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0. Introduction. Let R be a commutative ring with identity 1 and let J
be a bialgebra over R. An R-algebra A is called a left J-comodule algebra if
there exists an R-algebra morphism p: A - J®; A such that (I® p)p =
(A® I)pand (¢ ® 1)p = I, where A is the comultiplication of J, ¢ is the
counit of J and I is the identity morphism. Let B be an R-subalgebra of A.
An R-algebra extension A/B is called a J-extension if A is a left J-comodule
algebra and B is the invariant subalgebra Ao, =1a € A|p(a) =1 ® al by p.
Moreover A/B is called a J-Galois extension if A is a J-extension such that
the morphism y: A®; A > J®; A defined by y(x ®, y) = p(x)(1 @z v)"is
an isomorphism.

Now let J be a free R-module with basis {1, #|. Then in [3], Kreimer
showed that J has the following structure :

6°=4qb, A0) =6031+1 ® 6+pf®6H and &(4) =0,
where p, ¢ € R and ® = ®;. Moreover
(H) J is a Hopf algebra if and only if pg+2 = 0.

In this paper we will treat free quadratic J-Galois extensions for the
bialgebra J defined above. For a free quadratic J-extension A/B with right
B-basis {1, x|, a left J-comodule structure morphism p: A > J®; A is
given by

px) =1®@x+0Q c+6® xd (c,d € B).

So in sections 1 and 2, we will discuss the case of d = 0 and of d is inver-
tible, respectively. In both cases. we can define two kind of products on a
certain set of isomorphism classes of free quadratic J-Galois extensions and,
under these products they have non-commutative semi-group structure which
are anti-isomorphic to each other. These structure does not coincide with
Kishimoto’s product [4] and Nagahara’s product [5] which is a generalization
of Kishimoto’s one. But if B= R, then they are isomorphic to the group of
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commutative Galois J-objects in the sense of Chase-Sweedler [1].

Throughout the following, R is a commutative ring with identity 1, A4 is
an R-algebra with R-subalgebra B which has the same identity 1 and J isa
free quadratic bialgebra defined above. All things are treated in the category
of unitary R-modules unless otherwise stated. This means that all morphisms
are R-linear, ® = ®; and etc.

1. Preliminaries. Let A be an R-algebra which is a free right B-module
with basis {1, x|. We set

bx = x0(b)+D(b) (b€ B),
x*=xm+n (m n € B).

Then it is easy to see that ¢ is a ring homomorphism of B with ¢(1) =1,
and D is a (¢. 1)-derivation of B, that is,

D{(rs) = D(r)o(s)+rD(s).

Moreover by b{xm+n) = bx® and x* = x{xm+n) = (xm+n)x, we have the
following relations which were discussed by Cohn in [2, pp. 532—533].

(1) (Do+ oD )(b) = (mrag—ma’)(b)
(2) (D*—m,D)(b) = (ny—na’)(b)
(3) D(m) = m(m—o(m))+n—a(n)
(4) D(n) = n(m—o(m)),

where m; is the right multiplication of m.

In the following we denote the ring extension A of B stated above by
Blx; m, n, 0, D] and we call it a free quadratic extension of B. Now we
assume that A = B[x: m, n. o, D] is a J-extension with left J-comodule
structure morphism p. Noting that J® A has a right B-module basis
11®1.1®x, 6®1, § ® x|, Bis the invariant subalgebra of A by o and
(e ® 1)p(x) = x, p is given by

(5) olx) =1 @x+0® c+8®xd (c,d € B).

Since p is a ring homomorphism and p(6) = 1® b (b € B), we have the
following relations :

(6) cd = cp,
(7) d* = dp,
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(8) em = D(c)(1+dqg)+nld+ o(d)+o(d)dgl+c’q,
(9) dm = (1+dq)c+|o(c)+D(d)+mo(d)(1+dg)+md,
(10) D(b)d = ca(b)—bc (b€ B),

(11) do(b) = o(b)d (b€ B).

Now, since p is right B-linear, we can define the right A-linear mor-
phismy: A®,A—>J® Aby (s ®; 1) = p(s)(1®1). Then the following
are easily obtained.

¥ is an epimorphism if and only if there exist elements b,, b, in B such
that the following equations satisfy.

(12) chi+{D(c)+no{d)lb, =1
(13) db,+{a(c)+ma(d)+D(d) b, = 0.

y is a monomorphism’ if and only if the following equations with indeter-
minates s; and s, have only the trivial solutions.

(14) esi+H1D(c)+no(d)ls, =0
(15) dsi+|o(c)+mo(d)+D(d)}s, = 0.

It is known that a left J-comodule structure of A induces a left J*
module structure (cf. [1, p. 56]), where J* = Homs(J, R), the dual bial-
gebra of J. So in our case, using the dual basis {1, 8*} of J* with respect
to{1, 8}, the left J*-module structure of A induced by (5) is given by

8*(x) = xd+c,
and when this is the case, the bialgebra structure of J* is given by
AB*) =1 Q@ 6*+6*®@ 1+q6*® 6* (%) = pf* and £(6*) =0

(only replace p with g in the structure of J). Thus the cases of d = 0 and
of d is invertible are interesting. So in the following two sections, we will
treat the cases that d = 0 and d is invertible.

2. Incaseof d=0. Let A= B[x; m, n o, D] be a J-Galois exten-
sion of B with structure morphism p given by

olx) =1 x+6® c.

Then by the theorem below., we will prove that p = 0, ¢ is invertible and the
characteristic of R is 2. So if we set y = xc™', then {1, y!| is a free right
B-module basis of A and our result contains the following two cases.
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(i) 1If ¢=0, then * is a nilpotent derivation with nilpotency index
two which acts on 4 as *(y) = 1.

(ii) If q is invertible, then £ = 1 +q6* generates a cyclic group of
order two which acts on A as £(y) = y+gq.

The case (i) is a purely inseparable extension and the case (ii) is a
cyclic extension in the sense of [6].

First, we will prove the structure theorem of this free quadratic J-
Galois extension.

Theorem 2.1. Let A= Blx; m,n, o, D] be a free quadratic J-Galois
extension of B with structure morphism p which is given by p(x) =1 ® x +
8 & c. Then

(a) R has characteristic 2 and c is invertible.

(b) Jis a Hopf algebra.

(¢) There exists a derivation D, of B and a free basis {1, y| such that
A= Bly; q¢.nc™% 1, D).

(d) Dinc™®) =0, Di+gDi=1Ipc:and o(y) =1Q® y + 6 ® 1, where
Inc-2 is the inner derivation defined by nc™>.

Conversely, assume that R has characteristic 2, J is a Hopf algebra with
p=0 in(H) and A= Blx; q. s, I, D] is a free quadratic extension of B. If
we define a right B-linear morphism p: A> J@Aby plx) =10 0+x®1,
then p gives a left J-comodule algebra structure and A is a J-Galois extension

of B.
Proof. Since d = 0 in (5), then we have by (8) and (9),
(16) D(c) = em—c?’q and o(c) = —ec.

By (12) and (16), c(b,+mbs—cgb,) =1 and so ¢ is invertible. Then by
(6), p=0 and by (10), we obtain

(17) o(b) = c¢'bc forany b€ B

Thus by o(c) = —ec, the characteristic of R is 2 and so by (H), J is a Hopf
algebra. These show (a) and (b). Now we set y= xc™'. Then ¢7'D is a
derivation and

by = yb+c7'D(b) and ply) =1 Q@ y+6® 1.

Moreover using (16), D{(¢™') = —c¢™'D(c)c™" and the characteristic of R is
2, we get
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¥y = (xm+n)c*+xc'D(c)c™?
= x(m+c¢'D(c))c *+nc?
= J:cq,c_z-l-nc'2
= yg+nc™,
and by D(c¢™?) = ¢'D(c)c*+c¢*Dic)c™ = me*+c'mec”", (4) and (17),

we also have

¢7'D(nc™?) = D(n) o(c*)+nD(c™*) |
= nlm—o(m)lc*+n(mec+c'mec™)c™’

= 0.
Finally by (16), (2) and (17), we have

1(c7'D) +qcr'DH(b) = {D*b)o(c'+D(b)D(c™") +¢D(b) fc™"
={D*b)+D(b)c ' (cm—c’q)+qD(b)clc?
= (D*+m:D)b)c™*
= bnc —nc™?b

== Inc—z(b).

Thus (¢) and (d) are proved.

Conversely. assume that R has characteristic 2 and J is a Hopf algebra
with p= 0 in (H). In the quadratic extension A = B[x; q, s, I. D], if we
define a B-linear morphism p: A > J® A by p(x) =1®x + § ® 1, then
it is easy to see that A is a J-extension of B. Moreover the equations (12)
and (13) have the solution, and (14) and (15) are only the trivial solution.
Thus A is a J-Galois extension of B, completing the proof.

Note that D(s) = 0 and D’+qD = I; are obtained by (2) and (4). Now
we denote the J-Galois extension A discussed above by B[x; s, D] and we
call it a derivation type. This means that there exists a derivation D of B
and the strucutre of free quadratic extension Blx; s, D] is defined by

(d-1) ' =xq+s. plx)=10x+6®1,
(d-2) D*+qD=1;, D{(s) =0.

Two J-Galois extensions S and T are isomorphic if there exists a B-B-
bilinear and an algebra isomorphism ¢: S — T such that pr¢ = (I ® @) ps.

Theorem 2.2. Let S = B[x:s.D] and T= Bly; t, E] be J-Galois

extensions defined above. Then S is isomorphic to T as J-Galois extensions
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if and only if there exists an element b, in B such that
(18) bi+qbe+ E(by) = s+t and D—E = [,
When this is the case, the isomorphism ¢: S - T is given by ¢(x) = y+ b,.

Proof. We set @(x) = yb1+bo (bo, b, € B). Then by orp =(I® ¢) ps,
b, = 1. Since ¢ is a B-B-bilinear and an algebra morphism, (D—E)(4) =
bbo—bob = I,, (b € B) and bi+qbo+ E(bs) = s+t are easily seen.

Conversely if there exists an element 4, € B which satisfies the condi-
tion (18), then the B-B-linear morphism ¢ defined by ¢(x) = y+b, is an
algebra isomorphism.

Two J-Galois extensions S= B[x; s, D] and T= B[y; t. E] are called
strongly isomorphic if there exists an element r € R such that the algebra
isomorphism ¢: S —» T is given by ¢(x) = y+r and ¢ is called a strong
isomorphism. Then by Th. 2.2, if Blx; s. D] and Bly; t, E] are strongly
isomorphic then there exists an element r € R such that

(SI-d) r*+qr= s+t and D= E.

A J-Galois extension A = Blx; s, D] of B is called a strongly J-Galois if s
is contained in R. Thus by (d-2),

(SG-d) If B[x; s. D] is strongly J-Galois, then D*+¢qD = 0.

Note that in the conditions (SI-d) and (SG-d), if R is the center of B, then
the converse parts are also true.

In the rest of this section, we assume that B is a flat R-module. Now,
the next two theorems need to define a product in a certain set of isomor-
phism classes of B[x: s, D].

Theorem 2.3r. Let S= Blx; s, D] be a strongly J-Galois extension of
Band let T= Bly; t, E] be a J-Galois (vesp. strongly J-Galois) extension
of B. Then there exists a J-Galois (resp. strongly J-Galois) extension S X; T
of R® B= B, = Bin S® T which is contained in the ker(§), where ¢ =
ps® [—(w®@ INI® pr): S@T->J®SQ@ Tandtw: s @t >t Q s (the

twist morphism). When this is the case,

SX, T=B[x®14+1 Q®y:s®1+1Q®t DR®1+1 ® E]
=B [x®1+1®y:1®(s+1), 1 ® EJ.

Proof. Wesetz=x®1+1Q® yand F=D®1+1® E. As is easily
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seen. z is contained in the ker(&) and F is a derivation on R® B= B, =
B such that F*+qF = Isei+1e: and F(s ® 1+1 ® ¢) = 0. Moreover we
have

2= 24+ (s®1+1 ®t) = 2q+1®(s+1) and
be=(1®b)(x®1+1 ® y) = 2b+F(1 ® b) = zb+1® E(b).

Since ker(¢) is a left J-comodule with structure morphism ps ® I =(iw ® I)
(I® pr) such that (ps ® I)(2) =1 ® 24+ 6 ® 1 ® 1, then by Th. 2.1, the
subring S X, T generated by Brand z in S ® T is a J-Galois extension of
B, = B, and the structure of S X, T as a J-Galois extension is clear, com-
pleting the proof.

Theorem 2.4r. Let S= Blx; s, D] be a strongly J-Galois extension of
B and let T, = Bly:: t:, E;] be J-Galois extensions of B(i=1,2). If T,
and T, are isomorphic (resp. strongly isomorphic) as J-Galois extensions,
then S X, T\ and S X, T: are isomorphic (resp. strongly isomorphic) as J-
Galois extensions of B, = B.

Proof. Since T, and T are isomorphic (resp. strongly isomorphic) as
J-Galois extensions, then by Th. 2. 2 there exists an element 6 € B (resp.
b € R) such that b’+qb+ E,(b) = t,+t, and E,—E, = I, (resp. b*+qb =
tyv+t,and E,—E, = 0). By Th. 2. 3r,

SX, T'=B/[z,:s®14+1 ® #,,D®1+1 ® E,]
and
SXr T:=Br[2,:s®1+1®@ t,,D® 1+1 ® E,],

where z; = x® 1+1 ® v, (i =1,2). Define a morphism ¢: S X, T, —»
S Xr Ta by ¢(2,) = 2,41 ® b. Then by Th. 2.2, ¢ is an isomorphism of
J- Galois (resp. strongly J-Galois) extension, completing the proof.

The above two theorems are right and left symmetric, so we have the
following

Theorem 2.3l. Let S= Blx: s.D] be a J-Galois (resp. strongly J-
Galois) extension of B and let T= B[y: t, E] be a strongly left J-Galois
extension. Then there exists a J-Galois (resp. strongly J-Galois) extension

SX: T of B R= B, = B in S® T which is contained in the ker(§),
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where & is defined in Th. 2. 3r. When this is the case,

SX, T=B[xr®14+1 ®y;s014+1 Q@+, DR1+1 ® E]
=Blr®1+1 ® y;(s+1) ®1,D® 1].

Theorem 2.41. Let S; = Blx;: si, D;] be J-Galois extensions of B
(i=1.,2) and let T= Bly; t, E] be a strongly J-Galois extension of B. If
S\ and S; are isomorphic (resp. strongly isomorphic) as J-Galois extensions,
then S, X, T and S, X, T are isomorphic (resp. strongly isomorphic) as J-
Galois extensions of B, = B.

Remark 2.5. For J-Galois extensions S = B[x; s, D] and T= Bly;
t, E], our product S X, T (resp. S X, T) is considered as a subset of
S ® T. It is reasonable because if B= R, then S X, T (resp. SX, T) is
the usual product of Galois J-objects in the sense of Chase-Sweedler [1].

Let S; = Blx;; s, Di] and T, = Bly,; t;, E;] be strongly J-Galois
extensions of B(i, j=1,2). Then by Th. 2. 3r, we have strongly J-Galois
extensions S; Xy T; of B= B, = R® B. Assume that ¢: S, > S, (resp.
¢: T\ > T,) is a strong isomorphism such that ¢(x;) = x,+b for some
b € R (resp. ¢(3) = y,+c for some c € R). Then we have the following
diagram of strongly J-Galois extensions of B:

S X, Ty i" S X T

|m |

Sz Xer Tl _92—> Sz Xr Tza

where @; and U; are defined as follows. For z;;,=x; ® 1 +1 ® y,in S§; X, T},
Olzn) = 2o+l ® b and Ui(zy,) = 2541 ® ¢. By b*+qgb= si+s.,
c’+qc= t+1t; and b, c € R, ®; and ¥, are strong isomorphisms by Th. 2.
4r. And the commutativity of the above diagram is easily seen. Therefore we
can define a right product on the set of strongly isomorphic classes of strongly
J-Galois extensions Gals(B,J) of B of derivation type as follows: For
(S),(T) in Galg(B, J),

(§8) X (T) =(S %, T).

Now we will prove the following

Theorem 2.6. Let Gals(B,J) be defined above. For a fixed derivation
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D. we set Gals(B,J)p the strongly isomorphic classes of strongly J-Galois
extensions of type Blx; s, D].

(a) If there exist two distinct derivations D, of B such that Di+qD; =
I, (i=1,2), then Gals(B, J) is a non-commutative semi-group with respect
to X, and has no right identity.

(b) Gals(B,J) = U Gals(B, J ), and Galg(B, J)» N Gals(B, J)r =
¢ if Dx E.

(c¢) If there exists an element b in B such that b’+qb in R and if B
has a derivation D such that D*+qD = 0, then (Blx: b*+qb, D]) is a left
identity of Gals(B, J).

(d) If Gals(B.J)p is non-emply, then it is an abelian subgroup of
Gals(B, J) with exponent 2.

(e) If R is the center of B and if there exists derivation D of B such
that D*+qD =0, then Gals(B.J), is isomorphic to the additive group
R*/\r*+qr|r € R|, where R is the additive group of R.

Proof. Let S= Blx; s, D] and T= B[y; t, E] be strongly J-Galois
extensions of B. Then by Th. 2. 3r,

SX, T=B,[x®1+1 ®y:1 ®(s+i),1 ® E]

and
TX S=Bfy®141 ®xz;1 ®(t+s),1 ® D]

(a) By(SI-d), if S X, T is strongly isomorphic to T X, S as strongly
J-Galois extensions, then there exists an element b € R such that

b*+gh=0 and D= E.

So if D& E, then S X, T and T X, S are not strongly isomorphic, and
hence the product X, is non-commutative. The associativity of X, is easily
proved by Th. 2. 3r. Moreover for a strongly J-Galois extension S, = B[z, ;
si, D], if S X, S, is strongly isomorphic to S, then S = B[x. i*+gqi, D,],
which means D = D, by (SI-d). Thus Gals(B, J) has no right identity.

(b) If S and T are strongly isomorphic, then by (SI-d), D= E.
Therefore Galg(B, J) = |, Gals(B, J)p and Gals(B, J), N Gals(B, J): =
¢ if D % E are easily seen.

(¢) By the definition of X, and (SI-d), if S X, T is strongly isomorphic
to T, then there exists an element ¢ in R such that ¢*+¢qc = s. Thus by
D*+qD=0 =I5, (S) = (B[x:; ¢*+qc, D]) is a left identity.
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(d) If S X, T is strongly isomorphic to S, then as a similar compu-
tation as above shows that T= Bly; ¢*+qc. D] for some element ¢ € R,
and(T) = (B[y; ¢’*+qc, D] is unique in Gals(B, J )p, because for any ¢, e €
R, Bly; ¢*+gqc, D] is strongly isomorphic to B[z; e’*+qe, D] by (SI-d).
So by the definition of X,, Gals(B, J), is an abelian group with identity
(Bly: ¢*+qc, D]) (c € R). Moreover by Th.2.3r, S X, S= B[y:; 0, D]
and so Gals(B, J), has exponent 2.

(e) For any s € R, since Blx; s, D] is a strongly J-Galois extension,
we can define a morphism ¢: R™ - Gals(B, J), by ¢(s) = (Blx; s, D]).
As is easily seen, ¢ is a group homomorphism with kernel { r*+qr|r € R 1.
Conversely for a strongly J-Galois extension S = B[x; s, D], the structure
of S is given by Th.2.1 and in our case, D’+¢D=0 = I,. Thus s is
contained in R, which shows that ¢ is an epimorphism, completing the proof.

These results are also true for the lefi product
(8) xi(T)=(SX.T)
in Galg(B, J).

Theorem 2.7. The identity morphism
I: Galg(B,J) - Galg(B, J)

gives the anti-isomorphism from the right product X, to the left product Xi.

3. In case of d is invertible. Let A = Blx; m, n, ¢, D] be a J-Galois
extension of B with struture morphism p given by (5). Assume that d is
invertible in (5). Then by (7), d = p is invertible. Using (12) and (13),

we have
—colc)—cmp+D(c)p+np’e U(B),
where U(B) is the set of all invertible elements in B. And by (8) and (10),

we also have

—co(c)—cmp+D(c)p+np’
= —colc)—{D(c)p+clipg—np*(1l+pq)
= —|colc)+np*t(pg+1).

Thus
(19) calc)+np®, pg+1 € U(B).
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On the other hand, (pg+1)lc+o(c)+mpt =0 by (9) and so
(20) mp = —{c+olc).
Multiplying (8) by p and using (10) and (20), we can show that
{eo(e)+np*l(pg+2) = 0.

Therefore pg+2 = 0, which means that J is a Hopf algebra by (H). Now
we set

y=1xp+c and & =1+ 6p.

Then by the invertibility of p and pg+2 = 0, {1, £} is a free basis of J and
£ is a group-like element with ¢* = 1. Thus J = R[&] is a group algebra.
Moreover, {1, y! is a free basis of A as a right B-module and by using (10),
(20) and (19),

y* = cole)+np®, by = yo(b) and p(y) = £ ® .

Therefore we have the following structure theorem which corresponds to

Th. 2. 1.

Theorem 3.1. Let A= Blx: m, n, g, D] be a free quadratic J-Galois

extension of B with structure morphism p given by
) =1®@x+0Q c+6Q xd

with invertible element d in B. Then

(a) J is a Hopf algebra such that J = R[ €], where £ is a group-like
element of order 2.

(b) There exists a free basis {1, y| such that A= B[y; 0. colc)+
np®, 6, 0] and co(c)+np® is in U(B).

(c¢) o is the inner automorphism defined by co(c)+np® and p(y) =
& ® y.

Conversely, assume that J is a Hopf algebra such that p is invertible in
(H) and A= Blx;0, s, 0.0] is a free quadratic extension of B with inver-
tible element s in B. If we define e right B-linear morphism p: A-> J® A
by p(x) = € ® x, then p gives a left J-comodule algebra structure and A is a
J-Galois extension of B.

In the above theorem, we set y = xp+c. Theni{l, y! is a free right B-
module basis of A, and so our results contains the following two cases.
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(i) 1If ¢ =0, then the characteristic of R is 2. So if we set £* =
p 0%, then A(£*) = ¢*® 1+1 ® £* and (£*)? = £*. Thus £* is a non-
nilpotent derivation which acts on 4 by £*(y) = y.

(i1) If q is invertible, then 2 is invertible. If we set £* = 1+¢#*,
then A(£*) = £€*¥® ¢£* and (£%)* = 1. So £&* is a group-like element of
order 2 which acts on A by £*(y) = —».

We denote the J-Galois extension A defined above by B[x; s, ¢] and we
call it an automorphism type. This means that there exists an automorphism
o of B and the free quadratic extension B[x: s, o] is defined by

(a-1) x*=s5¢€ UB), plx) = £ ® x,
(a-2) o(bY = §5b) = s 'bs,

where J= R[£].

Theorem 3.2. Let S = Blx; s. 0] and T= Bly; t, z] be J-Galois
extensions defined above. Then S is isomorphic to T as J-Galois extension if
and only if there exists an invertible element by in B such that

s=tr(bo)be and 1(b) = byo(b)b;' for any b€ B.
When this is the case, the isomorphism ¢: S — T is given by ¢(x) = ¥bo.

Proof. We set ¢{x) = ybo+bi (by. by € B). Then by or¢ = (I ® ¢)ps
and ¢ is an isomorphism, we have b, = 0 and b € U(B). Since ¢ is a
B-B-linear and an algebra morphism, we have z(b) = boo(b)b;' and s =
t7(bo)bo. The converse part is clear.

Now as in section 2, we define that two J-Galois extensions S = Blx; s,
o] and T= Bly; t. t] are called strongly isomorphic if there exists an
element r € U(R) such that the isomorphism ¢: S — T is given by ¢(x) =
yr and @ is called a strong isomorphism. Then by Th. 3.2, if Blx; s, o]
and B[y; t. r] are strongly isomorphic. then there exists an element r €

U(R) such that
(SI-a) s=tr’ and o= r.

A J-Galois extension A = Blx; s, o] of B is called a strongly J-Galois if s
is contained in R. Thus by (a-2),

(SG-a) If B[x; s, o] is strongly J-Galois, then ¢* = L
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Note that in the conditions (SI-a) and (SG-a), if R is the center of B, then
the converse parts are also true.

Now, in the rest of this section, we assume that B is a flat R-module.
Then we have the similar results as in section 2, Ths. 2.3r and 2. 4r. so
we omit the proofs.

Theorem 3.3r. Let S = Blx: s, o] be strongly J-Galois extension of
B and let T= Bly: t. 7] be a J-Galois (resp. strongly J-Galois) extension
of B. Then there exists a J-Galois (resp. strongly J-Galois) extension S Xr T
of R® B= B, = Bin S ® T which is conlained in the ker(£), where ¢ is
defined in Th. 2. 3r. When this is the case,

SX T=Bx®y:s®t.s® 7]
=Bzxz®y;1 ®st.1® ¢l

Theorem 3.4r. Let S = Blx; s, o] be a strongly J-Galois extension of
B and let T: = Bly:: t:, v:) be J-Galois extensions of B(i=1,2). If T,
and T, are isomorphic (resp. strongly isomorphic) as J-Galois extensions,
then S X, T\ and S X, T, are isomorphic (resp. strongly isomorphic) as J-
Galois extensions of B.

Similarly we have the following

Theorem 3.3l. Let S = Blx: s, o] be a J-Galois (resp. strongly J-
Galois) extension of B and let T= B[y: t, ] be a strongly J-Galois exten-
sion of B. Then there exists a J-Galois (resp. strongly J-Galois) extension
SX,Tof B® R= B, = Bin S® T which contained in the ker(§), where
€ is defined in Th. 2. 3r. When this is the case,

SX T=B[x®y;s®to® 7]
=Blxr®y;st®1, 00 1].

Theorem 3.4l. Let S; = Blx:; s:. a:] be J-Galois extensions of B and
let T= Bly; t, 7] be a strongly J-Galois extension of B. If S, and S; are
isomorphic (resp. strongly isomorphic) as J-Galois extensions, then S, X, T
and S; X, T are isomorphic(resp. strongly isomorphic) as J-Galois extensions

of B,= B.

Let Gals(B, J) be the set of strongly isomorphic classes of strongly J-
Galois extensions of B of automorphism type. Using Ths. 3. 3r and 3. 4r,
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for (S) and (T') in Gals(B, J), the right product

is well defined. So we have the following

Theorem 3.5. Let Gals(B, J) be defined above. Let Galy(B, J), be the
set of strongly isomorphic classes of strongly J-Galois extensions of type Blx;
s, o). Then

(a) If there exist two distinct automorphisms o, such that ¢ = I, then
Gals(B, J) is a non-commutative semi-group with respect to X, and has no
right identity.

(b) Galg(B,J) =, Gals(B, J), and Gals(B, J), N Gals(B. J ) =
¢if oF t.

(c¢) If there exists an element s in U(B) such that s* in R and if B has
an automorphism o such that o = I, then (Blx; s% o)) is a left identily in
Galg(B, J).

(d) If Gals(B,J)s is non-empty, then it is an abelian subgroup of
Gals(B, J) with exponent 2.

(e) If R is the center of B and there exists an automorphism o of B
such that o* = I, then Galg(B, J), is isomorphic to the multiplicative group
U(R)/UR) '

Proof. Let S =[x;s, ¢] and T=[y; ¢, ] be strongly J-Galois exten-
sions of B. Then by Th. 3. 3r,

SX T=[x®y;1®st,1® 7] and
TX,S=[x®y;1®1ts5.1 ® o).

(a) If o % r, then by (Sl-a), S X, T is not strongly isomorphic to
T X, S. Thus the right product is non-commutative. The associativity of X,
is easily seen by Th. 3. 3r.

(b) is proved as similar as in the proof of Th. 2.6 (b).

(¢) Let S=[x; s% o] and T= [y; &, z] be strongly J-Galois exten-
sions such that ¢ & 7. Then by (Sl-a), S X, T is strongly isomorphic to T
and so (S) X, (T) = (T).

(d) By the definition of X,, Gals(B,J)s is closed and commutative
under X,. Since for any t € U(B). Blx: 1, 5] is strongly isomorphic to
Bly; t% o], Gals(B, J)o has the identity (B[x; 1, 0]) and S X, S = Bly:

s?, o] is easily seen.
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(e) If we define a morphism ¢: U(R) - Galg(B,J)s by @(r) =
(Blx: 7 o)), then it is easy to see that ¢ is a group homomorphism with
kernel U(R)? = {r*|r € U(R)}. Moreover if (B[x; r, ¢]) is contained in
Galy(B, J)o. then ¢ = I = 7 and so r is contained in the center of B= R,
which shows that ¢ is an epimorphism, completing the proof.

Theorem 3.6. The identity morphism
I: Galg(B,J) - Galg(B.J)

gives the anti-isomorphism from the right product X to the left product X,.

4. Relation with another product and remarks. In his paper [4],
Kishimoto defined a product on a certain set of isomorphism classes of free
quadratic extensions of B for a fixed derivation D or a fixed automorphism o
and proved some results. Kishimoto's set of isomorphism classes and our
Gals(J, B), does not coincide, but if ¢ is invertible, his product is defined
in our set Gals(J, B)p. In[5], Nagahara defined the product in a certain set
of quadratic polynomials, and generalized and sharpend of Kishimoto’s results.
The conditions of Kishimoto's product is complicated and Nagahara's one is
more complicated, delicate and classificatory than Kishimoto’s one, so in this
section we roughly explain the relation of Kishimoto’s product and our groduct,
and we also give some examples of strongly J-Galois extensions and etc.

4.1, Incase of 2= 0. In this subsection we assume that the charac-
teristic of R is 2.

(a) Kishimoto’s product [4]. Let D be a derivation of B and let 4 be
an element of B such that

(D) D(6) =0 and D*+qD= I,.

We fix these D, b and assume that g is invertible. Consider the free quadratic

extension Blx; s, D](= B[xs]) as in section 2. Kishimoto’s product is
defined as follows :

(B[Is]) (B[xt]) = (B[xs+t+b:l)‘

where (B[xs]) is the B-ring isomorphism class of type Blxs]. Then, under
the suitable conditions, the set of B-ring isomorphism classes P$(B) of B[xs]
forms an abelian group with identity element (B[x,]) of exponent 2. In his
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case, (B[x,]) is able to be an identity element in PZ(B) for any fixed element
b with properties (D) and thus the definition of product relates to 5. Under

his reasonable complicated conditions [4, section 3], his product is unique in
our set Gals(J, B), and if R is the center of B and B is flat R-module, then
by Th. 2.6 and [4, Cor. 1],

Gals(J, B)p, = P3(B) = R*/Ir*+qr|r € R|.

(b) Examples. For a, 8 € B, we set
S = Blx; ¢’+qe, ] and T= Bly; 8*+4q8. L.

Then by Ths.2.1 and 2.2, S and T are J-Galois extensions of B and they
are isomorphic as J-Galois extensions. Moreover S and T are strongly
isomorphic if and only if a+ 8 € R.

(1) If a’+qe. f?+q8 &€ R and a+B € R, then S and T are not
strongly J-Galois extensions but they are strongly isomorphic.

(2) If a+pB & R, then S and T is not strongly isomorphic.

(3) If a’+qa € R, 8*+qB € R and a+ B & R, then S is not a strong-
ly J-Galois extension and T is a strongly J-Galois extension, but S and T
are isomorphic as J-Galois extensions and they are not strongly isomorphic.

(4) If a®+qa, p*+qB8 € R and a+ B & R, then S and T are strongly
J-Galois extensions of B, and they are isomorphic as J-Galois exensions but

are not strongly isomorphic.

Now if we take that B is the 2 X 2-matrix algebra over R, then we can
easily find the elements a and 8 which satisfy the conditions from (1) to (4).

4.2. In case of 2 is invertible. In this subsection, we always assume
that 2 is invertible.

(a) Kishimoto’s product [4]. Let ¢ be an automorphism of B and let u
be an invertible element of B such that

(A) olu) =u and oY(b) = ubu’.

We fix these ¢ and u. Consider the free quadratic extension Blx; s, o)
(= Bl[xs]) as in section 3. Then the Kishimoto’s product in the set of B-ring
isomorphism classes Po{B) of Blxs] is defined by

(Blxs)) (Blx]) = Blxseu-].
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Then, under the suitable conditions, P,{(B) is an abelian group with identity
(B[x4]) of exponent 2. The same problem as in 4.1 for identities happens.
But by his reasonable and complicated conditions [4, section 2], his product
is unique in our set Gals(J. B)s and if R is the center of B and B is flat R-
module, then by Th. 3.5 and [4. Cor. 2.5].

Gals(J, B)o = P(B) = U(R)/U(R)".

Finally, we give some examples of strongly J-Galois extensions and ete.
in case of 2 is invertible.

(b) Examples. For a,8 € U(B), we set
S = Blx: o’ @ and T= Bly: 8% 8].

Then by Ths.3.1 and 3.2, S and T are J-Galois extensions of B and they
are isomorphic as J-Galois extensions. Moreover, S and T are strongly
isomorphic if and only if 87'a € R.

(1) If o>, f° & R and 87'a € R, then S and T are not strongly J-
Galois extensions, but they are strongly isomorphic.

(2) If p7'a & R, then S and T are not strongly isomorphic.

(3) If "€ R, B?€ R and f7'a & R, then S is not a strongly J-
Galois extension and T is a strongly J-Galois extension, but S and T are
isomorphic as J-Galois extensions and they are not strongly isomorphic.

(4) If >, € Rand 87 'a & R, then S and T are strongly J-Galois
extensions and are isomorphic as J-Galois extensions, but they are not
strongly isomorphic.

Now if we take that B is the 2 X2 matrix algebra over R, then we can
easily obtain the elements a and 4 which satisfy the conditions from (1) to(4).
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