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ON JORDAN LEFT DERIVATIONS

Qine DENG

Througout the present paper, R(# 0) will represent an associative ring with
center Z and X a nonzero left R-module. Following [1], X is called prime if
aRx = 0 for ¢ € R and x € X implies that either x = 0 or aX = 0. Asis well
known, R is a prime ring if and only if there exists a nonzero faithful prime left
R-module. Following [2], an additive mapping D : R — X is called a Jordan
left derivation if D(a?) = 2aD(a) for all a € R.

Now, let X be a faithful prime left R-module and p a prime number.
Suppose that R is of characteristic p. Then for any nonzero a € R, aR(pX) =
(pa)RX = 0, and so pX = 0. Conversely, suppose that px = 0 for some nonzero
x € X. Then, for any a € R, 0 = aR(px) = (pa)Rx, and so pa = 0. Conse-
quently, we see that X is not p-torsionfree, or what is the same, pX = 0, if and
only if R is of characteristic p.

Our present objective is to improve [2, Theorem 1.2] as follows.

Theorem 1. Let R be a prime ving of characteristic + 2, and X a nonzero
left R-module. Suppose that X is faithful and prime. If theve exists a nonzero
Jordan left devivation D: R— X, then R is commutative.

In preparation for proving our theorem, we state several lemmas.

Lemma 1. Suppose that X is faithful and prime. Let a,b € R, and x <
X. If (the prime ring) R is of chavacteristic # 2 and arbrx = 0 for all r € R,
thena=0o0r b=0o0r x =0.

Proof. Obviously, 0 = a(u+v)b(u+v)x = aubvx+ avbux for all u, v €
R. Replacing v by rarbr, we have 0 = aubrarbrx + ararbrbux = arvarbrbux
for all #, » € R. Suppose that x # 0. Noting that X is faithful and prime, we
obtain ararbrb = 0. Since R is prime, [5, Theorem] shows that either ¢ = 0 or
b=0.

Lemma 2. Let R be a ving of characteristic 3. If D: R— X is a Jordan
left derivation, then for all a, b, c € R, there holds the following :

(1) D(ab+ ba) = 2aD(b)+2bD(a).
20 D(aba) = a*D(b)— baD(a).
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(3) D(abc+ cba) = (ac+ ca)D(b)— baD(c)— bcD(a).
Proof. See the proof of [2, Proposition 1.1].

Lemma 3. Let R be a ring of charactevistic 3, and D: R— X a Jordan
left derivation. Suppose that X is faithful and prime. If D(a) + 0 for some a €
R, then [a,[a, b]1* =0 for all b € R.

Proof. Note that X is 2-torsionfree, and see the proof of [2, Lemma A].

The next will play an essential role in the proof of Theorem 1.

Lemma 4. Let R be a prime ring of charvacteristic 3. Suppose that X is
Jaithful and prime. If there exists a nonzero Jovdan left derivation D: R — X,
then R has no monzero nilpotent elements (more precisely, R has no nonzero
divisors of zero).

Proof. Suppose, to the contrary, that R contains a nonzero element a with
a@* = 0. Then aD(a) = 0. Now, by Lemma 2(1) and (2), we obtain 2aD(ba) =
2aD(ba)+2baD(a) = D{aba) = a*D(b)—baD{(a) =0, and so aD(ba) = 0.
Next by Lemma 2(3),

D(ab®a)+ D(baba) = D(ab*a+ baba)
= (aba+ ba®)D(b) — baD(ba)— b*aD{a) = abaD(b).

Combining this with D(ab?a) = 0 (Lemma 2(2)) and D(baba) = 2baD(ba) = 0,
we obtain abaD(b) = 0. So, linearizing this on b, we obtain

® abaD(c)+acaD(b) =0 for all b,c € R.

Replacing ¢ by ac+ ca in (#), we obtain abaD(ac+ ca) = 0, and so abacD(a)
= 0 by Lemma 2(1). Hence D(a) = 0 by Lemma 1. Further, acaD(bab) =
aca(b®D(a)—abD(b)) = 0 by Lemma 2(2). Now, replacing b by bdab in (#), we
get ababaD(c) = ababaD(c)+ acaD(bab) = 0. Hence aD(c) = 0 by Lemma
1. Replace ¢ by ¢? to get acD(c) = 0. Linearizing this on ¢, we obtain abD(c)
+ acD(b) = 0. Furthermore, replacing ¢ by ac, we have abD(ac) = 0 for all b
€ R, and so D(ac) = 0 by the faithfulness and the primeness of X. Recalling
that D(e) = 0 and aD(c) = 0, we obtain D(ca) = D(ac+ca) = 0 by Lemma
2(1), and so D(cba) = 0. Combining this with D(a(bc)) = 0, we have acD(d) =
D(a(bc)+(cb)a) = 0 by Lemma 2(1). Hence D(5) = 0 for all 5 € R. But this
is a contradiction.
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We are now ready to complete the proof of Theorem 1.

Proof of Theorem 1. In view of [2, Theorem 1.2], it suffices to consider the
case that R is of characteristic 3. Choose ¢ € R such that D(a) + 0. Then
[a, [a, b]] = 0 for all 5 € R, by Lemmas 3 and 4, and so [4, Theorem 1] shows
that ¢ isin Z. Thus R =Z U {a € R | D(a) = 0}. Since D is nonzero, we
conclude that R = Z, by Brauer's trick.

Finally in connection with Theorem 1, we shall improve [6, Theorem 2] as
follows :

Theorem 2. Let R be a prime ring of charactevistic #+ 2. If there exists a
nonzero derivation D: R — R such that (a,[a, D(a)]] € Z for all a € R, then
R is commutative.

Proof. In view of [6, Theorem 2], it suffices to consider the case that R is
of characteristic 3. Then, for any ¢ € R,

D(a®) = a®*D(a)+aD(a)a+ D(a)a® = a*D(a)—2aD(a)a+ D{(a)a?
=[a,[a, D(a)]] € Z,

and so D(a*?) = 34*2D(a®) = 0. Hence R is commutative by [3, Theorem 2].
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