, S,), S,) RHomR/ (RHOII]R/(N, C), C)
RHom g (Homp/ (N, C),C)
Hom g (Homp/ (N, C), C)

N.

12

[l 1111 1R

Applying Theorem 2.10 again, we see that G-dimg/N < oco. In the above
we have shown that G-dimg' R < co. Hence G-dimg/F' < oo for any free
R'-module F. Therefore we have G-dimg/ (M ®pr R’) < co. Thus, we see that
G-dimg/ (M ®g R') = depth S’ — depth(M ®g R’) = depth R — depth M =
CM*-dimgM = n.

The above claims imply that S S 5 % R & Ris a G-factorization of
¢, and we have CM*-dimyM < G-dimg/(M ®p R') — G-dimg'R' = n as
desired. O

Let us consider the case that R contains a field K (e.g. K is the
prime field of R). The second assertion of the above proposition espe-
cially says that if S = K and ¢ : K — R is the natural inclusion then
CM*-dimyM = CM*-dimgM for any R-module M. In other words, CM*-
dimension relative to the map giving R the structure of a K-algebra, is
absolute CM*-dimension. This leads us to the following conjecture.

Produced by The Berkeley Electronic Press, 2004
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Conjecture 3.8. If S is the prime local ring of R and ¢ is the natural
inclusion, then relative CM*-dimension CM*-dimy coincides with absolute
CM*-dimension CM*-dimpg.

Our next goal is to give some properties of relative CM*-dimension, which
are similar to those of absolute CM*-dimension. First of all, relative CM*-
dimension also satisfies the Auslander-Buchsbaum-type equality.

Theorem 3.9. Let M be a non-zero R-module. If CM*-dimyM < oo, then
CM*-dimyM = depth R — depthz M.
Hence we especially have CM*-dimgM = CM*-dimpg M.

Proof. Since CM*-dimgM < oo, there exists a G-factorization S LAY
R' & Rof ¢ such that CM*-dimy M = G-dimg/ (M @ R')—G-dimg/ R’ < oco.
Hence we have
CM*—dim¢M = G-dimg/(M ®p R/) — G-dimg/ R’
(depth S” — depthg, (M ®r R'))
— (depth S” — depthg R')
= depthg R’ — depthg/(M ®@p R').

Since ¢’ is surjective and «, 3 are faithfully flat, we obtain two equalities

depthg R’ = depth R + depth R'/mR/,
depthg/ (M @pg R') = depthp M + depth R’ /mR’.

Therefore we see that CM*-dimgM = depth R — depthzpM as desired. [

Corollary 3.10. Suppose that S is a Gorenstein local ring containing a
field. Then

CM*-dimgF =0
for any free R-module F.

o7

Proof. Theorem 3.5 says that ¢ has a G-factorization S N R
R. Note that G-dimg/(F ®r R') = G-dimg'R’ < oo. Hence we have
CM*-dimyF' < oo. The assertion follows from the above theorem. O

Theorem 2.4 says that absolute CM*-dimension CM*-dimp characterizes
the Cohen-Macaulayness of R. As an analogous result for relative CM*-
dimension, we have the following.

Theorem 3.11. The following conditions are equivalent for a local homo-
morphism ¢ : (S,n,l) — (R, m, k).

i) R is Cohen-Macaulay and S is Gorenstein.

ii) CM*-dimyM < oo for any R-module M.

http://escholarship.lib.okayama-u.ac.jp/mjou/vol 46/iss1/25 10
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i) CM*-dimgk < oo.

Proof. i) = ii): By Lemma 3.4, there is a Cohen factorization S LA
R & R of ¢. Since the closed fiber of § is regular, S’ is also Gorenstein.
Hence we have RHomg (R, S’ ) = Kp[—e], where K is the canonical module

of R and e = dimS’ — dim R. Note that G- dlmS/R < 00 because S’ is
Gorenstein. Therefore we easﬂy see that G- dlmS/R = gradeS,R = e. Thus

the Cohen factorization S LA S’ ?, R & Rof ¢ is also a G-factorization of
¢. The Gorensteinness of S’ implies that G-dimg (M ®5 R) < oo for any
R-module M. The assertion follows from this.

ii) = iii): This is trivial.

iii) = i): Theorem 3.7.1 implies that CM*-dimpk < oo. Hence R is
Cohen-Macaulay by virtue of Theorem 2.4. On the other hand, since

CM*-dimygk < oo, ¢ has a G-factorization S 25 % R & R such that
G-dimg/(k ®p R') < co. Note that the closed fiber A :=k®r R’ = R'/mR/
of a is regular. Let * = x1,x92, -z, be a regular system of parameters
of A. Since G-dimgrA < oo and x is an A-regular sequence, we have
G-dimg/A/(x) < co. Hence S’ is Gorenstein because A/(x) is isomorphic
to the residue class field of S’. It follows from the flatness of 3 that S is also
Gorenstein. O

In the rest of this section, we consider the relationship between relative
CM*-dimension and G-dimension. Let us consider the case that ¢ is faith-

fully flat. Then S LA R Y R ¥ Ris a G-factorization of ¢. Hence, if
the G-dimension of an R-module M is finite, then the CM*-dimension of
M relative to ¢ is also finite. Since both relative CM*-dimension and G-
dimension satisfy the Auslander-Buchsbaum-type equalities, we have the
following result that slightly generalizes Corollary 2.9.

Proposition 3.12. Suppose that ¢ is faithfully flat. Then we have
CM*—dim¢M < G—dimRM
for any R-module M. The equality holds if G-dimpM < oo.

Remark 3.13. Generally speaking, there is no inequality relation between
relative CM*-dimension CM*-dim, and G-dimension G-dimpg:

(1) If R is Gorenstein and S is not Gorenstein, then we have
CM*-dimgk = oo and G-dimpk < oo. Hence CM*-dimygk >
G-dimRk.

(2) If R is not Gorenstein but Cohen-Macaulay and S is Goren-
stein, then we have CM*-dimgk < oo and G-dimgrk = oo. Hence
CM*—dim¢k‘ < G-dimpgk.
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(Both follow immediately from Theorem 3.11.)

As we have remarked after Theorem 3.7, relative CM*-dimension
CM*-dimg coincides with absolute CM*-dimension CM*-dimpg, if S is the
prime field of R (or maybe the prime local ring of R), in other words, S is
the “smallest” local subring of R. In contrast with this, if .S is the “largest”
local subring of R, i.e. S = R, then relative CM*-dimension CM*-dim,
coincides with G-dimension G-dimpg.

Theorem 3.14. If S = R and ¢ is the identity map of R, then
CM*-dimgM = G-dimpM

for any R-module M .
Proof. By Proposition 3.12, we have only to prove that if CM*-dimgM =
m < oo then G-dimpM = m. There exists a G-factorization R LA S’ 2,
R' & R of ¢ = idp such that G-dimg (M ®p R') — G-dimg/R' = m.
Claim 1. RHomgg k(R ®g k, S’ ®r k) = RHomg (R, S") @% k

In fact, let Fy be an S’-free resolution of R’. Since R’ and S” are faithfully
flat over R, it is easy to see that Fy ®p k is an (S’ ®p k)-free resolution of

R'®prk. Note that Homg: (F,, S’) is a complex of free S’-modules, and hence
is a complex of flat R-modules. Therefore we have

RHOInS/(R/, S) ®% k Homg/ (F,,S") @ k
HOmS/®Rk(F. Rrk, S’ KR ]{7)
RH0m5/®Rk(R, QR k, S’ KRR k‘)

11111

Claim 2. S" ®g k is Gorenstein.

Indeed, putting g = G-dimg R’ = gradeg R’ and N = Extl,(R/,5’), we
have N = RHomg/ (R, S")[g]. Then it follows from Claim 1 that

(%) RHomg g k(R ®r k,S' @r k) = (N @ k)[—g].
In particular, we have Extg g (R ®gk, S’ ®g k) = Torf,n(N, k) = 0 for
all n > g. Now taking a regular system of parameters @ = x1,x9, - , 2, of

A= R'®@gk, we have Exty,y ,(A/(x), S ®pk) =0 for all n > g+r. Since
A/(x) is isomorphic to the residue class field of S” @ k, the self injective
dimension of S’® gk is not bigger than g+r. Therefore S'®@ gk is Gorenstein.

Claim 3. R' = RHomg (R, S")[g]

Note that, since R’ ®p k is regular, the canonical module of R ®p k is
isomorphic to R’ ®pg k. Thus, it follows from () and Claim 2 that N @k k =
RHomS/@,Rk(R’ QR k, S @r k‘)[g] ~ R Qg k, hence N ®pr k = R ®g k.
Therefore we have N ®@p k' = k', where k' is the residue class field of R’.
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In other words, N = R'/I for some ideal I of R’. On the other hand, since
G-dimg/ R’ < oo, we have

RHOmR/ (N, N) RHOIHR/ (RHOI’HS/ (R/, S,) [g], RHOmgl(R,, S’)[g])
RHOmS/(RHOmS/(R,, S,), S,)
R/

111 11

In particular, N is a semi-dualizing R’-module for R’. Hence by Proposition
2.7.1, we see that [ =0, i.e. R = N = RHomg/ (R, 5)[g].

Now we can prove that G-dimgkM = m. Since R’ is R-flat and
G-dimg/ (M ®r R') < oo, we see that

RHomp(RHomp(M, R), R) ®r R’ = RHomp (RHomp (M ®g R, R'), R)
= RHOHIS/(RHOIHS/(M SR Rl: Sl): S/)
~ M epR

by Claim 3. It follows from the faithful flatness of @ : R — R’ that
RHompgr(RHompg(M, R), R) = M, and hence G-dimpM < oco. Note that
Claim 3 implies RHomp/ (M ®r R', R') = RHomg/ (M ®g R, S")[g]. There-
fore we have
G-dimpM = G—dimR/(M ®R R/)
= G—dimS/(M XR R/) —g

= m

as desired. O
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