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A CHARACTERIZATION OF ONE DIMENSIONAL
N-GRADED GORENSTEIN RINGS OF FINITE
COHEN-MACAULAY REPRESENTATION TYPE

TOKUJI ARAYA

1. INTRODUCTION

Let R = @ R,, be an N-graded Cohen-Macaulay ring where Ry = k
is a field. We denote by modR the category of finitely generated graded
R-modules whose morphisms are graded R-homomorphisms that preserve
degrees. We also denote by CMR the full subcategory of modR consisting
of all graded maximal Cohen-Macaulay modules. In the paper [1] , we have
shown that if k is an algebraically closed field of characteristic 0 and if R
is a one dimensional N-graded Gorenstein ring of finite Cohen-Macaulay
representation type, then there exists an MCM generating exceptional se-
quence. In that work, we had to compute the dimension of Ext’(X,Y) as
k-vector space, for all indecomposable graded maximal Cohen-Macaulay
modules X and Y and for all n € N. Through this computation, we no-
ticed the importance of the invariants d(R) and d,,(R) of R that are defined
as follows:

d(R) := sup{z dimy Extk(X,Y) | X,Y € CMR are indecomposable},
n>0
dp(R) := sup{dimy Ext}(X,Y) | X,Y € CMR are indecomposable}.

In the present paper, we will give a characterization of one dimen-
sional N-graded Gorenstein rings of finite Cohen-Macaulay representation
type utilizing d(R) and do(R). More precisely, let R be a positively dimen-
sional N-graded Gorenstein ring with isolated singularity where Ry = k is
an algebraically closed field of characteristic 0. Then the invariant d(R)
can take only 7 values in {1,2,3,4,6,9,00}. Moreover, if d(R) < oo, then
dim R = 1 and R is isomorphic to one of the rings in the list (1) below and
in each case we are able to compute d(R) and d,(R).
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] | A2m+1 | Aom | Do | Dome1 | Es | Ev | Es |
LR 1 2 | 3 1 | 4]6]09
n>1) | 1 2 | 1 2 | 3|46
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2. PRELIMINARIES

In this section, we assume R = € R,, is a one dimensional N-graded
Gorenstein ring of finite Cohen-Macaulay representation type and assume
that Ry = k is an algebraically closed field of characteristic 0. In this case,
it is known that R is isomorphic to one of the following rings (c.f.[4] ).

(An) R=kl[z,y/(y* —2") (n>2)

(Dn) R=k[z,y]/(zy* —2") (n=3)
(1) (Es) R = klz,y]/(a®+y'

(Br) R=k[z,y]/(a®+2y’)

(Bs) R=klzy]/(a®+1°)

Moreover the Auslander-Reiten quiver of CMR for each type can be
described as they are shown in [1, Figures (1) — (7)] . We denote by T the
Auslander-Reiten quiver of CMR.

For indecomposable graded maximal Cohen-Macaulay modules X
and Y, we write X <Y if X 2 Y or if there exists a finite path from
XtoYinT.

Lemma 2.1. [1, Lemma 3.3.] The following hold for indecomposable
graded mazximal Cohen-Macaulay modules X and Y .

(1) There are no cyclic paths in I

(ii ) If Hom(X,Y) #0, then X < Y.

(iii) If ExtL(X,Y) # 0, then Y =< 7X. Here, 7X denotes the
Auslander-Reiten translation of X.

It follows from lemma 2.1.(iii) that, for a fixed X, 7X is the right
bound of the set {Y € CMR | indecomposable, Exth(X,Y) # 0} in T.
Now, we are giving the left bound of this set.

Lemma 2.2. For indecomposable graded mazimal Cohen-Macaulay mod-
ules X and Y, if ExtH(X,Y) # 0 then we have QX <Y < 7X. Here, QX
denotes the first syzygy module of X.
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Proof. Let 0 = Y — Z 5 X — 0 be a non-split exact sequence. Taking
the first syzygy of X; 0 — QX — F — X — 0 where F is free, we have
the commutative diagram:

0 Ox F X 0
I
0 Y zZ 1 X 0

Suppose f = 0 in this diagram. Then the morphism ¢ will induce a mor-
phism X — Z which contradicts the fact that 7 is not a split epimorphism.
Therefore f #£ 0, and we get QX <Y. O

Lemma 2.3. For any indecomposable graded maximal Cohen-Macaulay
modules X and Y, we have f{n € N | Ext}(X,Y) #0} <1.

Proof. If X is free, then the lemma is obviously true. Thus we may assume
that X is non-free, and hence QX (i > 0) are also non-free and 7Q!X
(1 > 0) are well-defined. Now assume that Ext'’s(X,Y) # 0 for some n > 0.
Since Exth(Q"1X,Y) = Ext}(X,Y) # 0, we have Q"X <YV < 7Q"1X
by lemma 2.2. On the other hand, since there exists a sequence --- <
QX 270X < X < 771X < Q71X 2 72X < - < 7OX <
QX < 7X < X and since there is no cyclic path in I', one sees that
Y A7Q"X for all m > n and Q"X AY for all 0 < m < n. Therefore we
have Ext(X,Y) = Exth(Q™ 1X,Y) = 0 for all m # n by lemma 2.2. O

3. MAIN THEOREM

In this section, we define the invariants d(R) and do(R) by which we
will give a characterization of one dimensional N-graded Gorenstein rings
of finite Cohen-Macaulay representation type.

Definition 3.1. For an N-graded Cohen-Macaulay ring R (not necessarily
of dimension one) with Ry = k being a field, we define d(R) and d,(R) as
follow:
d(R) := sup{z dimy Ext%(X,Y) | X,Y € CMR are indecomposable},
n>0
dn(R) := sup{dimy Ext%(X,Y) | X,Y € CMR are indecomposable}.

Now we are ready to state our main theorem of this paper.

Theorem 3.2. Let k be an algebraically closed field of characteristic 0 and
let R be a positively dimensional N-graded Gorenstein ring with isolated
singularity where Ry = k. Then the following conditions are equivalent.
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(i) R is a one dimensional N-graded Gorenstein ring of finite Cohen-
Macaulay representation type.

(i) d(R) <
( ii’) do(R) < 00
(i) d(R) <9

(iii”) do(R) <9

To show this theorem, we need the graded version of Brauer-Thrall 1
theorem for graded maximal Cohen-Macaulay modules, due to [4], [3] and
[2].

Theorem 3.3 (graded version of Brauer-Thrall 1 theorem). Let R be an
N-graded Cohen-Macaulay ring with isolated singularity where Ry = k is
a perfect field. If sup{e(X) | X € CMR is indecomposable} < oo, then
R is of finite Cohen-Macaulay representation type. Here e(X) denotes the
multiplicity of the irrelevant maximal ideal along X .

Proof of 3.2. The implications (iii) = (ii) = (ii’) and (iii) = (iii’) = (ii’)
are trivial. First, we show (ii’) = (i). Since do(R) < oo, we see that
dimy R, = dimy Hom(R, R(n)) < do(R) < oo for all n. Therefore the
Hilbert polynomial of R is constant. Hence dimR = 1. For any in-
decomposable graded maximal Cohen-Macaulay module X, dim; X, =
dimg Hom(R, X (n)) < do(R) for all n. Therefore the multiplicity e(X) of
X is bounded by do(R). Hence R is of finite Cohen-Macaulay representa-
tion type by theorem 3.3.

To prove (i) = (iii’), it is enough to compute sup{dimy Hom(R,Y),
dimy Hom(Y, R), dimy Hom(X;,Y), dim; Hom(Y;,Y) | Y € CMR is inde-
composable } where X; and Y; are in [1, Figures (1) — (7)] . For an inde-
composable graded maximal Cohen-Macaulay module X, we denote by X *
(resp. X ) the smallest additive full subcategory of CMR containing all
indecomposable graded maximal Cohen-Macaulay modules Y with X <Y
(resp. Y =< X). Then, by induction on the length of the path from X to Y
(resp. from Y to X), one can easily check that dimy Hom(X,Y) = 1 (resp.
dimg Hom(Y, X') = 1) for all indecomposable Y € X (resp. Y € X ™) with
Y is not free and 7Y ¢ X (resp. 77Y ¢ X 7). Since R is a one dimen-
sional N-graded Gorenstein ring of finite Cohen-Macaulay representation
type, we may assume that R is one of the rings given in (1) . Thus we are
able to compute dimy Hom(R, R(n)) = dimj Hom(R(—n), R) for all n by
Hilbert function. Since the functor Hom(R, —) (resp. Hom(—, R)) is an
exact functor on R (resp. R™), it is possible to compute dimy Hom(R,Y)
(resp. dimy Hom(Y, R)) forall Y € R* (resp. Y € R™) by using Auslander-
Reiten quiver. Since Hom(R,Y) = 0 (resp. Hom(Y,R) =0) forall Y ¢ R*
(resp. Y ¢ R™) by lemma 2.1, it is possible to compute dimy Hom(R,Y)
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and dimy Hom(Y, R) for all Y € CMR. For any X € {X;,Y;};, since we
have already computed dimy Hom(X, R(n)) = dimy Hom(X(—n), R) and
since Hom (X, —) is an exact functor on X it is also possible to compute
dimy Hom(X,Y) for all Y € X' by using Auslander-Reiten quiver. In
this way we can accomplish the computation of dimg Hom(X,Y") for any
indecomposable X, Y € CMR and get the invariant do(R). The result is
shown in table 1. Looking at this table we have do(R) < 9.
TABLE 1

[_type || Ao [ Aom [ Dom | Doms | Eo | 1 | Bs |
(do®) ] t [ 2 ]3] 4 [4]6]9]

Finally, we prove (iii’) = (iii). Because we have already proved (iii’)
= (i), we may assume that R is one given in (1). Since Ext}(X,Y) =
Exth(Q"1X,Y) for all n > 0 and by lemma 2.3, it is enough to show
do(R) > dy(R). For any indecomposable graded maximal Cohen-Macaulay
module X, the first syzygy QX of X is also an indecomposable graded max-
imal Cohen-Macaulay module. Since there exists a natural epimorphism
Hom(QX,Y) —» Exth(X,Y), one can see dg(R) > d;(R) and get d(R) < 9.
O

Remark 3.4. Let R be a one dimensional N-graded Gorenstein ring of fi-
nite Cohen-Macaulay representation type with Ry = k being algebraically
closed field of characteristic 0 (i.e. R is isomorphic to one of the rings
given in (1)). In the above proof, we showed how to compute the in-
variant do(R). Remark that we can also compute the invariant d,(R)
(n > 1) by using Auslander-Reiten quiver in a similar way to this. Since
Ext%(X,Y) = Exth(Q"'X,Y), we have d,,(R) = di(R) for n > 1. We
will show how to compute d; (R). For an indecomposable graded maximal
Cohen-Macaulay module X, we denote by X! the smallest additive full
subcategory of CMR containing all indecomposable graded non-free max-
imal Cohen-Macaulay modules Y with QX <Y =< 7X. We also denote
by X1 the smallest additive full subcategory of CMR containing all in-
decomposable graded non-free maximal Cohen-Macaulay modules Y with
7X <Y and X A Y. It turns out from lemma 2.1 and lemma 2.2 that
Exth(X,Y) =0 for all Y ¢ XU and Ext%(X,Y) = 0 for all Y € X'
and for all n. And it follows from lemma 2.3 that Exth(X, —) is an exact
functor on XM U XM’ Hence it is possible to compute di(R) (and there-
fore d,,(R) for all n > 1) by using Auslander-Reiten quiver. The results
are given in following table.
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TABLE 2

| | Azms1 | Az [ Do | Domr | Eo | Br | Bs |

d(R) = dop(R) 1 2 3 4 4 16 1|9
d,(R) (n>1) 1 2 1 2 31416
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