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ON THE ATTACHING MAP IN THE STIEFEL
MANIFOLD OF 2-FRAMES

Juno MUKAI

0. Introduction. Let F = R(real), C(complex) or H{quaternionic) and
d = dimg F. Let ¢, € 74(S™) be the identity map, 7, € 7p:(S7) for n = 2
and vp € 7mn-3(S”) for n > 4 the Hopf maps. Throughout the paper Oni(F)
stands for the Stiefel manifold consisting of orthonormal k-frames in F",
Qui(F) C 0,{F) does for the stunted quasiprojective space and Q:n.1..(F)
= S U wpre ™, where wa(R) = 2671, wn(C) = Nun-1 and wa(H) =
(2n+41) vsn,. We have a cellular decomposition :

O2n412(F) = Qunao(F) U vnmeun*nd-z.

The purpose of the present note is to determine the (d—k)-fold sus-
pension Z% %Y (F) € munsna-r-3(Z* *Qons12(F)) for 0 < k < d. We shall
freely use the notation and results of [16], [10] and [11]. We shall also
use the EHP-sequences and the information about the (relative) Whitehead
products [ , ]. Wedenote by #a the order of a. Our result is stated as follows.

Theorem 1. i) #X%7,(F) =2 and #X7,(C) = 2. ii) #X*%(H) =2
for 1 <k<3; #X*7,H) =8 foon=2and k=1 0r 2; X°7,(H) = 4
for n =2,

Theorem 2. Zunira-3(X) = K{7(F)t & muncra_s(W), where X =
Qoni1ol(F), W=04po(F) and K=7 ifd*1 ord=n=1: K=7Z, ifd=1
andn=30rn=5; K=7Z,ifd=1andn= 2 or 4.

The author wishes to thank M. Mimura for suggesting a problem to
determine 7,(R) and reading the first manuscript.

The paper is organized as follows. §1 is devoted to prepare some
lemmas due to James and Toda. §2 is to summarize the behavior of the
J-image of the characteristic element for O;n.12(F). §§ 3—5 are devoted to
prove the theorems and to determine the generalized Hopf invariant of 7,(R).

1. Some results of James and Toda. Let X = S?U qe"for g = n—1
and B= X U y€™* % where B is regarded as the g-sphere bundle over S [5].

This research was partially supported by Grant-in-Aid for Scientific Research ( No.
03640033), Ministry of Education, Science and Culture.
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Let i: S>> X, j: (X, *) 2 (X.S57% be the inclusions and p: (X, S9 -
(S™ *) a map collapsing S? to the base point. Let x = x,: (CS™', S§™') -
(X, 89 be a characteristic map, where CS™ is a cone on §™, By (5.1) of
[6] and (3.3) of [2], we have

(1) J¥r = (=1)"[¢q. x].

By Lemma 4.4.3 of [1] and by Lemma 2.32 and Corollary 3.6 of [15],
we have the following

Lemma 1. Let 8 € m_(S0q.,) be the characteristic element for B and
8 € mro(S™') an element obtained from £ by the Hopf consiruction. Then
2y= +(Zi)xf8 and H(8) = + X" a.

We denote by a € m,4,(CS™ S”) for @ € m(S™) an element satisfyving
o'a = a, where 9’ : m (CS™ S™) -» m(S™) is the boundary isomorphism.
We denote by 2': n(X, 8% = m,,(ZX, S?") the relative suspension homo-
morphism [15]. By Theorem 2.1 of [3], we have an exact sequence for ¢ =
n+2q+3k—2 (k=0):

m(sz, Sq+k)
w(sm® L o st & o (2K ST o e

(Zk‘p)* N Hr(ZkX.Sq+k) (ka)*

where H' = (Z*a)«Z " *H and Q( ) = [ . (Z")*x].

Lemma 2. i) Keri(Z*i)x: m{S%*) = n(Z*X )t = (Z a)xm(S™* ")
forr =n+q+k—1 ifk=0o0rk=2.

i1) Ker (XZi)x = {[tqs, Zall +(Za)xmq(S™).

Proof. i) for k= 0 is just (3.2) of [6]. Recall Ker (Z*i)x =
Im 8. where 9: 7, (X*X, S9°%) - 7, (S7**) is the connecting map. Since
Tran(Z5X, ST*) = 7, ,(S™%) for k=2 and 3(Z')*xof) = Z*aoBfor
B € m(S™* "), we have the assertion for k = 2.

By (2), we have mnig(ZX, S7") = Zilten, Z' 2]t ® mnren(S™).

This leads us to ii) and completes the proof.

As is well known, we have the following

Remark 1. i) Let G be a group generated by A(zn_1) = [n-1, t2n-1].
Then G=0 if n=1,2 or 4 and G = Z, if otherwise. We have a short

exact sequence
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, z -
(3) 0 - G%A(lm—])} d mn—a(Szn_l) - 7f4n—2(sm) -0

which is split if n = 1, 2, 4 or n is not a power of 2.
ii) We have

() mna(S™) = ZHA(tyna )t ® Zmn—o(S*™') forn=3 or n 2 5.

By Propositions 2.7 and 2.2 of [16]. H(A(t4p-1)) = £ 2ty and
H(lenc-’j([dTH])) = Z(zlzn—l AN 2‘271—1) OH(A(ZMH)) = +8up1. So, b}' (4)1
we have [, 2t2n] € (2020)%mn-1(S*™). By this and [12], we have the fol-

lowing

Remark 2. [tq4:. Za] & (Za)xmno(S™) for some n, where X =
Qonii2lF), a = wy(F) and q = 2dn—1.

Let RP"be the real n-dimensional projective space and RP; = RPYRP"*™
the stunted space.

Lemma 3. 7Tn4n?nd—3(X~ Szdn_]) = 7T{4n+1xd—3(S:2n+Ud_‘) @ Li[‘Zdn—lv "]%’
where X = Quni12(F), = %onsrqmnand L=7Z ifd¥1 ord=n=1; L=
Z.ifd=1landn=3orn=5:L=7Z,ifd=1andn=2 or4d,

Proof. First we shall give a proof in the real case. By (2), we have
an exact sequence forn = 2 :

, H .

T (57) b 1 (877) B (X, 57 25 (8P 0,
By (4), ImH =4Z forn=3 orn=>=5. InH Z2Z forn=2o0r 4. So
we have a short exact sequence

(5) 0= Lo 2 olX, S B 0, 0(S™) > 0.

We set m= 2n—1 and @ = A(ma). By (2.18) of [15], we have @ =
[tm. in]. where i coincides with the identity map of (CS™, S™). So, by
(2.16—18) of [15] or by (3.4—6) of [2], we have xa = xx[tn, in) =
[2tn, k] = 2[tn, x]. Let BE mun_1(S™) be an element such that £8= #Zp.
Then px(xof) = ZB and #(x of) = #3B. Therefore. if (3) is split. so
is (5).

Suppose that (3) is not split. Then there exists an element 8 E€ mm_,(S™)
such that 28 = A(tn4,) and $Z8 = 2. Since 2(xf) = x& = 2[tn. 2], we
have #8'= 2 and p«d = ZB for 8 = x8—[tm. x]. So (5) is also split in
this case. This leads us to the assertion of the real case except forn = 1.
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We have X = RP? and O4,(R) = RP* ifd =n=1. So, by use of the
homotopy exact sequence of a pair (X, S*), we have m(X, SY=ZZin(R)t &
Zix}. Since pxx = 4, and jx7n(R) = [4, x] by (1), we have the splitting
of (5).

For d =2 or 4, we have, by (2), a short exact sequence for r =
(4n+1)d—3 :

0 - JTZdn—l(Szdn_l) E, ”r(X, SZdn—l) _pi ”T(S(znﬂld—l) Y 0
Since X': 7, (S*™V7?) - 7, (S®™1Y) is isomorphic onto, the sequence
is split. This completes the proof.

By (11.8) and Theorem 11.7 of [16], we have the following

Lemma 4. There exists a mapping 6: X" '"RP}**' - S™ such that Ker
125 m(S™ = mux(S™5) = Sxn(Z™'RP™* ) for i < 3n—3. In the 2-
components, the assertion holds for i < dn—4,

By Proposition 7.10 of [4], Qux(F) is a stable retract of On,.(F).
Especially we have Ty, (F) = 0.

Hereafter, by abuse of notation, we often use the inclusion i and the
projection p to denote 27i and X °p for integers r and s, respectively.

Let o, € 74..(S™) for n = 8 be the Hopf map and ¢, the identity class of
X = Qzni12(F). Then X A X is homotopy equivalent to a mapping cone

szn-lX U Anlp)c(zaznﬂ)d—zX),

where A (F) = ¢y A wn(F).

In the 2-components, stable Toda brackets <2¢, 7, 2>, <7, v, > and
{v, 8¢, v? consist of single elements 7°, v® and 80, respectively. By this
and by Lemma 3.5 and Theorem 3.6 of [16] and by their proofs, we have
the following

Lemma 5. AH(R) = i??qn_zp, An(c) = 3ai Van—2P a'nd An(H) = 15bi015n_2p
—(Z'G)p for n = 1 and odd integers a and b, where 8 is a coextension of
8 = 223w, (H) with respect to w,(H).

2. The J-image of the characteristic element. Let y,(F) €
Tans—2( On(F)) be the characteristic map [11], where O.(F) = 0,, U, or
Spn according as F = R, C or H. Let J: m(Oa(F)) = mxran(S™) be the
J-homomorphism and j,(F) = J(70(F)) € mzne1a-2(S?). Then j,(F) is an
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element obtained from the characteristic element yY,(R), ¢¥7»(C) or reyn(H)
by the Hopt construction, where r: U, < SO;, and ¢ : Sp,— SU,, are the
canonical maps. We recall the following relations : j,(R) = Altny) = %
[‘ns fn], Z']n(C) = jznu(R)e Z'z]n(H) = j2n+1(c)s H(ju{C)) = (n—1)794n-, and
H(j.(H)) = £(n+1)vsp_,. By Lemma 1, we have

Zyn(F) = i'l*]zn(F)y Zd?’n(F) = i*A(lzdian)—l)

(6) and H(JZTI(F)) = _—"ZZdnwn(F)-

By [8], [14] and [16], we have

AlDone1) £ 0 ifand only if n=4,5 or n == 3 mod 4
(7) andn = 8 ; A(%in..) ¥ 0 if and only if
n=40rn=0,1mod4 and n = 6.

We denote by (a, b) the greatest common divisor of integers a and b.

Lemma 6. i) In the 2-component, there exists an element A €
Nxsn—l(ssn_s) such that i(2n+1)A(V16n+1) = ijn(H)_ZaA and H(}) =
visn-2. There exists X' & mens(S*"®) such that 2A = Z*X' and H(X) =
E16n-u mod Ten—11O16n—10. We set A = vsog and ' = +¢’ for n=1.

ii) #]zn(c) =2 ¥#j2nn(C) =4 and 2j2n+1(c) = A(778n+5) forn=2;
#ZJZTL(H) =8 and 42]271(“) = A(ﬁ¥6n+3) ; Bim(H) = 24/(3- 2n+1) and
§12/(3, 2""'1)}]211([{) = ]&n(C) ° ”?Gn-

Proof. 1) for n = 2 is obtained from Lemma 11.17 and Proposition
11.15 of [16]. For n = 1, the assertion holds [16].

We recall that 7,(SO.») = (Z,)? or (Z,)* according as n is odd or even
[7]. Since j,(C) = J(r7n(C)) and H(j22(C)) = 7sn-, we have the first of ii).

Since 7(S0s) = 0, we have j;(C) = 0. We consider an anti-commuta-
tive diagram between exact sequences for n = 2 :

o
7T4n+3(S4n+2) - 7T4n+2(SOrn+2) ﬂ) 71'4n+2(SO4n+3)

],2“”3 J,J 5 ~LJ
A

”sn+6(ssn+s) — ”ﬂnﬂ(sﬂm-z) I 7TB7L+5(S“1+3)-
BY [7], ”4n+2(so4n+2*k) = Z2|2—k) for k=0 or 1 and 27’7"2n+1(c) = a77471+2.
So we have 2j;,41(C) = A(7snss). By (7), we have the second of ii).
We recall that 74n.2(SOss) = | Ysn(R) © vgny, reYon(H)} = Z2s ® Zg and
7l'an+2(SOsn+1) = Zs{""c')’lzn(H)} [1 1]- J( Yen(R) © Ven—l) = jsn(R) S Vign-1 =
Alvien), J(rey2n(H)) = joa(H) and J(r'cyin(H)) = Zj;n(H). By Theorem 4
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of [11], 112/(3, 2n+1){jan(H) = jin(C) © nlsn and 112/(3, 20+ 1)1 Zjon(H) =
2jin(C) o n¥pniy = A(9isnss). By (7) and an EHP-sequence

A p))
Hlsm-s(SmnH) - ”16n+3(San) - ”wn“(senu)‘

we have the rest of ii). This completes the proof.

Let G, be the k-th stable homotopy group of spheres. By [14] and
Lemma 6, we have the following

Remark 3. i) ma(S*") = G ® Z1 A7)t @ Z217:(C)} 5
Tan1(S*"1) = Gin @ Z,16}, where H(8) = ngns and 20 = A(nsn-1).

“) 7[16n+4(san+2) = G8n+2 D Z4{jln+l(c)} N Tflsn+3(Ssn+1) = Gﬂn+2 @
Zsizjzn(H)! H 7T16n+z(Ssn) = Gons: ® (Zs @ Z: )  Alvigner ), jzn(H)f 3
7[16n+2—k(ssn—k) = G8n+2 @D Zsizs"k/\s‘ fork=1 or 2.

3. The complex or quaternionic case. Hereafter we set X = Qzn.12(F)
and ¥ = 7(F).

Proposition 7. #Xy= #2X%y=2 for F = C.

Proof. By (6), X%y = ixAltsn-3). Assume that X*y = 0. Then, by
Lemma 2, there exists an element 8 € m,.,(S*") satisfying Altgnss) =
Nunm © 228, So we have joa(C) = nun© 2P+ aA(7gns1) for a=0 or 1. Apply
H to this relation. Then 7s,-, = 0 and this is a contradiction. Therefore
2%y 0 and X%y = 2.

By (6) and Lemma 6, 2X7y = 2ixj,2(C) = 0. So we have #Xy= 2.
This completes the proof.

Hereafter in this section, we shall deal with the quaternionic case.

Lemma 8. #Xy= #X*yand 8X7=0.

Proof. In an EHP-sequence

71'15"+4(Z(ZX/\ EX,)) "—A_> 771511+2(ZX) _Z") 71'16n+3(ZZX),

the left group is isomorphic to Ziens+((S"*™" U eniuviennae'™?) V §*7°) =
Z2sznen} i Visns1 | by Lemma 5. Hence X is monomorphic if 2n4+1 = 1 or 2 mod
3 and so is on the 2-component if 224+1 = 0 mod 3. By Lemma 6, #Xj.,(H)
= 8 and 8j,,(H) = 0 if 2n+1 = 0 mod 3. Therefore we have 8Xy = 0.
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This completes the proof.

Proposition 9. i) #X‘y=2.
ii) #X*y=2forn=1andl <k < 3,
i) #X'y=4 forn=2.

Proof. By use of the homotopy exact sequence of a pair (X°X, §*™*),
we have mMgn.7(Z°X) = Z1iA(tien.o)t ® K. where K is a finite abelian group.
In an EHP-sequence

Tenin(ZX) b e i EEXA 5X)) D mmes( ),

l&) 1l

YA iA( llsn+9) f ﬁlsn+7(slﬁn+7)
H(iA(ti6nss)) = £ 2iti6ns7. So we have #(iA(tener)) = 2. So. by (6), we

have i).

By i) of Lemma 6, 2j,(H) = 3vs0 01, £3A(vy;). So, by Lemma 8 and
its proof, 2ixj,(H) = 0 and 2Z*y=0forn=1and 1 < k < 3. So, by i),
we have ii).

By Lemmas 6, 8 and i), #X°y=2 or 4. Assume that 23°%y =
2i%2%j,,(H) = 0. Then, by (4) and Lemma 2. there exists an element o €
mien-2(S*"") satisfying 2X7%j,,(H) = (2n+41) vspi20 2%, So 2Zj,.(H) =
(24 1) vgner © X°a mod A(9ines) = 4Zj.a(H). Therefore +2j,,(H) =
(2n4+1) vgno Z'a+ xA(visn+1) for an integer x. Since 2(2n+41)vign_, =
2H(j,n(H)) = £2xv4n_,, we have x = +(2n+1) mod 12. By Lemma 6. we
have X*A = £(2n+1)vsno X*a since 4H(j,n(H)) & 0. By use of the EHP-
sequences, we have + A = (2n+1)vgy_ 50 XZa mod A(vi,_s). Applying H to
this relation. we have vi, ; =0 mod H{A(vin_s)) = 2¢en 0 vins = 0.
This is a contradiction and hence we have iii). This completes the proof.

Proposition 10. #X*y =8 ifn>2 andk =1 or 2.

Proof. By Lemma 8, it suffices to work in the 2-components and to
prove the assertion for £ = 2. By Lemma 8 and Proposition 9, £X%y =4
or 8. Assume that 4X%y = 4ixXj,,(H) = 0. Then, by Lemmas 2 and 6,
there exists an element a € me,(S*™"') satisfying Z°A' = vgpp 0 2Z%a. By
(7). A(7en-s) = 0 and A(nisns) ¥ 0. So, by use of the EHP-sequences,
there exists an element 8 € men_s(S*"*) satisfying @« = X‘B. By an EHP-
sequence
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A > »
Tien+4(S™™") = Mienea(S®") = misnsa(S*"),

25N —vgno X°8 = aA{vign.) for an integer a. Applying H to this rela-
tion, we have +2avin, = 0 and a = 4b for an integer b. By Lemma 6,
4bA(vieny1) = —2bE°X. So we have (1+2b)2°A = ygp 0 Z°B. Since
2 Tenex(S¥T) 5 misnern (S¥71F) is monomorphic for k=0 or 1,
(1420)5°% = vgp_ 0 2B We set m = 81—5. By Lemma 4, there
exists a mapping 6 : X" 'RPR*? — 8™ such that Ker {Z": mm..(S™)
= Tnae(S™) = Oxmme(Z"'RPR*Y).  RPR** = X" °RP; and
Tom+1(Z™'RP2?) = 7,(RP;) (the stable group). Therefore we have

(8) (14+2b)XN—vpo Z8 € dxnii(RPS).

Recall RP; = (S* U 2e’) U imee’. By [9], m(RP?) = Z,180) &
Z,iinot ® Z,iicl. By use of a cofibre sequence starting with i»n;, we have
an exact sequence

Zutot S5 s mpry 5 s mpsy B g0, 0,

where i': Z*RP*= RPj and p': RP; = S° are the canonical maps. Let V'
be an element of the Toda bracket <i', in, v> C m(RP;). Then 2V'v €
iy ig, v o2e= —i'Cip, v*, 200 D i"(y, 5, 203 i"e mod i'no = 0, where
"= i'oi: S*= RP:. So we have 20'v = ic and 75, (RPS) = Z,1i8c} &
Z.iv'ul,

On the other hand, H(&) € [Z*™*RP;, S*™ '] = {RP;,S*}. We recall
that {RP?, S't = Z,inp! and |RP?, S° = Z,{ 7!, where 7 is an extension
of . By use of the above cofibre sequence, we have an exact sequence

0« Zolpl &5 1RPL S & Zpt L5 7,491,
Let € {RPS, S*| be an extension of p with respect to in. Then {RP3, S*}
= Z,\npl. npci8c= np8o=8nc=0 and npov'v € nolp,in vWovC
n0oG,ov=0. So we have (7p)xm(RP3) = 0. Applying H to (8), we have
(1+2b) H(X) € H(8)xx3(RP3) C (np)xnii(RPS) = 0. By Lemma 6, H(X)

= €n_; mod 7yu_,0,,. This is a contradiction and completes the proof.

4. The real case. Weset Y= X" RP*forn>2, X = Qun12(R) =
I RP? and ¥ = 7.(R) for n = 1.

Proposition 11. #ZXZy=2 forn>=1.
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Proof. By (6), 2y = ixA(tn+1). Assume that Xy = 0. Then, by Lem-
ma 2, we have A(tine1) € 12A(tanai )t +(20n)xmn_1(S*™). Applying H to this
relation, we have £ 244, € {411 +184n-1t. This is a contradiction and
completes the proof.

By Propositions 7,9, 10 and 11, we have completed the proof of Theo-
rem 1.

We recall that mas( (YA Y)) = Z,1i1 and 27 = i'funs for n = 2,
where i': $*"* = X(Y A Y) is the inclusion [10].

Lemma 12. Letn=>2. Then 2y= £ A(Z% ), #y=4 for even n and
#7y =8 for odd n.

Proof. First we shall show #y =4 for n= 2 or 4. We consider a
commutative diagram between exact sequences :

(S 5 m(X) 5 m(X, 89 2 m(sY)

[ Lo b S s o
(8 B Vi) B misy S niso).
By (2) and Lemma 3, we have (X, S®) = Z,{[e;, ]t @ Zﬁxrfg} and (X,
S*) = Zoi[ms, 211 @ Zodnvh. B[w, x] = 2[4, 6] =0, B(xn?2) = 24093 =
0, 975, x]=1[m, 2] =0and (xy) =24 00" =2, Sowe have Im ix = 7,
and jx is epimorphic. We recall that m(Vs,) = Z,[13] and 3'ni= 24,073 =0.
So we have (Vi) = Z,1ix7smst and ixyv' = 0. Therefore we have ixy' =
ayfora=1or 2. By (1) and Lemma 3, we have 0 = ajxy = a[s, x] and
hence we have a = 2, 2y = iv' and ms(X) = Z, 47} ® Z, 17951,

By (2) and Lemma 3, we have m(X, S”) = Z,{[e;, ] & Zzix:fg} and
ms(X, 87) = Z{[m, x]t ® Zsixa'l. The connecting map O is trivial except
for the following : d(xd") = 24,00 ' =20". So, by a parallel argument to the
above, we have 2y = ixo' and 7 (X) = Z,{y! ® Zzifgi for n = 4. We note
that m.(Ve,) = Z, [13].

By Proposition 11 and an EHP-sequence

A 2
71'471(2(X/\ X)) — 7T4n—z(X) - 71’411—1(ZX),
we have 27 = aA(Z?]) for an integer a. If a is even, 27 = (a/2) i*A(7en_1).
So we have 2y = 0 for n = 2 or 4 and 2[t3ny, x] = 2jxy = 0 forn =3 or
n>5 by (1). This contradicts the above and Lemma 3. Hence we have the
first assertion.

Produced by The Berkeley Electronic Press, 1991



Mathematical Journal of Okayama University, Vol. 33[1991], Iss. 1, Art. 18

186 J. MUKAI

By (7), A(7in-) is trivial for even # and nontrivial for odd n. So
2A(Z%) = ixA(funs) = 0 and 4y = 0 for even n. By (1) and Lemma 3,
27 % 0. This leads us to the second assertion.

For odd =, it suffices to show ixA(74,_1) = 0. By [10], we have
A(my) = ixvsni *+ 0. Assume that it is trivial for n = 5. Then, by
Lemma 2, there exists an element 8 € mn_.(S*""') satisfying A(7in-1)
= 265108 By (7), Alnin-s) ¥ 0 for odd n = 5. So we have §= 28’
for some B’ € mn_3(S*™?). Therefore A(7in.) = 2Z8" and A(9in-,) =
238" o un—2 = 0. By (7), A(ni,_1) ¥ 0 for odd n = 5. This is a contra-

diction and completes the proof.

We set X = an+1.2(F), W= 02n+1.2(F)s r = 2dn—1 and s = 2r+d—1
= (4n+1)d—3. We consider a commutative diagram among exact sequences
for n>2:

2 r
KS(W) X) - ”'r(S )

e 1Q
ren(ST) 2 2 (X) 5 2 (X, ST) D> mea(ST)
1 Lik lp % Il

r i3 P r+d 9 r
”s—l(S ) — ”s—l(W) — lTs—l(S ) i ”s—z(s )
l l
0 0

where X" = X~"*% Yo pk for the canonical map p": (W, X) = (S% #). By
(1), Lemmas 3 and 12, we have Theorem 2.

5. Determination of H(7.(R)). We shall show H(y) = *i, where
y= 7(R) and n > 2. We set Y= Z*"°RP? and X = XY.

Lemma 13. Let n = 2. Then we have
1) xA(an-3) = 0
ii) Im {Z’: ”4n—3(Y, S'm—z) - ﬂm—z(X- Sm_])} = ﬂ'm—z(szn)-

Proof. By (7), A(nun_s) =0 forn= 2 or 4, So we have i) for n= 2
or 4, Tt suffices to prove H(y) % 0 for n =3 or n = 5 since 2i = H(cy)
for ¢ = 1 or 2 implies i*A(7in_s) = A2{ )= A(H(cy)) = 0.

We consider an anti-commutative diagram :
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Tin-3(Y) —Z) JTm—z(X) ﬂ) ﬂ4n—z(Z(Y/\ Y))

Lix ' Lk
T (Y, ST 25 g (X, S7)
Ipx Ipk

7[41-,,_3(82'1_‘) E‘) 7T4n—2(82n) .

Assume that H(7) = 0. Then there exists an element 8 € m,,_5(Y) such that
y= 3B. Therefore, by (1), [tzn1, x] = jxy = — X'(j*B). By Theorem 2.1
of [3]. we have an exact sequence for n = 3 :

Q,

Tana(ST72) =5z a(Y. S0 S £ (87) = 0.

where Q( ) = [, x'] and x' = (2")'x is a generator of mn,(Y, S*"?) =
Z. By the above diagram and Lemma 3, X(pxj*B8) = —pxZ'(jx8) = 0. So
we have pxjxf8 = alA(4n_y) for a = 0 or 1 and p+(2j%8) = 0. Therefore we
have 2jx8 = bQ(72n_2) for b = 0 or 1. By [15]. Z(2jx8) = 0 and hence
we have 2[t3n-1, ¥] = 0. This contradicts Lemma 3 and completes the proof
of i).

By the lower square of the above diagram, px, X are epimorphic and
px is a split epimorphism, This leads us to ii) and completes the proof.

Proposition 14. H(y) = i forn = 2.

Proof. It suffices to prove that X: m(Y) = 7m0y (X) for r = 4n—4
is monomorphic. We consider the suspension homomorphism between exact
sequences up to sign:

(Y, 872 S sy B pyy 5y g
12 X DX X
o' 1% J*

]TT+2(X$ Szn_]) - ”r+1(szn_]) - 7[r+l(X) I 7Tr+1(X, Szn_l),

By Theorem 2.1 of [3], n(Y, §*"*) = Zi[tan-2. ']} ® 7,(S*™"') and
ra(X, 87 = m,00(S?) for n = 2. Since ,(Y) is finite, jxa for a €
7(Y) belongs to the second direct summand. The left X~ has the kernel
Affnz(sm_s) = *A(Um—a)z and a,[£2n—la 7‘] = z[lzn—h lzn—l] = 0. So, by
chasing the diagram and using Lemma 13, we conclude that X: ={Y)—
7r+1(X) is monomorphic. This completes the proof.
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