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In this paper we study the semi-stable reduction of Galois covers of degree p above curves
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GALOIS COVERS OF DEGREE p

AND SEMI-STABLE REDUCTION OF CURVES

IN EQUAL CHARACTERISTIC p > 0

Mohamed SAı̈DI

Abstract. In this paper we study the semi-stable reduction of Galois
covers of degree p above curves over a complete discrete valuation ring
of equal characteristic p.

1. Introduction.
Let p > 0 be a prime integer. Let R be a complete discrete valuation

ring, with fraction field K of characteristic p, and residue field k which we
assume to be algebraically closed. Let X be a proper and smooth R-curve,
with generic fibre XK := X ×R K, and special fiber Xk := X ×R k. Let f :
Y → X be a finite Galois cover with Galois group G, and with Y normal.
Let YK := Y ×R K be the generic fiber of Y, and let Yk := Y ×R k be
its special fiber, which we assume to be reduced (this condition is always
satisfied after a finite extension of R). If the cardinality of G is prime to
p, and if the cover fK : YK → XK between generic fibers is étale, then it
follows from Zariski’s purity theorem that Y is smooth (cf. [11] ). If the
cardinality of G is divisible by p then Y is not smooth in general (even if
the cover fK between generic fibres is étale). However, it follows from the
theorem of semi-stable reduction of curves (cf. [2]) that Y admits potentially
semi-stable reduction, i.e. there exists (possibly after a finite extension of

R) a proper and birational morphism Ỹ → Y, where Ỹ is a semi-stable R-

curve. Moreover, there exists such a semi-stable model Ỹ which is minimal.
Our main interest is in the study of the geometry (of the special fiber) of

a minimal semi-stable model Ỹ, under the assumption that p divides the
cardinality of G. In this paper we study the case where G ' Z/pZ, and
with no restriction on the ramification in the morphism f . This has been
treated in the literature in the unequal characteristic case (cf. e.g. [4], and
[10] ).

This paper is organized as follows. In section 2, we recall the main results
in [7] which describe the degeneration of étale Z/pZ-torsors in equal charac-
teristic p. In section 3, we prove a formula comparing the dimensions of the
spaces of vanishing cycles in a Galois cover f̃ : Yy → Xx, with group Z/pZ,
between formal germs of curves in equal characteristic p. This formula plays
an important role in this paper. As a consequence of these results (with the
same notations as above) we can determine the singular points of Yk, and
we can compute the arithmetic genus of these singularities. More precisely,
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114 M. SAÏDI

suppose that the branched points in the morphism fK : YK → XK specialize
in the set Bk ⊂ Xk, and let U ′

k := Xk − Bk. Then f induces (by restriction
to U ′

k) a finite cover f ′
k : V ′

k → U ′
k, which has the structure of a torsor under

a finite and flat k-group scheme of rank p. Suppose for example that this
torsor is radicial (this is the most difficult case to treat), and let ω be the
associated differential form (cf. [9], 1). Let Zk be the set of zeros of ω, and
let Crit(f) := Zk ∪ Bk. If y is a singular point of Yk, then f(y) ∈ Crit(f).
Further, let my := ordf(y)(ω). Then the arithmetic genus of y (cf. [8], 3.1)
equals (ry +my)(p−1)/2, where ry is the number of branched points of f in
the generic fiber XK which specialize in f(y) ( ry = 0, if f(y) ∈ Crit(f)−Bk),
(cf. 3.3.1).

In order to understand the geometry of Ỹ one needs to understand the
fiber of a singular point y of Yk in the minimal semi-stable model Ỹ . This
is a local problem which we study in section 4. There we consider a finite
Galois cover fx : Yy → Xx of degree p between formal germs of R-curves at
a closed point y (resp. x), where x is a smooth point (i.e. Xx ' SpfR[[T ]])

and we study the geometry of a minimal semi-stable model Ỹy of Yy. In 4.2
we exhibit what we call “simple degeneration data of rank p”, comprising a
tree Γ of k-projective lines which is endowed with some data of geometric
and combinatorial nature, and which completely describe the geometry of
Ỹy. More precisely, let Degp be the set of “isomorphism classes” of such data
(cf. Definition 4.4). Then we construct a canonical specialization map Sp:
H1

et(SpecL, Z/pZ) → Degp, where L is the function field of the geometric

fiber X x := Xx×R R of Xx, and R is the integral closure of R in an algebraic
closure of K. Our first main result in this paper is the following realization
result for simple degeneration data.

Theorem.(cf. 4.6) The specialization map Sp : H 1
et(SpecL, Z/pZ) → Degp

defined in 4.4 is surjective.

In other words we are able to reconstruct Galois covers of degree p above
open discs (in equal characteristic p), starting from (the) degeneration data
which describe the semi-stable reduction of such a cover. The proof of this
result relies on the technique of formal patching initiated by Harbater and
Raynaud (cf. [8], 1).

In section 5, we return to the above global situation of a Galois cover f :
Y → X of degree p. The results in section 4 allow us to associate with each
critical point xi = f(yi) ∈ Crit(f), simple degeneration data Deg(xi) of rank

p, which describe the preimage of the singular point yi in Ỹk. These simple
degeneration data, plus the data given by the torsor f ′

k ; V ′
k → U ′

k, lead to
the definition of “smooth degeneration data” Deg(Xk) of rank p, which are
associated with the special fiber Xk of X , and which describe the geometry
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GALOIS COVERS OF DEGREE p AND SEMI-STABLE REDUCTION 115

of the semi-stable model Ỹ of Y. More precisely, let DEGp(Xk) be the set
of isomorphism classes of smooth degeneration data of rank p associated
with Xk (cf. Definition 5.3). Then we construct a canonical “specialization”
map Sp : H1

et(SpecL, Z/pZ) → DEGp(Xk), where L is the function field of

the geometric fiber X := X ×R R, of X , and R is the integral closure of R
in an algebraic closure of K. Our second main result is the realization of
smooth degeneration data associated with Xk, if necessary after modifying
the R-curve X into another R-curve X ′ with special fiber X ′

k isomorphic to
Xk. More precisely, we have the following.

Theorem.(cf. 5.5) Let Deg(Xk) ∈ DEGp(Xk) be smooth degeneration data

of rank p, associated with Xk. Then there exists a smooth and proper R-curve

X ′, with special fiber isomorphic to Xk, such that Deg(Xk) is in the image

of the specialization map Sp : H1
et(SpecL, Z/pZ) → DEGp(Xk), where L is

the function field of the geometric fiber X ′ ×R R of X ′, and R is the integral

closure of R in an algebraic closure of K.

A similar result has been proved in [5] (cf. Remark 5.7, 2). As another
application of our techniques, we prove the following result of lifting of
torsors under finite and flat group schemes of rank p, in equal characteristic
p.

Theorem.(cf. 5.6) Let X be a smooth and proper k-curve, and let f : Y →
X be a torsor under a finite and flat k-group scheme Gk of rank p. Then

there exists a smooth and proper R-curve X , with special fiber isomorphic

to X, and a torsor f̃ : Y → X under an R-group scheme GR, which is

commutative finite and flat of rank p, such that the torsor induced on the

level of special fibers f̃k : Yk → Xk is isomorphic to the torsor f . In other

words the torsor f̃ lifts f .

Acknowledgment. This work was done during my visit to the Max-Planck-
Institut Für Mathematik in Bonn. I would like very much to thank the
directors of the Institut for their invitation and for the wonderful working
atmosphere. The author holds an EPSRC advanced research fellowship
GR/R75861/02, and would like very much to thank EPSRC for its support.

2. Degeneration of étale Z/pZ-torsors in equal characteristic
p > 0.

In this section we recall the degeneration of étale Z/pZ -torsors in equal
characteristic p > 0, as described in [7], which plays an important role in
this paper. We will use the following notations: R is a complete discrete
valuation ring of equal characteristic p > 0, with perfect residue field k, and
fraction field K := FrR. We denote by π a uniformizing parameter of R.
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116 M. SAÏDI

2.1. The group schemes Mn (cf. also [5], 3.2). Let n ≥ 0 be an integer,
and let Ga,R := SpecR[X] be the additive group scheme over R. The map:

φn : Ga,R → Ga,R

given by:

X → Xp − π(p−1)nX

is an isogeny of degree p between group schemes. The kernel of φn is
denoted by Mn,R, or simply Mn if no confusion occurs. Thus, Mn :=

SpecR[X]/(Xp− π(p−1)nX) is a finite and flat R-group scheme of rank p.
Further, the following sequence is exact in the fppf topology:

(1) 0 → Mn → Ga,R
φn
−→ Ga,R → 0

If n = 0, then the sequence (1) is the Artin-Schreier sequence (which is
exact in the étale topology), and M0 is the étale constant group scheme
(Z/pZ)R. If n > 0, the sequence (1) has a generic fiber which is isomorphic
to the (étale) Artin-Schreier sequence, and a special fiber isomorphic to the
(radicial) exact sequence:

(2) 0 → αp → Ga,k
xp

−→ Ga,k → 0

In particular, if n > 0, the group scheme Mn has a generic fiber which
is étale, isomorphic to (Z/pZ)K , and its special fiber is isomorphic to the
infinitesimal group scheme αp,k. Let X be an R-scheme. The sequence (1)
induces along cohomology exact sequence:

Ga,R(X)
φn
−→ Ga,R(X) → H1

fppf(X,Mn)(3)

→ H1
fppf(X, Ga,R)

φn
−→ H1

fppf(X, Ga,R)

The cohomology group H1
fppf(X,Mn) classifies the isomorphism classes of

fppf- torsors, with group Mn, above X. The exact sequence (3) allows the
following description of Mn-torsors: locally a torsor f : Y → X, under the
group scheme Mn, is given by an equation T p−π(p−1)nT = a. Where T is an
indeterminate, and a is a regular function on X, which is uniquely defined up
to addition of elements of the form bp − π(p−1)nb (for some regular function
b). In particular, if H1

fppf(X, Ga,R) = 0 (e.g. if X is affine), an Mn-torsor
above X is globally defined by an equation as above.

2.2. Degeneration of étale Z/pZ-torsors. In what follows X is a formal
R-scheme of finite type which is normal, connected, and flat over R. Let
XK := X ×R K (resp. Xk := X ×R k) be the generic (resp. special) fiber
of X. By “generic fiber” of X we mean the associated K-rigid space (cf.
[1]). We further assume that the special fiber Xk is integral. Let η be the
generic point of the special fiber Xk, and let Oη be the local ring of X at η,
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GALOIS COVERS OF DEGREE p AND SEMI-STABLE REDUCTION 117

which is a discrete valuation ring with fraction field K(X) := the function
field of X. Let fK : YK → XK be a nontrivial étale Z/pZ-torsor, with YK

geometrically connected. Let K(X) → L be the corresponding extension
of function fields. The following result, which describes the degeneration of
fK , is used in the next sections:

2.2.1. Theorem. Assume that the ramification index above Oη in the
extension K(X) → L equals 1. Then the torsor fK : YK → XK extends
to a torsor f : Y → X under a finite and flat R-group scheme of rank p,
with Y normal. Let δ be the degree of the different above η in the extension
K(X) → L. Then the following cases occur:

a) δ = 0. In this case f is an étale torsor under the group scheme M0,
and fk : Yk → Xk is an étale Z/pZ-torsor

b) δ > 0. In this case δ = n(p − 1) for a certain integer n ≥ 1, and f is a
torsor under the group scheme Mn. Further, in this case fk : Yk → Xk is a
radicial torsor under the k group scheme αp.

Note that starting from a torsor fK : YK → XK , as in 2.2.1, the condi-
tion that the ramification index above Oη equals 1 is always satisfied after
possibly a finite extension of R (cf. e.g. [3]).

Proof. cf. [7], Theorem 2.2.1.

2.2.2. It follows from 2.2.1 that an étale Z/pZ-torsor above the generic
fiber XK of X induces (canonically) a degeneration data, which consists of a
torsor above the special fiber Xk of X, under a finite and flat k-group scheme
which is either étale or of type αp. Reciprocally, we have the following result
of lifting of such a degeneration data.

2.2.3. Proposition. Assume that X is affine. Let fk : Yk → Xk be a
torsor under a finite and flat k-group scheme, which is étale (resp. of type
αp). Then fk can be lifted to a torsor f : Y → X under a finite and flat
R-group scheme of rank p, which is étale (resp. isomorphic to Mn, for an
integer n > 0).

Proof. cf. [7], Proposition 2.2.3.

2.3. Degeneration of Z/pZ-torsors on the boundaries of formal
fibers.

In this section we assume that the residue field k of R is algebraically

closed. We describe the degeneration of Z/pZ-torsors on the boundary
X ' SpfR[[T ]]{T−1} of formal fibers of germs of formal R-curves. Here

R[[T ]]{T−1} denotes the ring of formal power series
∑

i∈Z

aiT
i, with lim

i→−∞
|ai| =

0, where | | is an absolute value of K associated to its valuation. Note that
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118 M. SAÏDI

R[[T ]]{T−1} is a complete discrete valuation ring with uniformizing param-
eter π, and residue field k((t)), where t ≡ Tmodπ. The function T is called
a parameter of the formal fiber X . The following result, which describes
the degeneration of Z/pZ-torsors above the formal fiber Spf R[[T ]]{T −1}, is
used in section 3 in order to prove a formula comparing the dimensions of
the spaces of vanishing cycles, in a Galois cover of degree p between formal
germs of R-curves.

2.3.1. Proposition. Let A := R[[T ]]{T −1}, and let f : SpfB → SpfA be
a nontrivial Galois cover of degree p. Assume that the ramification index
of the corresponding extension of discrete valuation rings equals 1. Then f
is a torsor under a finite and flat R-group scheme GR of rank p. Let δ be
the degree of the different in the above extension. Then the following cases
occur:

a) δ = 0. In this case f is a torsor under the étale group (Z/pZ)R.
Moreover, for a suitable choice of the parameter T of A, the torsor f is
given by an equation Xp − X = T m for some integer m < 0 which is prime
to p. In this case X1/m is a parameter for B.

b) 0 < δ = n(p−1), for some integer n > 0. In this case f is a torsor under
the group scheme Mn,R. Moreover, for a suitable choice of the parameter

T , the torsor f is given by an equation Xp − πn(p−1)X = T m with m ∈ Z

prime to p. In this case X1/m is a parameter for B.

Proof. First it follows from 2.2.1 that we are either in the case a) or in the
case b). We first start with the case a). Thus, f is an étale torsor given by an

equation Xp−X = u =
∑

i∈Z

aiT
i ∈ A. On the level of special fibers the torsor

fk := SpecB/πB → SpecA/πA is the étale torsor given by the equation

xp − x =
∑

i≥m

ait
i ∈ A, where ai is the image of ai modulo π, and m ∈ Z is

an integer. Assume that the integer m = pm′ is divisible by p. Then after

adding a
1/p
m tm

′

−amtm into the defining equation for fk we can replace amtm

by a
1/p
m tm

′

. Repeating this process we can finally assume that the integer m

is prime to p; in which case
∑

i≥m

ait
i = tmv, and u = T mv where v ∈ A is a

unit whose image modulo π equals v. Further, the integer m is necessarily
negative since the residue field extension fk := SpecB/πB → SpecA/πA
must ramify. Finally, after extracting an m-th root of v, and replacing T by
(the parameter) Tv1/m, we obtain an equation of the form Xp − X = T m.
Next, assume that we are in the case b). Thus, f is a torsor under the
finite and flat group scheme Mn,R, for some positive integer n, given by

6
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GALOIS COVERS OF DEGREE p AND SEMI-STABLE REDUCTION 119

an equation Xp − πn(p−1)X = u =
∑

i∈Z

aiT
i ∈ A, where u is not a p-power

modulo π. On the level of special fibers the torsor fk := SpecB/πB →

SpecA/πA is the αp-torsor given by the equation xp =
∑

i≥m

ait
i ∈ A/πA,

where ai is the image of ai modulo π, and m ∈ Z is some integer. Assume
that the integer m = pm′ is divisible by p. Then the term amtm is a p-
power and we can eliminate it from the defining equation for fk (without

changing the torsor fk). Since
∑

i≥m

ait
i ∈ A/πA is not a p-power, we can

repeat this process, and assume after finitely many steps that m is prime to

p. In this case
∑

i>m

ait
i = tmv, and u = T mv, where v ∈ A is a unit whose

image modulo π equals v. Finally, after extracting an m-th root of v, and
replacing T by (the parameter) Tv1/m, we obtain an equation of the form
Xp − πn(p−1)X = T m.

2.3.2. Definition. With the same notations as in 2.3.1 we define the
conductor of the torsor f to be the integer −m. Further, we define the
degeneration type of the torsor f to be (0,m) in the case a) and (n,m) in
the case b).

2.3.3. Remark. The above proposition implies in particular that Galois
covers f : Spf B → SpfA, as in 2.3.1, are classified by their degeneration
type, as defined in 2.3.2. More precisely, given two such Galois covers which
have the same degeneration type, there exists a (non canonical) Galois equi-
variant isomorphism between both covers.

3. Computation of vanishing cycles and examples for cyclic p-
covers.

The main result of this section is Theorem 3.2.3 which gives a formula
comparing the dimensions of the spaces of vanishing cycles in a Galois cover
f̃ : Y → X , with group Z/pZ, between formal germs of curves in equal
characteristic p. In this section we use the following notations: R is a
complete discrete valuation ring of equal characteristic p > 0. We denote by
K the fraction field of R, by π a uniformizing parameter, and k the residue
field. We also denote by vK the valuation of K which is normalized by
vK(π) = 1. We assume that the residue field k is algebraically closed.

3.1. By a (formal) R-curve we mean a (formal) R-scheme of finite type
which is normal, flat, and whose fibers have dimension 1. For an R-scheme
X we denote by XK := X ×SpecR SpecK the generic fiber of X, and Xk :=
X ×SpecR Speck its special fiber. In what follows by a (formal) germ X of

an R-curve we mean that X := SpecOX,x is the (resp. X := Spf ÔX,x is the
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120 M. SAÏDI

formal completion of the) spectrum of the local ring of an R-curve X at a
closed point x. We refer to [8], 3.1, for the definition of the integers δx, rx,
and the arithmetic genus gx of the point x.

3.2. The compactification process. Let X := Spf ÔX,x be the formal

germ of an R-curve at a closed point x, with Xk reduced. Let f̃ : Y → X
be a Galois cover with group Z/pZ, and with Y local. We assume that
the special fiber of Yk is reduced (this can always be achieved after a finite

extension of R). We will construct a compactification of the above cover f̃
and, as an application, compute the arithmetic genus of the closed point of
Y. More precisely, we will construct a Galois cover f : Y → X of degree
p between proper algebraic R-curves, a closed point y ∈ Y , and its image
x = f(y), such that the formal germ of X (resp. of Y ) at x (resp. at y)

equals X (resp. Y), and such that the Galois cover fx : Spf ÔY,y → Spf ÔX,x

(induced by f between the formal germs at y and x) is isomorphic to the

above given cover f̃ : Y → X . The construction of such a compactification
has been done in [8], 3.3.1, in the unequal characteristic case. We first start
with the case where the formal germ X has only one boundary.

3.2.1. Proposition. Let D := Spf R〈1/T 〉 be the formal closed disc cen-
tered at ∞ (cf. [1], 1, for the definition of R〈1/T 〉). Let D := Spf R[[T ]]{T −1}
be the formal boundary of D, and let D → D be the canonical morphism.
Let f̃ : Y → D be a nontrivial torsor under a finite and flat R-group scheme
of rank p, such that the special fiber of Y is reduced. Then there exists a Ga-
lois cover f : Y → D, with group Z/pZ, whose pull back to D is isomorphic

to the above given torsor f̃ . More precisely, with the notations introduced
in 2.3 we have the following possibilities:

a) The torsor f̃ is étale, and has a reduction of type (0,−m). In this
case consider the Galois cover f : Y → D given generically by the equation
Zp − Z = 1/T m. This cover is an étale torsor and its special fiber fk :
Yk → Xk is étale. In particular, Yk is smooth. Moreover, the genus of the
smooth compactification of Yk equals (m − 1)(p − 1)/2.

b) The cover f̃ is a torsor under the group scheme Mn,R, for some integer
n > 0, and has a reduction of type (n,m) for some integer m prime to p.
The following two cases occur:

b-1) m > 0. In this case consider the Galois cover f : Y → D given

generically by the equation Zp − πn(p−1)Z = T m. This cover is ramified
above ∞, with conductor m, and its special fiber fk : Yk → Xk is radicial.
Moreover, Yk is smooth, and its smooth compactification has genus 0.

b-2) m < 0. In this case consider the Galois cover f : Y → D given

generically by the equation Zp − πn(p−1)Z = T m. This cover is an étale
torsor on the generic fiber, and its special fiber fk : Yk → Xk is radicial.

8
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GALOIS COVERS OF DEGREE p AND SEMI-STABLE REDUCTION 121

Moreover, Yk has a unique singular point y which is above ∞ and with
arithmetic genus gy = (−m − 1)(p − 1)/2.

Proof. The proof is similar to the proof of proposition 3.3.1 in [8]. We will
treat the case b-1) for the convenience of the reader. In this case consider
the Galois cover H → P1

R of degree p, with H normal, above the projective
R-line with parameter T , which is generically given by the equation Z p −
πn(p−1)Z = T m. This cover is ramified on the generic fiber only above the
point ∞, with conductor m. Hence the genus of the generic fiber HK of H
equals (m−1)(p−1)/2. On the level of the special fibers the cover Hk → P1

k
is an αp torsor, outside the point ∞, defined by the equation zp = tm. The
genus of the singularity above the point t = 0 can be easily computed, it
equals (m − 1)(p − 1)/2 (cf. [8] 3.3.1). From this we deduce that Hk is
smooth outside t = 0, since the arithmetic genus of HK and that of Hk are
equal.

In the next proposition we deal with the general case.

3.2.2. Proposition. Let X := Spf Ôx be the formal germ of an R-curve
at a closed point x, and let {Xi}

n
i=1 be the formal boundaries of X . Let f̃

: Y → X be a Galois cover with group Z/pZ, and with Y local. Assume
that Yk and Xk are reduced. Then there exists a Galois cover f : Y → X of
degree p between proper algebraic R-curves Y and X, a closed point y ∈ Y
and its image x = f(y), such that the formal germ of X (resp. of Y ) at
x (resp. at y) equals X (resp. equals Y), and such that the Galois cover

Spf ÔY,y → Spf ÔX,x, induced by f between the formal germs at y and x,

is isomorphic to the above given cover f̃ : Y → X . Moreover, the formal
completion of X along its special fiber has a covering which consists of n
closed formal discs Di, which are patched with X along the boundaries Di,
and the special fiber Xk of X consists of n smooth projective lines which
intersect at the point x. In particular, the arithmetic genus of XK equals
gx.

Proof. Similar to the proof of proposition 3.3.2 in [8].

The next result is the main one of this section. It provides an explicit
formula which compares the dimensions of the spaces of vanishing cycles in
a Galois cover of degree p, between formal fibers of curves in equal charac-
teristic p > 0.

3.2.3. Theorem. Let X := SpfÔx be the formal germ of an R-curve at
a closed point x, with Xk reduced. Let f̃ : Y → X be a Galois cover with
group Z/pZ, with Y local, and Yk reduced. Let {℘i}i∈I be the minimal

prime ideals of Ôx which contain π, and let Xi := SpfÔ℘i
be the formal

completion of the localization of X at ℘i. For each i ∈ I, the above cover f̃

9
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122 M. SAÏDI

induces a torsor f̃i : Yi → Xi, under a finite and flat R-group scheme of rank
p, above the boundary Xi (cf. 2.3.1). Let (ni,mi) be the reduction type of

f̃i (cf. 2.3.2). Let y be the closed point of Y. Then one has the following
“ local Riemann-Hurwitz formula” :

2gy − 2 = p(2gx − 2) + dη − ds

where dη is the degree of the divisor of ramification in the morphism f̃K :

YK → XK induced by f̃ on the generic fibers; XK := Spec(Ôx ⊗R K), and

YK := Spec(ÔY ,y ⊗R K). Here,

ds :=
∑

i∈Iet

(−mi − 1)(p − 1) +
∑

i∈Irad

(−mi − 1)(p − 1)

where Irad is the subset of I consisting of those i for which ni 6= 0, and Iet

is the subset of I consisting of those i for which ni = 0, and mi 6= 0.

Proof. The proof is similar, using 3.2.1, to the proof of theorem 3.4 in
[8] with the appropriate modifications. We briefly repeat the argument for
the convenience of the reader. By Proposition 3.2.2 one can compactify
the above morphism f̃ . More precisely, we constructed in 3.2.2 a Galois
cover f : Y → X of degree p between proper algebraic R-curves, a closed
point y ∈ Y , and its image x = f(y), such that the formal germ of X
(resp. of Y ) at x (resp. at y) equals X (resp. equals Y), and such that the

Galois cover Spf ÔY,y → Spf ÔX,x induced by f between the formal germs

at y and x is isomorphic to the given cover f̃ : Y → X . The special fiber
of X consists (by construction) of card(I)-distinct smooth projective lines
which intersect at the closed point x. The formal completion of X along
its special fiber has a covering which consists of card(I) formal closed unit
discs, which are patched with the formal fiber X along the boundaries Xi.
The above formula follows then by comparing the arithmetic genus of the
generic fiber YK of Y and the arithmetic genus of its special fiber Yk. Using
the precise informations given in Proposition 3.2.1 one can easily deduce

that g(YK) = pgx + (1 − p) + dη/2 +
∑

i∈I>

(mi + 1)(p − 1)/2, where I> is the

subset of I consisting of those i for which the degeneration type above the
boundary Xi is (ni,mi), with ni > 0 and mi > 0. On the other hand one

has g(Yk) = gy +
∑

i∈I<

(−mi − 1)(p − 1)/2 +
∑

i∈Iet

(−mi − 1)(p − 1). Where I<

is the subset of I consisting of those i for which the degeneration type above
the boundary Xi is (ni,mi), with ni > 0 and mi < 0, and Iet is the subset of
I consisting of those i for which the degeneration type above the boundary
Xi is (0,mi). Now, since Y is flat, we have g(YK) = g(Yk) and the above
formula directly follows.
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3.3. Cyclic p-covers above germs of semi-stable curves.
In what follows, and as a direct application of theorem 3.2.3, we deduce

some results in the case of a Galois cover Y → X , above the formal germ X of
a semi-stable R-curve at a closed point. These results will play an important
role in sections 4 and 5 in order to exhibit and realize the degeneration data,
which describe the semi-stable reduction of Galois covers of degree p, in equal
characteristic p. We start with the case of a Galois cover of degree p above
a germ of a smooth point.

3.3.1. Proposition. Let X := SpfR[[T ]] be the formal germ of an R-curve
at a smooth point x, and let Xη := SpfR[[T ]]{T−1} be the boundary of X .
Let f : Y → X be a Galois cover of degree p with Y local. Assume that the
special fiber of Y is reduced. Let y be the unique closed point of Yk. Let dη

be the degree of the divisor of ramification in the morphism f : YK → XK .
Then dη = r(p − 1) is divisible by p − 1. We distinguish two cases:

1) Yk is unibranche at y. Let (n,m) be the degeneration type of f above
the boundary Xη (cf. 1.3.2). Then necessarily r + m − 1 ≥ 0, and gy =
(r + m − 1)(p − 1)/2.

2) Yk has p-branches at y. Then the cover f has an étale split reduction of
type (0, 0) on the boundary, i.e. the induced torsor above Spf R[[T ]]{T −1}
is trivial, in which case gy = (r − 2)(p − 1)/2.

As an immediate consequence of 3.3.1 one can immediately detect whether
the point y is smooth or not. More precisely, we have the following:

3.3.2. Corollary. We use the same notation as in 3.3.1. Then y is a
smooth point, which is equivalent to gy = 0, if and only if r = 1 − m which
implies that m ≤ 1. In particular, if f has a degeneration of type (n,m) on
the boundary with n > 0 and m > 0, then this only happen if r = 0 and
m = 1.

Next, we will give examples of Galois covers of degree p above the formal
germ of a smooth point, which cover all the possibilities for the genus and
the degeneration type on the boundary. Both in 3.3.3 and 3.3.4 we use the
same notations as in 3.3.1. We first begin with examples with genus 0.

3.3.3. Examples. The following are examples given by explicit equations
of the different cases, depending on the possible degeneration type above
the boundary, of Galois covers f : Y → X of degree p above X = SpfR[[T ]],
and where gy = 0 (here y denotes the closed point of Y).

1) For m > 0 an integer prime to p, consider the cover given generically
by the equation Xp − X = T−m. Here r = m + 1, and this cover has a
reduction of type (0,−m) on the boundary.

11
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2) For m̃ := −m a negative integer prime to p, and a positive integer n,

consider the cover given generically by the equation X p − πn(p−1)X = T m̃.
Here r = m + 1, and this cover has a reduction of type (n, m̃) on the
boundary.

3) For a positive integer n consider the cover given generically by the

equation Xp − πn(p−1)X = T . Here r = 0, and this cover has a reduction of
type (n, 1) on the boundary.

Next, we give examples of Galois covers of degree p above formal germs
of smooth points which lead to a singularity with positive genus.

3.3.4. Examples. The following are examples (given by explicit equations)
of the different cases, depending on the possible reduction type, of Galois
covers f : Y → X of degree p above X = SpfR[[T ]], and where gy > 0.

1) Let m > 0, and m′ > m, be integers prime to p. Consider the cover

given generically by the equation Xp − X = π/T m′

+ 1/T m. This cover
has a degeneration of type (0,−m) on the boundary, the point y above x is
singular, and its arithmetic genus equals (m′ − m)(p − 1)/2.

2) Let m, m′, and n be positive integers with m and m′ prime to p.
Consider the cover given generically by the equation X p − X = T m/πpn +

π/T m′

. This cover has a degeneration of type (n,m) on the boundary, the
point y above x is singular, and its arithmetic genus equals (m′+m)(p−1)/2.

3) Let m, m′ and n be positive integers such that m and m′ are prime to p,
and m′ > m. Consider the cover given generically by the equation X p−X =
T−mπ−pn + π/T m′

. This cover has a degeneration of type (n,−m) on the
boundary, the point y above x is singular, and its genus equals (m′−m)(p−
1)/2.

Next, we examine the case of Galois covers of degree p above formal germs
at double points.

3.3.5. Proposition. Let X := SpfR[[S, T ]]/(ST − πe) be the formal germ
of an R-curve at an ordinary double point x of thickness e. Let X1 :=
SpfR[[S]]{S−1}, and X2 := SpfR[[T ]]{T−1} be the boundaries of X . Let f :
Y → X be a Galois cover with group Z/pZ, and with Y local. Assume that
the special fiber of Y is reduced. We assume that Yk has two branches at
the point y. Let dη := r(p − 1) be the degree of the divisor of ramification
in the morphism f : YK → XK . Let (ni,mi) be the degeneration type on
the boundaries of X , for i = 1, 2. Then necessarily r + m1 + m2 ≥ 0, and
gy = (r + m1 + m2)(p − 1)/2.

3.3.6. Proposition. We use the same notations as in Proposition 3.3.5.
We consider the remaining cases:

12
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1) Yk has p + 1 branches at y, in which case we can assume that Y
is completely split above X1. Let (n2,m2) be the degeneration type on
the second boundary X2 of X . Then necessarily r + m2 − 1 ≥ 0, and
gy = (r + m2 − 1)(p − 1)/2.

2) Yk has 2p branches at y, in which case Y is completely split above the
two boundaries of X , and gy = (r − 2)(p − 2)/2.

With the same notations as in proposition 3.3.5, and as a consequence,
one can detect whether the point y is a double point or not. More precisely,
we have the following:

3.3.7. Corollary. We use the same notations as in 3.3.5. Then y is an
ordinary double point, which is equivalent to gy = 0, if and only if x is
an ordinary double point of thickness divisible by p, and r = m1 + m2.
Moreover, if r = 0, then gy = 0 is equivalent to m1 + m2 = 0.

Next, we give examples of Galois covers of degree p above the formal germ
of a double point which lead to singularities with genus 0, i.e. double points,
and such that r = 0. These examples will be used in sections 4 and 5 in
order to realize the “degeneration data” corresponding to Galois covers of
degree p in equal characteristic p > 0.

3.3.8. Examples. The following are examples (given by explicit equa-
tions) of the different cases, depending on the possible degeneration type
on the boundaries, of Galois covers f : Y → X of degree p above X =
SpfR[[S, T ]]/(ST − π′), with r = 0, and where gy = 0 for a suitable choice
of e. Note that e = pt must be divisible by p. In all the following examples
we have r = 0.

1) p-Purity: if f as above has an étale reduction type on the boundaries,
and r = 0, then f is necessarily étale and hence is completely split since X
is strictly henselian.

2) Consider the cover given generically by the equation X p−X = 1/T m =
Sm/πmpt, where m is a positive integer prime to p, which leads to a reduction
on the boundaries of type (0,−m) and (mt,m).

3) Let n and m be positive integers such that m is prime to p, and n−tm >
0. Consider the cover given generically by the equation X p−X = T m/πnp =
S−m/πp(n−tm), which leads to a reduction on the boundaries of type (n,m)
and (n − tm,−m).

In fact one can describe Galois covers of degree p above formal germs of
double points (in equal characteristic p), which are étale above the generic
fiber and with genus 0. Namely they are all of the form given in the above
examples 3.3.8. In particular, these covers are uniquely determined (up to
isomorphism) by their degeneration type on the boundaries. More precisely,
we have the following:
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3.3.9. Proposition. Let X be the formal germ of an R-curve at an ordinary
double point x. Let f : Y → X be a Galois cover of degree p, with Yk

reduced and local, and with fK : YK → XK étale. Let Xi, for i = 1, 2, be
the boundaries of X . Let fi : Yi → Xi be the torsors induced by f above
Xi, and let δi be the corresponding degree of the different (cf. 1.3.1). Let
y be the closed point of Y, and assume that gy = 0. Then there exists an
isomorphism X ' SpfR[[S, T ]]/(ST− πtp), such that if X2 is the boundary
corresponding to the prime ideal (π, S), one of the following holds:

a) The cover f is generically given by the equation X p − X = 1/T m =
Sm/πmpt, where m is a positive integer prime to p. This cover leads to a
reduction on the boundaries of X of type (0,−m), and (mt,m). Here t > 0
can be any integer. In this case δ1 = 0, and δ2 = mt(p − 1).

b) The cover f is generically given by an equation X p − X = T m/πnp

= 1/πp(n−tm)Sm, where m > 0 is an integer prime to p, and n > 0 is
such that n − tm > 0. This cover leads to a reduction on the boundaries
of X of type (n,m), and (n − tm,−m). In this case δ1 = n(p − 1), and
δ2 = (n − tm)(p − 1).

Proof. The proof is similar to the proof of 4.2.5 in [8] in the unequal
characteristic case.

3.3.10. Variation of the different. The following result, which is a direct
consequence of Proposition 3.3.9, describes the variation of the degree of the
different from one boundary to another in a cover f : Y → X between formal
germs at double points.

3.3.11. Proposition. Let X be the formal germ of an R-curve at an
ordinary double point x. Let f : Y → X be a Galois cover of degree p, with
Yk reduced and local, and with fK : YK → XK étale. Let y be the closed
point of Y. Assume that gy = 0, which implies necessarily that the thickness
e = pt of the double point x is divisible by p. For each integer 0 < t′ < t, let
Xt′ → X be the blow-up of X at the ideal (πpt′ , T ). The special fiber of Xt′

consists of a projective line Pt′ which meets two germs of double points x and
x′. Let η be the generic point of Pt′ , and let vη be the corresponding discrete
valuation of the function field of X . Let ft′ ; Yt′ → Xt′ be the pull back of f ,
which is a Galois cover of degree p, and let δ(t′) be the degree of the different
induced by this cover above vη (cf. 2.2.1). Also denote by Xi, for i = 1, 2,
the boundaries of X . Let fi : Yi → Xi be the torsors induced by f above
Xi. let (ni,mi) be their degeneration type, and let δi be the corresponding
degree of the different. Say δ1 = δ(0), δ2 = δ(t), and δ(0) ≤ δ(t). We have
m := −m1 = m2 which we assume to be positive. Then the following holds:
for 0 ≤ t1 ≤ t2 ≤ t we have δ(t2) = δ(t1) + m(p− 1)(t2 − t1), and δ(t′) is an
increasing function of t′.

14
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4. Semi-stable reduction of cyclic p-covers above formal germs of
curves in equal characteristic p > 0.

In this section we use the following notations: R is a complete discrete
valuation ring, of characteristic p, with residue field k which we assume
to be algebraically closed, and fraction field K := FrR. We denote by π a
uniformizing parameter of R, and vK the valuation of K which is normalized
by vK(π) = 1. For an R-scheme (resp. a formal R-scheme) X we denote by
Xk := X ×R k (resp. XK := X ×R K) the special fiber of X (resp. its generic
fiber (which in the case where X is formal is the associated rigid space (cf.
[1]) ).

4.1. Let X be either a formal semi-stable R-curve, or the formal germ of
a semi-stable R-curve X at a closed point x. Let f : Y → X be a Galois
cover, with group G, such that Y is normal (in case X is a germ we also
require Y to be local). In this paper we are mainly concerned with the case
where G is cyclic of order p. It follows easily from the theorem of semi-
stable reduction for curves (cf. [2]) (as well as from the compactification
process, established in 3.2, in the case of a germ) that after perhaps a finite
extension R′ of R, with fraction field K ′, the formal curve (resp. germ) Y
has semi-stable reduction over K ′. More precisely, there exists a birational
and proper morphism f̃ : Ỹ → Y ′, where Y ′ is the normalization of Y×R R′,
such that ỸK′ ' Y ′

K , and the following conditions hold:

(i) The special fiber Ỹk := Ỹ ×SpecR′ Speck of Ỹ is reduced.

(ii) Ỹk has only ordinary double points as singularities.

Moreover, there exists such a semi-stable model f̃ : Ỹ → Y ′ which is minimal

for the above properties. In particular, the action of G on Y ′ extends to an
action on Ỹ. Let X̃ be the quotient of Ỹ by G, which is a semi-stable model
of X ′ := X ×R R′. One has the following commutative diagram:

Ỹ
f̃

−−−−→ Y ′

g





y





y

f ′

X̃
g̃

−−−−→ X ′

One can also choose the semi-stable models Ỹ and X̃ above so that the
set of points BK′ := {xi,K′}1≤i≤r, consisting of the branch locus in the mor-
phism f ′

K : Y ′
K′ → X ′

K′ specialize in smooth distincts points of X ′
k. Moreover,

one can choose such X̃ and Ỹ which are minimal for these properties. Also
there exists a minimal extension K ′ as above such that these conditions are
satisfied. In what follows we always assume that K ′, X̃ , and Ỹ satisfy these

later properties and are minimal in the above sense.

15

Saïdi: Galois Covers of Degree p and Semi-stable Reduction of Curves in

Produced by The Berkeley Electronic Press, 2007



128 M. SAÏDI

In the case where X is the germ of a formal semi-stable R-curve X, at
a closed point x, the fiber g̃−1(x) of the closed point x in X̃ is a tree Γ of
projective lines. The tree Γ is canonically endowed with some “degeneration

data” that we will exhibit below and in the next section, in the case where
G ' Z/pZ, and which take into account the geometry of the special fiber Ỹk

of Ỹ. This will mainly follow from the results which we recalled/established
in sections 2 and 3.

4.2. We use the same notation as in 4.1. We consider the case where
X ' SpfA is the formal germ of a semi-stable R-curve X at a smooth
point x, i.e. A is (non-canonically) isomorphic to R[[T ]]. Let R ′ be a finite
extension of R as in 4.1, and let π′ be a uniformizer of R′. Below we exhibit
the degeneration data associated with the semi-stable reduction Ỹ of Y.

Deg. 1. Let ℘ := (π′) be the ideal of A′ := A ⊗R R′ generated by π′, and

let Â′
℘ be the completion of the localization of A′ at ℘. Let X ′

η := SpfÂ′
℘

be the formal boundary of X ′, and let X ′
η → X ′ be the canonical morphism.

Consider the following cartesian diagram:

Y ′
η

fη
−−−−→ X ′

η




y





y

Y ′ f ′

−−−−→ X ′

The finite cover fη : Y ′
η → X ′

η is a torsor under the finite commutative
and flat R′-group scheme Mn,R′ , for some integer n ≥ 0, as follows from
2.3.1. Let (n,m) be the degeneration type of the torsor fη (cf. 2.3.2), which
is canonically associated with f . The arithmetic genus gy of the point y
equals (r + m− 1)(p− 1)/2 (cf. 3.3.1), where dη := r(p− 1) is the degree of
the divisor of ramification in the morphism f ′

K′ : Y ′
K′ → X ′

K′.

Deg.2. The fiber g̃−1(x) of the closed point x of X ′ in X̃ is a tree Γ of pro-
jective lines. Let Vert (Γ) := {Xi}i∈I be the set of irreducible components
of g̃−1(x), which are the vertices of the tree Γ. The tree Γ is canonically
endowed with an origin vertex Xi0 , which is the unique irreducible compo-
nent of g̃−1(x) which meets the point x. We fix an orientation of the tree Γ
starting from Xi0 in the direction of the ends.

Deg.3. For each i ∈ I, let {xi,j}j∈Si
be the set of points of Xi in which

specializes some point of BK′ ( Si may be empty). Also let {zi,j}j∈Di
be

the set of double points of X̃k supported by Xi. In particular, xi0,j0 := x is

a double point of X̃k. We denote by Bk the set of all points
⋃

i∈I

{xi,j}j∈Si
,

which is the set of specialization of the branch locus BK′ , and by Dk the set
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of double points of X̃k. Note that by hypothesis Bk has the same cardinality
as BK′ .

Deg.4. Let U be the formal subscheme of X̃ obtained by removing the
formal fibers of the points in {Bk ∪Dk}. Let {Ui}i∈I be the set of connected
components of U . The restriction gi : Vi → Ui, of g to Ui, is a torsor under
the commutative finite and flat R′-group scheme Mni,R′ of rank p, for some
integer ni ≥ 0, as follows from 2.2.1. Further, gi,k : Vi,k := Vi×R′k → Ui,k :=
Ui ×R′ k is a torsor under the k-group scheme Mni,R′ ×R′ k, which is either
étale isomorphic to (Z/pZ)k, or radicial isomorphic to (αp)k. Moreover,
when we move in the graph Γ from a fixed vertex Xi in the direction of a
vertex Xi′ such that ni′ = 0 (following the above fixed orientation), then
the corresponding integers ni decrease strictly (as follows from 3.3.11).

Deg.5. Each smooth point xi,j ∈ Bk is endowed via g with a degeneration

data on the boundary of the formal fiber of X̃ at xi,j (in the same way that
we exhibited the data in Deg.l above). More precisely, for each point xi,j

we have the reduction type (ni,j := ni,mi.j) on the boundary of the formal

fiber X̃i,j ' SpfR[[Ti,j ]] of X̃ at this point, and which is induced by g. Then
ri,j = mi,j +1, where ri,j(p−1) is the contribution to dη of the points which

specialize into xi,j, as follows from 2.3.2 (since the point of Ỹ above xi,j is
smooth). In particular, mi,j ≤ 1, since ri,j 6= 0.

Deg.6. Each double point zi,j = zi′,j′ ∈ Xi∩Xi′ of X̃ , with origin vertex Xi

and terminal vertex Xi′ , is endowed with degeneration data (ni,j := ni,mi,j)
and (ni′,j′ := ni′ ,mi′,j′) induced by g on the two boundaries of the formal

fiber of X̃ at this point. Also, we have mi,j +mi′,j′ = 0 as follows from 3.3.7

(since r = 0 in this case, and the point of Ỹ above zi,j is a double point). Let
ei,j be the thickness of the double point zi,j. Then ei,j = pti,j is necessarily
divisible by p, and we have ni − ni′ = ti,jmi,j (as follows from 3.3.11).

Deg.7. It follows, after easy calculation, that:

gy =
∑

i∈Iet

(−2 +
∑

j∈Si

(mi,j + 1) +
∑

j∈Di

(mi,j + 1))(p − 1)/2

where Iet is the subset of I consisting of those i for which the torsor fi is
étale (i.e. such that ni = 0).

4.3. Remark/Example. We could also have considered the minimal

semi-stable models Ỹ and X̃ , where we assume that the branched points on
the generic fiber X̃ ×R′ K ′ specialize into smooth (non necessarily distinct)

points of X̃ ×R′ k, and exhibit the corresponding degeneration data in this
case. In what follows we give an example of a Galois cover f : Y → X of
degree p, where X ' SpfR[[T ]] is the formal germ of a smooth point, and
where one can exhibit these degeneration data. More precisely, for m > 0 an
integer, such that both m and m+1 are prime to p, consider the cover given
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generically by the equation Xp−X = (T−m+πT−m−1). Here r = m+2, and
this cover has a reduction of type (0,−m) on the boundary. In particular,
the arithmetic genus gy of the closed point y of Y equals (p − 1)/2. The
degeneration data associated to the above cover consists necessarily of a tree
with only one vertex and no edges. Thus is a unique projective line X1, with
a marked point x1, and an étale torsor f1 : V1 → U1 := X1 −{x1} above U1

with conductor 2 at the point x1.
The above considerations lead naturally to the following abstract, geo-

metric and combinatorial, definition of degeneration data.

4.4. Definition. K ′-simple degeneration data Deg(x) of type (r, (n,m)),
and rank p, where K ′ is a finite extension of K, consist of the following:

Deg.1. r ≥ 0 is an integer, m is an integer prime to p such that r+m−1 ≥
0, and n ≥ 0 is an integer. Further, Gk is a commutative finite and flat k-
group scheme of rank p which is either étale if n = 0, or radicial of type αp

otherwise.
Deg.2. Γ := Xk is an oriented tree of k-projective lines, with set of ver-

tices Vert(Γ):= {Xi}i∈I , which is endowed with an origin vertex Xi0 , and a
marked point x := xi0,j0 on Xi0 . We denote by {zi,j}j∈Di

the set of double
points, or (non oriented) edges of Γ, which are supported by Xi. Further, we
assume that the orientation of Γ is in the direction going from Xi0 towards
its ends.

Deg.3. For each vertex Xi of Γ there is a set (which may be empty) of
smooth marked points {xi,j}j∈Si

in Xi.
Deg.4. For each i ∈ I, there is a torsor fi : Vi → Ui := Xi − {{xi,j}j∈Si

∪
{zi,j}j∈Di

} under a finite commutative and flat k-group scheme Gi,k of rank
p, which is either étale or radicial of type αp, with Vi smooth. Moreover, for
each i ∈ I there is an integer ni ≥ 0 which equals 0 if and only if fi is étale.

Deg.5. For each i ∈ I, and j ∈ Si, are given integers mi,j, where mi,j is
the conductor of the torsor fi at the point xi,j (cf. [9], I), with mi0,j0 = −m.
We further assume that mi,j ≤ 1, if ni > 0.

Deg.6. For each double point zi,j = zi′,j′ ∈ Xi ∩ Xi′ , there is an integer
mi,j (resp. mi′,j′) prime to p, where mi,j (resp. mi′,j′) is the conductor of
the torsor fi (resp. fi′) at the point zi,j (resp. zi′,j′) (cf. [9], I). These data
must satisfy mi,j + mi′,j′ = 0.

Deg.7. For each double point zi,j = zi′,j′ ∈ Xi ∩ Xi′ of Γ, with origin
vertex Xi, there is an integer ei,j = pti,j divisible by p such that, with the
same notation as above, we have ni − ni′ = mi,jti,j. Moreover, associated
with x is an integer e = pt such that n − ni0 = mt.

18

Mathematical Journal of Okayama University, Vol. 49 [2007], Iss. 1, Art. 7

http://escholarship.lib.okayama-u.ac.jp/mjou/vol49/iss1/7



GALOIS COVERS OF DEGREE p AND SEMI-STABLE REDUCTION 131

Deg.8. Let Iet be the subset of I consisting of those i for which Gi,k is
étale. Then the following equality should hold:

(r − m − 1)(p − 1)/2 =
∑

i∈Iet

(−2 +
∑

j∈Si

(mi,j + 1) +
∑

j∈Di

(mi,j + 1))(p − 1)/2.

The integer g := (r +m− 1)(p− 1)/2 is called the genus of the degeneration
data Deg(x).

Note that if K ′ is a finite extension of K ′, then K ′-simple degeneration
data Deg(x) can be naturally considered as K ′-degeneration data, by mul-
tiplying all integers n, ni, and ei,j , by the ramification index of K ′ over
K ′.

There is a natural notion of isomorphism of simple degeneration data of
a given type and rank p, relative to some finite extension K ′ of K. We will
denote by Degp the set of isomorphism classes of K ′-simple degeneration
data of rank p, where K ′ runs over all finite extensions K ′ of K. The above
discussion in 4.2 can be reinterpreted as follows:

4.5. Proposition. Let X be the germ of a formal R-curve at a smooth point
x, and let f : Y → X be a cyclic p-cover, with Y normal and local. Then one
can associate with f , canonically, simple degeneration data Deg(x) ∈ Degp

which describes the semi-stable reduction of Y. In other words, there exists
a canonical “specialization” map Sp: H1

et(SpecL, Z/pZ) → Degp, where L

is the function field of the geometric fiber X := X ×R R of X , and R is the
integral closure of R in an algebraic closure of K.

Reciprocally, we have the following result of realization of degeneration
data for such covers:

4.6. Theorem. The above specialization map Sp : H 1
et(SpecL,Z/pZ) →

Degp defined in 4.4 is surjective.

Proof. Consider a degeneration data Deg(x) ∈ Degp. We have to show
that Deg(x) is associated to some cyclic p-cover above the formal germ of
a smooth R-curve, after possibly enlarging R. We assume that the degen-
eration data is of type (r, (n,m)). We only treat the case n = 0, the case
where n > 0 is treated in a similar way. The proof is done by induction on
the length of the tree Γ of Deg(x). Assume first that the tree Γ has minimal
length. Thus Γ consists of one irreducible component X = P1

k, with one
marked (double) point x, and r smooth distinct marked points {xi}

r
i=1. Let

U := X −{x, xi}i, and let f : V → U be the torsor given by the data Deg.4,
which is necessarily an αp-torsor (i.e. the integer ni := n′ associated to the
vertex X in Deg.4 is non zero). First, for each i ∈ {1, . . . , r} consider the
formal germ Xi := SpfR[[Ti]], and the cyclic p-cover fi : Yi → Xi given
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by the equation Y p
i − πn′

Yi = T mi

i , where mi is the “conductor” associ-
ated to the point xi in Deg.5, and n′ is the positive integer associated to
f in Deg.4. Let X be a formal projective R-line with special fiber X. Let
X ′ := X − {x}, and let X ′ (resp U) be the formal fiber of X ′ (resp. of U)
in X . The torsor f is given by an equation tp = u where u is a regular
function on U . Let u be a regular function on U which lifts u. The cover
f : V → U , given by the equation Y p − πn′(p−1)Y = u, is a torsor under
the R-group scheme Mn′ which lifts the αp-torsor f . By construction the
torsor f has a reduction on the formal boundary at each point xi of type
(n′,mi), which coincides with the degeneration type of the cover fi above
the formal boundary of Xi. The technique of formal patching (cf. [8], 1)
allows then one to construct a p cyclic cover f ′ : Y ′ → X ′ which restricted
to U is isomorphic to f ′, and which restricted to Xi, for each i ∈ {i, . . . , r},
is isomorphic to fi (cf. 1oc. cit.). Let X1 → X be the blow up of X at the
point x, and let X1 be the exceptional fiber in X1, which meets X at the
double point x. Let e = pt be the integer associated to the marked double
point x via Deg.7. After enlarging R we can assume that the double point
x of X1 has thickness e. We have −n′ = mt by assumption. Let X ′

1 be the
formal fiber of X ′

1 := X1 − {x} in X1. Let f ′
1 : Y ′

1 → X ′
1 be the étale Z/pZ-

torsor given by the equation Y ′p−Y ′ = hm, where h is a“parameter” on X ′
1.

Further, let X1,x ' SpfR[[S, T ]]/(ST − πpt) be the formal germ of X1 at the
double point x. Consider the cover f1,x : Y1,y → X1,x given by the equation
Y p − Y = Sm = πptmT−m. Then Y1,y is the formal germ of a double point
of thickness t (cf. 3.3.8, 2) ). Moreover, the cover f ′

1 (resp. f ′) has the same
degeneration type (by construction), on the boundary corresponding to the
double point x, as the degeneration type of the cover f1,x above the formal
boundary with parameter T (resp. above the formal boundary with param-
eter S). A second application of the formal patching techniques allows one
to construct a p-cyclic cover f1 : Y1 → X1 which restricted to X ′ (resp. X ′

1

and X1,x) is isomorphic to f ′ (resp. to f ′
1 and fx). Let X̃ be the R-curve

obtained by contracting the irreducible component X in X1. We denote the
image of the double point x in X̃ simply by x. The cover f1 : Y1 → X1

induces canonically a p-cyclic cover f̃ : Ỹ → X̃ above X̃ . Let Xx ' R[[T ]]

be the formal germ of X̃ at the smooth point x. Then f̃ induces canonically
a p-cyclic cover fx : Yy → Xx where y is the closed point of Y above x.
Now it is easy to see that the degeneration data associated to fx, via 4.5,
is isomorphic to the degeneration data Deg(x) we started with. Finally, the
proof in the general case is very similar and is left to the reader. The only
modification in the proof above is that one has to consider the p-cyclic cover
fi : Yi → Xi (above the formal germs Xi := SpfR[[Ti]]) which one obtains by
the induction hypothesis as realization of the degeneration data, induced by
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Deg(x), on the subtree Γi of Γ which starts from the edge xi in the direction
of the ends, and which clearly has length smaller than the length of Γ.

4.7. Remarks.
1. One can also define in the same way as in 4.4, and using the results

of sections 2 and 3, the set of isomorphism classes of “double” degeneration
data associated to the minimal semi-stable model of p-cyclic covers f : Y →
X above the formal germ of a double point. Moreover, one can prove, in
asimilar way as in 4.6, a result of realization for such a degeneration data.

2. It is easy to construct examples of p-cyclic covers f : Y → X , above
the formal germ of a smooth point X , where the special fiber Yk is singular
and unibranche at the closed point y of Y, and such that the configuration
of the special fiber of a semi-stable model Ỹ of Y is not a tree-like. More
precisely, consider the simple degeneration data Deg(x) of type (n,m), with
n > 0, m > 0, and n = mt, which consists of a graph Γ with two vertices
X1 and X2 linked by a unique edge x̃ with given marked points x = x1 on
X1 and x2 on X2. Further, X1 is the origin of Γ. As part of the data are
given étale torsors of rank p : f1 : V1 → U1 := X1 −{x1}, with conductor m
at x = x1, and f2 : V2 → U2 := X2 − {x2}, with conductor m′ at x2. Also
is given the thickness e = pt at the “double” point x with n = tm. Then
it follows from 4.6 that there exists, after possibly a finite extension of R, a
Galois cover f : Y → X of degree p above the formal germ X ' SpfR[[T ]]
at the smooth R-point x, such that the simple degeneration data associated
to the above cover f is the above given one. Moreover, by construction the
singularity of the closed point y of Y is unibranche, and the configuration
of the semi-stable reduction of Y consists of two projective curves which
meet at p-double points (the above cover will be étale in reduction above
the double point ỹ). In particular, one has p−1 cycles in this configuration.

5. Semi-stable reduction of cyclic p-covers above proper curves in
equal characteristic p.

In what follows we use the same notation as in section 4. Our aim in this
section is to describe the “degeneration data” that arise from the semi-stable
reduction of Galois covers of degree p above smooth, and proper, R-curves,
and prove a realization theorem for such data.

5.1. Let X be a formal smooth and proper R-curve, and let f : Y → X be
a Galois cover with group G ' Z/pZ, such that Y is normal. We denote by

X the special fiber Xk := X ×R k of X . Let R′, K ′, X ′, Y ′, X̃ , and Ỹ be as
in 4.1. Recall that we have the following commutative diagram:
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Ỹ
f̃

−−−−→ Y ′

g





y

f ′





y

X̃
g̃

−−−−→ X ′

5.2. We use the same notations as in 4.1 and 5.1. Let R′ be a finite
extension of R as in 4.1, and let π′ be a uniformizer of R′. Below we exhibit
the degeneration data associated with the minimal semi-stable reduction Ỹ
of Y.

Deg.1. Let η′ be the generic point of the special fiber of X ′, and let X ′
η

be the formal germ of X ′ at η′. Consider the following cartesian diagram:

Y ′
η

fη
−−−−→ X ′

η




y





y

Y ′ f ′

−−−−→ X ′

Then fη : Y ′
η → X ′

η is a torsor under the finite commutative and flat R′-
group scheme Mn,R′ of rank p, for some integer n ≥ 0, as follows from 2.2.1.
We denote by (n,m) the degeneration type of the torsor fη (cf. 2.3.2), which
is canonically associated with f .

Deg.2. Let {xi}i∈I′ be the finite set of closed points of X in which spe-
cialize some branched points of the morphism f ′

K′ : Y ′
K′ → X ′

K′ . We denote
this set by Bk. Let U := X −Bk, and let U ′ be the formal fiber of U in X ′.
Then the restriction f ′ : V ′ → U ′ of f ′ to U ′ is a torsor under a finite and
flat R-group scheme of rank p (as follows from 2.2.1), which is necessarily
the group scheme Mn,R′ . When the torsor f ′

k : V ′
k → U ′

k = U is radicial, let
ω be the associated differential form (cf. [9], 1), and let ZK be the set of
zeros of ω. Let Crit(f) = Bk if f ′

k is étale (resp. Crit(f) = Bk ∪ Zk if f ′
k is

radicial), and call this the set of critical points of f . If y ∈ Y is a singular
point, then x = f(y) ∈ Crit(f) necessarily.

Deg.3. Let Crit (f) = {xi}i∈I . For each i ∈ I, let X ′
i be the formal fiber

of xi in X ′, and let f ′
i : Y ′

i → X ′
i be the cover induced by f ′. Let (ni,mi) be

the degeneration type of f ′
i on the boundary (cf. 2.3.2). Then necessarily

all the integers ni are equal to n.
Deg.4. For each i ∈ I, the Galois cover f ′

i : Y ′
i → X ′

i gives rise, via 4.5,
to K ′-simple degeneration data Deg(xi) of type (ri, (n = ni,mi)), where ri

is the number of branched points which specialize in xi.
The above considerations lead naturally to the following abstract, geo-

metric and combinatorial, definition of degeneration data.
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5.3. Definition. Smooth K ′-degeneration data Deg(X), of rank p, consist
of the following data:

Deg.1. K ′ is a finite extension of K. X is a proper and smooth k-curve,
endowed with a finite set Bk of closed (mutually distinct) marked points.
Let U := X − Bk.

Deg.2. f : V → U is a torsor under a finite and flat k-group scheme Gk

of rank p, and n ≥ 0 is an integer, which equals 0 if and only if Gk is étale.
Deg.3. Let Crit(f) = {xi}i∈I be the set Bk if f is étale (resp. the

set Crit(f) = Bk ∪ Zk if f is radicial, where Zk is the set of zeros of the
corresponding differential form). For each i ∈ I, let mi be the conductor of
the above torsor f at the point xi (cf. [9], I). We assume that we are given
K ′-simple degeneration data Deg(xi) of type (ri, (n,mi)) (cf. 4.4).

There is a natural notion of isomorphism of smooth degeneration data
of rank p, relative to a given finite extension K ′ of K, and associated with

a smooth and proper k-curve X. We will denote by DEGp(X) the set of
isomorphism classes of smooth degeneration data of rank p, associated with
X. The above discussion in 5.2 can be reinterpreted as follows:

5.4. Proposition. Let X be a formal, proper, and smooth R-curve with
special fiber Xk := X ×R k, and let f : Y → X be a cyclic p-cover with
Y normal. Then one can associate with f , canonically, a smooth degenera-
tion data Deg(Xk) ∈ DEGp(Xk), which describes the semi-stable reduction
of Y. In other words there exists a canonical “specialization” map Sp :
H1

et(SpecL, Z/pZ) → DEGp(Xk), where L is the function field of the geo-

metric fiber X := X ×R R of X , and R is the integral closure of R in an
algebraic closure of K.

Reciprocally, we have the following result of realization of degeneration
data for such covers:

5.5. Theorem. Let Deg(X) ∈ DEGp(X) be a smooth degeneration data of
rank p, associated with the k-proper and smooth curve X. Then there exists
a smooth, formal, and proper R-curve X ′, with special fiber X ′

k := X ′ ×R k
isomorphic to X, and such that Deg(X) is in the image of the specialization
map Sp : H1

et(SpecL, Z/pZ) → DEGp(X) defined in 5.4, where L is the

function field of the geometric fiber X ′ ×R R of X ′, and R is the integral
closure of R in an algebraic closure of K.

Proof. Consider smooth degeneration data Deg(X) ∈ DEGp(X). We
assume for simplicity that Deg(X) is K-degeneration data. We have to show
that Deg(X) is associated, via the map in 5.4, with some cyclic p-cover above
a formal, proper, and smooth R-curve X ′. We only treat explicitly the case
where n = 0 (i.e. the torsor f in Deg.2 is étale), the remaining cases are
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treated similarly. Let X be a formal, smooth, and proper R-curve whose
special fiber Xk is isomorphic to X. Let U be the formal fiber of U in X , and
for i ∈ I, let Xi be the formal fiber of xi in X . The étale torsor f given by
Deg.2 can be lifted to an étale torsor f : V → U , by the theorems of lifting of
étale covers (one can in this specific situation write down an explicit lifting).
Also, for i ∈ I, let fi : Yi → Xi be a Galois cover of degree p which is a
realization (as in 4.6) of the degeneration data Deg(xi) given by Deg.3, and
which is of type (ri, (0,mi)), where mi is the Hasse-conductor of f at xi.
By construction the covers f and fi coincide on the formal boundaries at
the points xi. The technique of formal patching (cf. [8], 1) allows one to
construct a p-cyclic cover f ′ : Y ′ → X ′, where X ′ is a proper and smooth
formal curve. This is obtained by gluing U to the Xi (i ∈ {1, . . . , r}), by
identifying the boundaries corresponding to each point xi, via some specific
isomorphisms, which when restricted to U are isomorphic to f , and when
restricted to Xi, for each i ∈ I, are isomorphic to fi (cf. 1oc. cit.). Note that
in general X ′ is not isomorphic to X . Indeed the identifications of formal
boundaries used to construct X ′ (which are specific isomorphisms), need not
be compatible with those which lead to the construction of X by gluing U
to the Xi.

The technique of formal patching used in the proof of 5.5 can be used to
prove the following result.

5.6. Theorem. Let X be a smooth and proper k-curve, and let f : Y → X
be a torsor under a finite and flat k-group scheme Gk of rank p. Then there
exists, a smooth and proper R-curve X with special fiber isomorphic to X,
and a torsor f̃ : Y → X under an R-group scheme GR, which is commutative
finite and flat of rank p, such that the torsor f̃k : Yk → Xk induced by f̃
on the level of special fibers is isomorphic to f . In other words the torsor f̃
lifts f . In particular, Gk is isomorphic to the special fiber of GR.

Proof. When f is an étale torsor, 5.6 is a consequence of the theorems of
lifting of étale covers (cf. [11]). Moreover, in this case one can specify the
lifting X of the curve X. So it remains to treat the case where Gk ' αp. By
the formal GAGA theorems it suffices to realize a lifting of f over a formal,
proper, and smooth R-curve X . Let {yi}i∈I be the finite set of singular
points in Y , and let {xi}i∈I be the set of their images in X, which we call
the set of critical points of the torsor f . For i ∈ I, let mi > 0 be the
conductor of the torsor f at the point xi (cf. [9], 1.5). The arithmetic genus
gy of y equals (m − 1)(p − 1)/2.

Let U := X − {xi}i∈I , and let U be a formal affine scheme whose special
fiber equals U . Also for i ∈ I, let Xi ' SpfR[[Ti]] be the formal germ of
an R-curve at a smooth point xi. The restriction f ′ : V → U of f to U is
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an αp torsor, given by an equation yp = u where u is a regular function on
U . Let ω be the differential form du. Then ω is a global differential form
on X: it is the differential form associated with the torsor f . Moreover the
conductor mi equals ordxi

(ω) + 1 (cf. [9], 5.1).

Let n ≥ 0 be an integer. Let f̃ : V → U be the Mn,R-torsor given by

an equation Y p − π(n−1)pY = u, where u is a regular function on U which
lifts u. Also, for i ∈ I consider the Mn,R-torsor fi : Yi → Xi given by an

equation Y p − π(n−1)pY = T mi

i , which has a reduction on the boundary of
type (n,−mi). By construction, this is the same reduction type as that of

the torsor f̃ on the formal boundary corresponding to the point xi. The
technique of formal patching (cf. [8], 1) allows one to construct an Mn,R-
torsor f ′ : Y → X , where X is a proper and smooth formal curve. This
is obtained by gluing U to the Xi(i ∈ I), by identifying the boundaries via

some specific isomorphisms, which when restricted to U are isomorphic to f̃ ,
and when restricted to Xi, for each i ∈ I, are isomorphic to fi (cf. 1oc. cit.).
In particular, the special fiber of X is isomorphic to X.

Note that, in general, if X ′ is another formal curve which lifts X, then
we can not construct a lifting f ′ of f as above, above the curve X ′, even if
the formal fiber of U in X ′ is isomorphic to U . Indeed, the identification of
formal boundaries used to construct X (which are specific isomorphisms),
need not be compatible with those which lead to the construction of X ′ by
gluing U to the Xi.

5.7. Remarks.
1. Theorem 5.5 is stronger than 5.6. Indeed a translation of 5.6 in the

language of 5.5 leads not only to the lifting of the torsor f , but to a lifting
with specified simple degeneration data at the critical points.

2. In [5] Maugeais proved (in equal characteristic p > 0) in theorem 5.4
a global result of lifting for finite “admissible” covers of degree p between
semi-stable curves. The methods used in the proof of 5.6 are essentially the
same as he uses but more direct in the sense that the lemmas 4.2, 4.4, and
corollary 4.3 he uses are avoided and we use instead our results 3.3.3, 3.3.4,
and 3.3.8 which are direct consequences of the computation of vanishing
cycles.

3. The same proof as in 5.6 shows that it is possible to lift, as above,
αpn -torsors f : Y → X above a proper and smooth k-curve X.
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[3] H. Epp, Eliminating wild ramification, Invent. Math. 19, 235-249, (1973).
[4] Y. Henrio, arbres de Hurwitz et automorphismes d’ordre p de disques et couronnes

p-adique formels, PHD Thesis, university of Bordeaux, (1999).
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